数学奥林匹克初中训练题

合集下载

初中数学奥林匹克竞赛题4套带详解

初中数学奥林匹克竞赛题4套带详解

初中数学奥林匹克竞赛题4套带详解初中数学奥林匹克竞赛是挑战数学天赋和才能的绝佳场所。

这种竞赛是为那些对数字和逻辑有天赋和兴趣的人所设计的。

无论是追求数学事业,还是成为一名数学家,初中数学奥林匹克竞赛都是一个巨大的机会,可以开阔思维和向高级数学的道路迈进。

本文所述的四套初中数学奥林匹克竞赛题带有详细解析,可供所有有兴趣的人参考学习。

第一套试题:平方和试题:假设我们有两个正整数 a 和 b。

如果我们写一个等式 a²+ b² = 130, 请问这个方程有多少对正整数解?解析:通过对题目的分析,我们发现 a 和 b 都是小于等于 11 的正整数,因为如果是大于 11,它们的平方数之和会大于 130。

我们可以用双重循环解决这个问题:```ans = 0for a in range(1, 12):for b in range(1, 12):if a * a + b * b == 130:ans += 1print(ans)```第二套试题:比率试题:如果 3 个大苹果的重量等于 4 个小苹果的重量,又知道3 个小苹果重量等于 2 个中等苹果的重量,那么问:如果要将 20 个中等苹果与其中 $x$ 个大苹果混合,让它们的重量相等,求出$x$ 的值。

解析:我们可以用比率法解决这个题目。

首先,根据第一个给出的条件,我们有:```3a = 4b```其中,$a$ 是大苹果的重量,$b$ 是小苹果的重量。

然后,根据第二个条件,我们可以得到:```3b = 2c```其中,$c$ 是中等苹果的重量。

现在我们只需要将 $a$ 和$c$ 的比率相等,即:```a / c = 20x / (20 - x)```通过简单的代数运算,我们可以得到:```60x = 80(20 - x)x = 16```因此,我们需要加入 $16$ 个大苹果。

第三套试题:平均值试题:32 个正整数的平均值为20,当其中一个数字被改变后,平均数变为 19.875。

数学奥林匹克初中训练题(166)

数学奥林匹克初中训练题(166)
中 等 数 学
数蟹
中图分类号 : G 4 2 4 . 7 9
藏渤 删稼毽( 1 6 6 )
文献标识码 : A 文章编号 : 1 0 0 5—6 4 1 6 ( 2 0 1 3 ) 0 7— 0 0 4 0— 0 4
第 一 试

线为 “ 好线” . 则共存 在 好线( ) 条. A
2. B.
有一 个相 同 的实根 , 方程
2+ +口=0和 2 +c +b=0
也有 一个 相 同的实根 . 求口 、 b 、 c 的值. 二、 ( 2 5分 ) 如图4 , 已知 点 P在 L = Y A B C D 的 内部 , 且 满 足 P A B= P C B . 设 01 、 0 2 、 D , 、D 分 别 是
如图 5 , 设 A B 中 点 为 , 联结 C M.
由M A= MC。
A =40。.
( i ) 当 为实数时, 其最小值为 O , 且

1 )= 一 一1 )
成立 ;

C MD
=2×4 0。=8 0。 .
图5

( i i ) 当 0< < 5时 ,
△ 、△ Leabharlann B C、 D 由口 2 + b 2 =1 , b 2 +c 2 = 2 , 口 + c = 2
c 口 c , = ( ± 譬 , ± 譬 , ± ) .
贝 0 a b+b c + c 口
≥ ×
△P C D、 △ P D A的
譬 + 譬 × ( 一 ) + ( 一 - : 2 6 ) × 2 至
n :
— — —


_
_
3 . 已知 点 D在 △ A B C的边 A 上, A

初中数学奥赛练习题

初中数学奥赛练习题

数学奥林匹克初中训练题一、选择题1。

若正整数a 、b 、c 、x 、y 、z 满足ax=b+c ,by=a+c ,cz=a+b,则乘积xyz 可能的取值个数为( )。

(A )2 (B)3 (C )4 (D )无数多2.如图,在△ABC 中,∠B 为直角,∠A 的平分线为AD ,边BC 上的中线为E ,且点D 、E 顺次分BC 成三段的比为1∶2∶3。

则sin ∠BAC=( )。

(A)12/13 (B )4 3 /9 (C)2 6/5 (D )432+ 3。

满足方程11610145=+-+++-+x x x x 的实数解x 的个数为( ).(A )1 (B)2 (C)4 (D )无数多4.如图,在单位正方形ABCD 中,以边AB 为直径向形内作半圆,自点C 、D 分别作半圆的切线CE 、DF(E 、F 为切点).则线段EF 的长为( ).(A)5/3 (B )3/5 (C)3 /2 (D )2/3二、填空题1。

设|a|〉1,化简(a+1-a 2)4+2(1-2a 2)(a+1-a 2)2+3的结果是 .2.a 1,a 2,…,a 10分别表示1,2,3,4,5,6,7,8,9,0这十个数码,由此作成两个五位数m=54321a a a a a ,n=109876a a a a a 0(m 〉n).则m —n 的最小值是 .3。

如图,在Rt △ABC 中,BC=3,AC=4,AB=5,其内切圆为⊙O 。

过OA 、OB 、OC 与⊙O 的交点M 、N 、K 分别作⊙O 的切线,与△ABC 的三边分别交于A 1、A 2、B 1、B 2、C 1、C 2.则六边形A 1A 2B 1B 2C 1C 2的面积是 。

4。

若用6张1×2的纸片覆盖一张3×4的方格表,则不同的盖法有 种.三、已知a i、b i(i=1,2,3)为实数,且a21—a22—a23与b21-b22—b23中至少有一个是正数.证明:关于x的一元二次方程x2+2(a1b1-a2b2—a3b3)x+(a21-a22-a23)(b21—b22-b23)=0①必有实根。

全国初中数学奥林匹克竞赛试题

全国初中数学奥林匹克竞赛试题

1、若一个正多边形的每个内角都等于150度,则这个正多边形是()边形。

A. 六B. 七C. 八D. 九解析:正多边形的内角和外角互补,即内角加外角等于180度。

已知内角为150度,则外角为180-150=30度。

正多边形的所有外角之和为360度,因此这个正多边形有360/30=12个边,但考虑到是内角为150度,实际应为正多边形的边数n满足(n-2)*180/n=150,解得n=12/3+2=6。

(答案:A)2、在直角坐标系中,点A(3,4)关于原点对称的点B的坐标是()。

A. (-3,-4)B. (3,-4)C. (-3,4)D. (4,-3)解析:在直角坐标系中,任意一点关于原点对称的点的坐标,横纵坐标都会变成相反数。

因此,点A(3,4)关于原点对称的点B的坐标应为(-3,-4)。

(答案:A)3、若一个数的平方等于它本身,则这个数是()。

A. 1B. -1C. 0或1D. 0,1或-1解析:设这个数为x,则x2=x,移项得x2-x=0,即x(x-1)=0,解得x=0或x=1。

因此,这个数是0或1。

(答案:C)4、下列四个数中,最大的是()。

A. 1/2B. -1/2C. 0D. -1解析:正数总是大于0,0总是大于负数。

在给出的四个数中,1/2是正数,-1/2和-1是负数,0是零。

因此,1/2是最大的。

(答案:A)5、若a,b,c为三角形的三边,且a=3,b=4,则c的取值范围是()。

A. 1<c<7B. 3<c<4C. 4<c<7D. 无法确定解析:根据三角形的性质,任意两边之和大于第三边,任意两边之差小于第三边。

因此,a+b>c,a-b<c,即3+4>c,4-3<c,所以1<c<7。

(答案:A)6、下列哪个选项中的两个数互为相反数()。

A. 2和-3B. -2和-2C. 3和-3D. 2和1/2解析:相反数的定义是,如果两个数的和等于零,那么这两个数互为相反数。

数学奥林匹克初中训练题(含答案)

数学奥林匹克初中训练题(含答案)

数学奥林匹克初中训练题第一试一、选择题(每小题7分,共42分)1.设z y x ++=+++6323,且x 、y 、z 为有理数.则xyz =( ).(A)3/4 (B)5/6 (C)7/12 (D)13/182.设二次函数f (x )=ax 2+ax +1的图像开口向下,且满足f (f (1))=f (3).则2a 的值为( ).(A)-3 (B)-5 (C)-7 (D)-93.方程|xy |+|x +y |=1的整数解的组数为( ).(A)2 (B)4 (C)6 (D)84.a 、b 是方程x 2+(m -5)x +7=0的两个根.则(a 2+ma +7)(b 2+mb +7)=( ).(A)365 (B)245 (C)210 (D)1755.如图,Rt △ABC 的斜边BC =4,∠ABC =30°,以AB 、AC 为直径分别作圆.则这两圆的公共部分面积为( )(A)2332+π (B) 33265-π (C) 365-π (D) 332-π 6.从1,2,…,13中取出k 个不同的数,使这k 个数中任两个数之差既不等于5,也不等于8.则k 的最大值为( ).(A)5 (B)6 (C)7 (D)8二、填空题(每小题7分,共28分)1.若整系数一元二次方程x 2+(a +3)x +2a +3=0有一正根x 1和一负根x 2,且|x 1|<|x 2|,则a = .2.当x =2329-时,代数式x 4+5x 3-3x 2-8x +9的值是 . 3.给定两组数,A 组为:1,2,…,100;B 组为:12,22,…,1002.对于A 组中的数x ,若有B组中的数y ,使x +y 也是B 组中的数,则称x 为“关联数”.那么,A 组中这样的关联数有个.4.已知△ABC 的三边长分别为AB =2576a 2+,BC =62514a a 2++,AC =62514a -a 2+,其中a >7.则△ABC 的面积为 .第二试一、(20分)解方程:(12x +5)2(6x -1)(x +1)=255.二、(25分)如图,四边形ABCD 中,∠ACB =∠ADB =90°,自对角线AC 、BD 的交点N 作NM ⊥AB 于点M ,线段AC 、MD 交于点E ,BD 、MC 交于点F ,P 是线段EF 上的任意一点.证明:点P 到线段CD 的距离等于点P 到线段MC 、MD 的距离之和.三、(25分)矩形玻璃台板碎裂成一些小玻璃片,每块碎片都是凸多边形,将其重新粘合成原矩形后,有交结点30个,其中20个点在原矩形的周界上(包括原矩形的四个顶点),其余10个点在矩形内部.在矩形的内部有45条粘缝(两个结点之间的线段算是一条粘缝,如图所示).试求该矩形台板所碎裂成的各种类型(指三角形、四边形、五边形等)的块数.说明:若凸多边形的周界上有n个点,就将其看成n边形,例如,图中的多边形ABCDE要看成五边形.数学奥林匹克初中训练题1参考答案第一试1.A .两边平方得3+2 +3+6=x +y +z +2xy +2yz +2xz . 根据有理数x 、y 、z 的对称性,可考虑方程组x +y +z =3,2xy = 2,2yz =3,2xz = 6.解得x =1,y =1/2,z =3/2.此时,xyz =3/4.2.B .注意到f (1)=2a +1,f (3)=12a +1,f (f (1))=a (2a +1)2+a (2a +1)+1.由f (f (1))=f (3),得 (2a +1)2+(2a +1)=12.所以,2a +1=3或-4.因a <0,故2a =-5.3.C .因x 、y 为整数,则|xy |、|x +y |为非负整数.于是,|xy |、|x +y |中一个为0,一个为1.分情形考虑得6组解.4.D .由ab =7,a 2+ma +7=5a ,b 2+mb +7=5b ,所以,(a 2+ma +7)(b 2+mb +7)=25ab =175.5.C .记两圆公共部分的面积为S .如图,易知S =S 扇形EAD +S 扇形F AD -S 四边形AEDF =5π/6-3 .6.B .将这13个数按照相邻两数的差为5或8排列于一个圆周上(如图5).若取出的数多于6个,则必有2个数在圆周上相邻.另一方面,可以取出适合条件的6个数(任取圆周上不相邻的6个数即可),因此,k 的最大值为6.二、1.-2.因方程的两根不等,故Δ>0,即(a +3)2>4(2a +3).解得a >3或a <-1.又由题设条件知,方程的两根和与积皆负,即-(a +3)<0,2a +3<0.从而,a >-3,a <-3/2,即-3<a <-3/2.而a 为整数,则a =-2. 2. 32297-. x =2329-是方程x 2+3x -5=0的根, 3.73.记x +y =a 2,y =b 2,则1≤b <a ≤100.而x=a2-b2=(a+b)(a-b)≤100,因a+b、a-b同奇偶,故a+b≥(a-b)+2.(1)若a-b=1,则a+b为奇数,且3≤a+b≤99.于是,a+b可取3,5,7,…,99,共49个值,这时,相应的x 也可取这49个值.(2)若a-b=2,则a+b为偶数,且4≤a+b≤50.于是,a+b可取4,6,8,…,50,共24个值,这时,相应的x 可取8,12,16,…,100这24个值.其他情况下所得的x值均属于以上情形.若a-b=奇数,则a+b=奇数.而x=a2-b2≥a+b≥3,归入(1).若a-b=偶数,则a+b=偶数.而x=(a-b)(a+b)为4的倍数,且a-b≥2,a+b≥4,故x≥8,归入(2).因此,这种x共有49+24=73个.4.168.注意到AB2=(2a)2+482,BC2=(a+7)2+242,AC2=(a-7)2+242.如图,以AB为斜边,向△ABC一侧作直角△ABD,使BD=2a,AD=48,∠ADB=90°.在BD上取点E,使BE=a+7,ED=a-7,又取AD的中点F,作矩形EDFC1.因BC21=BE2+EC21=(a+7)2+242=BC2,AC21=C1F2+AF2=(a-7)2+242=AC2,故点C与点C1重合.而S△ABD=48a,S△CBD=24a,S△ACD=24(a-7),则S△ABC=S△ABD-S△CBD-S△ACD=168.第二试一、将原方程变形得(12x+5)2(12x-2)(12x+12)=660.令12x+5=t,则t2(t-7)(t+7)=660,即t4-49t2=660.解得t2=60或t2=-11(舍去).由此得t=±2 15,即有12x+5=±215.因此,原方程的根为x1,2=121525-.二、如图,易知A、B、C、D四点共圆,B、C、N、M四点共圆,因此,∠ACD=∠ABD=∠MCN.故AC平分∠DCM.同理,BD平分∠CDM.如图,设PH⊥MC于点H,PG⊥MD于点G,PT⊥CD于点T;过点P作XY∥MC,交MD于点X,交AC于点Y;过点Y作YZ∥CD,交MD于点Z,交PT于点R;再作YH1⊥MC于点H1,YT1⊥CD 于点T1.由平行线及角平分线的性质得PH=YH1=YT1=RT.为证PT=PG+PH,只须证PR=PG.由平行线的比例性质得EP/EF=EY/EC=EZ/ED.因此,ZP∥DF.由于△XYZ与△MCD的对应边分别平行,且DF平分∠MDC,故ZP是∠XZY的平分线.从而,PR=PG.因此,所证结论成立.三、设全部碎片中,共有三角形a3个,四边形a4个,……,k边形a k个(a3,a4,…,a k为非负整数).记这些多边形的内角和为S角,于是,S角=a3×π+a4×2π+…+a k(k-2)π.另一方面,矩形内部有10个结点,对于每个点,围绕它的多边形顶角和为2π,10个内结点共获得10×2π弧度;矩形边界上(不含4个顶点)共有16个结点,在每个这种结点处,各多边形的顶角在此汇合成一个平角,16个这种结点共获得16π弧度;而原矩形的4个顶点处,共获得多边形碎片的2π弧度.因此,S角=20π+16π+2π=38π.于是,a3+2a4+…+(k-2)a k=38.①记这些多边形的边数和为S边.由于每个n边形有n条边,则S边=3a3+4a4+…+ka k.另一方面,在矩形内部的45条粘缝,每条都是两个多边形的公共边,故都计算了两次;矩形周界上的20条线段各被计算了一次,因此,S边=2×45+20=110.于是,3a3+4a4+…+ka k=110.②②-①得2(a3+a4+…+a k)=72.故a3+a4+…+a k=36.③①-③得a4+2a5+3a6+…+(k-3)a k=2.因所有a i∈N,故a6=a7=…=a k=0,a4+2a5=2.所以,或者a4=2,a5=0;或者a4=0,a5=1.综上,本题的解共有两种情况,即全部碎片共36块,其中,或含有34个三角形,2个四边形;或含有35个三角形,1个五边形.。

七年级数学奥林匹克竞赛题(一)解析

七年级数学奥林匹克竞赛题(一)解析

初中一年级奥赛训练题(一)及解析一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( C)A.a,b都是0 B.a,b之一是0C.a,b互为相反数D.a,b互为倒数2.下面的说法中正确的是( D)A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是( C)A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( D) A.a,b同号B.a,b异号C.a>0 D.b>05.大于-π并且不是自然数的整数有( B)A.2个B.3个C.4个D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是( B)A.0个B.1个C.2个D.3个解析:负数的平方是正数,所以一定大于它本身,故丙错误。

7.a代表有理数,那么a和-a的大小关系是( D)A.a大于-a B.a小于-aC.a大于-a或a小于-a D.a不一定大于-a解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( D)A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B。

同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,D所加常数为1,因此选D.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( C) A.一样多B.多了C.少了D.多少都可能解析:设杯中原有水量为a,依题意可得,第二天杯中水量为(1-10%)a=0.9a;第三天杯中水量为0.9a(1+10%)=0.9×1.1a;第三天杯中水量与第一天杯中水量之比为0.99∶1,所以第三天杯中水量比第一天杯中水量少了,选C。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:互为相反数。

b,由此a、-2,满足2+(-2)=0令a=2,b=2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D33222解析:3是多项式,排除A+x之和为xx,x。

两个单项都是单项式.两个单项式x,x22223之和为2x3x是个单-之和为3xx是单项式,排除B。

两个多项式x3+x2式x2x,与。

,因此选D项式,排除C3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:错误。

C最大的负整数是-1,故4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,13/ 1初中数学奥林匹克竞赛题及答案。

个.选C0共4-1,6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:。

,应选D、B、C,马上可以排除令a=0A8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。

两个单项式x2,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学奥林匹克初中训练题(1)
第 一 试
一. 选择题.(每小题7分,共42分)
( )1.已知33333a b c abc a b c
++-=++,则22()()()()a b b c a b b c -+-+--的值为: (A)1 (B)2 (C)3 (D)4
( )2.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为:
(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)-
( )3.在ΔABC 中,211a b c
=+,则∠A: (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案
( )4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2();a a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:
(A)2个 (B)3个 (C)4个 (D)5个
( )5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么:
(A)22S CP p (B)22S CP = (C)22S CP f (D)不确定
( )6.满足方程222()x y x y xy +=++的所有正整数解有:
(A)一组 (B)二组 (C)三组 (D)四组
二. 填空题.(每小题7分,共28分)
1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过 分钟,货车追上了客车.
2.若多项式
2228171642070P a ab b a b =-+--+,那么P 的最小值是 .
3.如图1, ∠AOB=30O , ∠AOB 内有一定点P ,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .
4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标。

相关文档
最新文档