2019年高一数学上期末试卷(及答案)(1)
人教版2019学年高一期末数学试卷及答案(共10套 )

人教版2019学年高一数学期末试卷(一)一、选择题(共50分,每小题5分,每小题只有一个正确答案) 1、已知集合M={}1,2,x ,N={}21,x ,且M N=M ,则实数x 的不同取值个数为( )A 、1B 、2C 、3D 、4 2、对n N *∈,2111n n n na a a a +++-=-是数列{}n a 成等差数列的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 3、在等比数例{}n a 中,281,9a a ==,则5a 的值为( ) A 、5 B 、3 C 、-3 D 、±34、已知等差数列{}n a 的前n 项和n S 满足362,6S S ==,则131415a a a ++=( )A 、10B 、18C 、30D 、325、已知函数2()4,[0,1]f x x x a x =-++∈,若()f x 的最小值为-2,则()f x 的最大值为( )A 、-1B 、0C 、1D 、2 6、下列表达式中哪一个是y x 关于的函数( ) A、y = B、y =C、y D 、2y x = 7、正数等比数列{}n a 中,128981a a a a =,则267a a 的值为( )A 、3B 、9C 、81 D8、已知1>a ,函数a x y +=与()1log +=x y a 的图象为( )A B C D 9、计算2log 8log 39的值为( ) A 、4log 3 B 、23 C 、32 D 、2log3 10、数列1111,,,132435(2)n n ⨯⨯⨯+的前9项和为( )A 、511 B 、1011 C 、3655 D 、7255二、填空题(共24分,每小题4分)11、已知等比数列的前n 项和123n n S k +=⨯+,则k = 。
12.已知两个等差数列{n a },{n b }的前n 项和分别为n S ,n T ,且n nS T =723n n -+(*n N ∈),则nna b = 。
2019年高一数学上期末试题(含答案)(1)

2019年高一数学上期末试题(含答案)(1)一、选择题1.已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b <<B .b c a <<C .c a b <<D .c b a <<2.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称3.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 4.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>5.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭6.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B.2C .14,2 D .14,4 7.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .68.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.99.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且R A B ⊆ð,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >10.若函数y a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .411.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭12.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}二、填空题13.通过研究函数()4221021=-+-f x x x x 在x ∈R 内的零点个数,进一步研究得函数()221021=+--n g x x x x (3n >,n N ∈且n 为奇数)在x ∈R 内零点有__________个14.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .15.若关于x 的方程42x x a -=有两个根,则a 的取值范围是_________16.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.17.求值: 2312100log lg += ________ 18.若函数()121xf x a =++是奇函数,则实数a 的值是_________. 19.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知定义在R 上的函数()f x 是奇函数,且当(),0x ∈-∞时,()11xf x x+=-. ()1求函数()f x 在R 上的解析式;()2判断函数()f x 在()0,+∞上的单调性,并用单调性的定义证明你的结论.22.定义在()(),00,-∞⋃+∞上的函数()y f x =满足()()1f xy f x f y ⎛⎫=-⎪⎝⎭,且函数()f x 在(),0-∞上是减函数.(1)求()1f -,并证明函数()y f x =是偶函数; (2)若()21f =,解不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭. 23.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?24.已知()()122x x f x a a R +-=+∈n .(1)若()f x 是奇函数,求a 的值,并判断()f x 的单调性(不用证明); (2)若函数()5y f x =-在区间(0,1)上有两个不同的零点,求a 的取值范围.25.若()221x x a f x +=-是奇函数.(1)求a 的值;(2)若对任意()0,x ∈+∞都有()22f x m m ≥-,求实数m 的取值范围.26.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用指数函数2x y =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<Q ,c a b ∴<<.故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.2.C解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.C解析:C 【解析】 【分析】当5,32x ππ⎛⎤∈ ⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()fx f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=-故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.4.A解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.5.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.6.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.7.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.8.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.9.C解析:C 【解析】 【分析】由()()620x x -->可得{}|26=<<A x x ,{}44R C B x a x a 或=-+,再通过A 为R C B 的子集可得结果.【详解】由()()ln 62y x x =--可知,()()62026x x x -->⇒<<,所以{}|26=<<A x x ,{}44R C B x a x a 或=-+,因为R A C B ⊆,所以6424a a 或≤-≥+,即102a a ≥≤-或,故选C. 【点睛】本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.10.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.11.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.12.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.二、填空题13.3【解析】【分析】令(为奇数)作出两个函数的图象后可判断零点的个数【详解】由题意令则零点的个数就是图象交点的个数如图所示:由图象可知与的图象在第一象限有一个交点在第三象限有一个交点因为当为正奇数时的解析:3 【解析】 【分析】令()2n s x x =(n 为奇数,3n >),()21021h x x x =-++,作出()s x 、()h x 两个函数的图象后可判断()g x 零点的个数. 【详解】由题意,令()*2,,5n s x x n N n =∈≥,()21021h x x x =-++,则()()()g x s x h x =-,()g x 零点的个数就是()(),s x h x 图象交点的个数,如图所示:由图象可知,()s x 与()h x 的图象在第一象限有一个交点,在第三象限有一个交点, 因为当n 为正奇数时()2ns x x =的变化速度远大于()h x 的变化速度,故在第三象限内,()s x 、()h x 的图象还有一个交点,故()(),s x h x 图象交点的个数为3,所以()g x 零点的个数为3. 故答案为:3. 【点睛】本题主要考查了函数的零点的判定,其中解答中把函数的零点问题转化为两个函数的图象的交点个数求解是解答的关键,着重考查了数形结合思想的应用,属于中档试题.14.【解析】【分析】【详解】故答案为 解析:【解析】 【分析】 【详解】故答案为.15.【解析】【分析】令可化为进而求有两个正根即可【详解】令则方程化为:方程有两个根即有两个正根解得:故答案为:【点睛】本题考查复合函数所对应的方程根的问题关键换元法的使用难度一般解析:1(,0)4-【解析】 【分析】令20x t =>,42x x a -=,可化为20t t a --=,进而求20t t a --=有两个正根即可. 【详解】令20x t =>,则方程化为:20t t a --=Q 方程42x x a -=有两个根,即20t t a --=有两个正根,1212140100a x x x x a ∆=+>⎧⎪∴+=>⎨⎪⋅=->⎩,解得:104a -<<.故答案为: 1(,0)4-. 【点睛】本题考查复合函数所对应的方程根的问题,关键换元法的使用,难度一般.16.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题解析:0a ≤【解析】【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】 Q ()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x ≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.17.【解析】由题意结合对数指数的运算法则有: 解析:32- 【解析】由题意结合对数、指数的运算法则有:()2log 31532lg 3210022=-+-=-. 18.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键 解析:12- 【解析】【分析】由函数()f x 是奇函数,得到()010021f a =+=+,即可求解,得到答案. 【详解】由题意,函数()121x f x a =++是奇函数,所以()010021f a =+=+,解得12a =-, 当12a =-时,函数()11212x f x =-+满足()()f x f x -=-, 所以12a =-. 故答案为:12-. 【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.19.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没 解析:{|2m m >或2}3m <-【解析】【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围.【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值, 则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >. 当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-.故答案为:{|2m m >或2}3m <-.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题.20.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a 的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点 解析:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭【解析】【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论1a >,01a <<两种情况,即可得到所求a 的范围.【详解】函数函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩, 当01a <<时,2x ≤时,()53f x x =-≥,2x >时,()22x f x a a =++递减,可得()22222a f x a a +<<++, ()f x 的值域为[)3,+∞,可得223a +≥, 解得112a ≤<; 当1a >时,2x ≤时,()53f x x =-≥,2x >时,()22x f x a a =++递增,可得()2225f x a a >++>, 则()f x 的值域为[)3,+∞成立,1a >恒成立. 综上可得()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭. 故答案为:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭.【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的思想方法,考查推理和运算能力,属于中档题. 三、解答题21.(1)()1,010,01,01x x x f x x x x x+⎧<⎪-⎪==⎨⎪-⎪->+⎩(2)函数()f x 在()0,+∞上为增函数,详见解析【解析】【分析】()1根据题意,由奇函数的性质可得()00f =,设0x >,则0x -<,结合函数的奇偶性与奇偶性分析可得()f x 在()0,+∞上的解析式,综合可得答案;()2根据题意,设120x x <<,由作差法分析可得答案.【详解】解:()1根据题意,()f x 为定义在R 上的函数()f x 是奇函数,则()00f =, 设0x >,则0x -<,则()11x f x x--=+, 又由()f x 为R 上的奇函数,则()()11x f x f x x -=-=-+, 则()1,010,01,01x x x f x x x x x+⎧<⎪-⎪==⎨⎪-⎪->+⎩;()2函数()f x 在()0,+∞上为增函数;证明:根据题意,设120x x <<,则()()()()()1212211212211221111111111x x x x x x f x f x x x x x x x -⎛⎫⎛⎫-----=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 又由120x x <<,则()120x x -<,且()110x +>,()210x +>;则()()120f x f x ->,即函数()f x 在()0,+∞上为增函数.【点睛】本题考查函数的奇偶性与单调性的判断以及应用,涉及掌握函数奇偶性、单调性的定义.22.(1)()10f -=,证明见解析;(2)[1,2)(2,3]⋃【解析】【分析】(1)根据函数解析式,对自变量进行合理赋值即可求得函数值,同时也可以得到()f x 与()f x -之间的关系,进而证明;(2)利用函数的奇偶性和单调性,合理转化求解不等式即可.【详解】(1)令10y x =≠,则()111f x f x f x x ⎛⎫ ⎪⎛⎫⋅=- ⎪ ⎪⎝⎭ ⎪⎝⎭, 得()()()10f f x f x =-=,再令1x =,1y =-,可得()()()111f f f -=--,得()()2110f f -==,所以()10f -=,令1y =-,可得()()()()1f x f x f f x -=--=,又该函数定义域关于原点对称,所以()f x 是偶函数,即证.(2)因为()21f =,又该函数为偶函数,所以()21f -=.因为函数()f x 在(),0-∞上是减函数,且是偶函数所以函数()f x 在()0,∞+上是增函数.又412f f x x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()2424x f x f x x -⎛⎫=⋅=- ⎪⎝⎭, 所以()()242f x f -≤,等价于240,242,x x ->⎧⎨-≤⎩或240,242,x x -<⎧⎨-≥-⎩解得23x <≤或12x ≤<. 所以不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭的解集为[1,2)(2,3]⋃. 【点睛】本题考查抽象函数求函数值、证明奇偶性,以及利用函数奇偶性和单调性求解不等式.23.(1)40Q t =-+,030t <≤,t ∈N (2)在30天中的第15天,日交易额最大为125万元.【解析】【分析】(1)设出一次函数解析式,利用待定系数法求得一次函数解析式.(2)求得日交易额的分段函数解析式,结合二次函数的性质,求得最大值.【详解】(1)设Q ct d =+,把所给两组数据()()4,36,10,30代入可求得1c =-,40d =. ∴40Q t =-+,030t <≤,t N ∈(3)首先日交易额y (万元)=日交易量Q (万股)⨯每股交易价格P (元)()()1240,020,51840,2030,10t t t t N y t t t t N ⎧⎛⎫+-+≤≤∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+<≤∈ ⎪⎪⎝⎭⎩,∴()()22115125,020,516040,2030,10t t t N y t t t N ⎧--+≤≤∈⎪⎪=⎨⎪--<≤∈⎪⎩ 当020t ≤≤时,当15t =时,max 125y =万元当20t 30<≤时,y 随x 的增大而减小故在30天中的第15天,日交易额最大为125万元.【点睛】本小题主要考查待定系数法求函数解析式,考查分段函数的最值,考查二次函数的性质,属于中档题.24.(1)答案见解析;(2)253,8⎛⎫ ⎪⎝⎭. 【解析】试题分析:(1)函数为奇函数,则()()0f x f x -+=,据此可得2a =-,且函数()f x 在R 上单调递增;(2)原问题等价于22252x x a =-⋅+⋅在区间(0,1)上有两个不同的根,换元令2x t =,结合二次函数的性质可得a 的取值范围是253,8⎛⎫ ⎪⎝⎭. 试题解析:(1)因为是奇函数,所以()()()()1122222220x x x x x x f x f x a a a -++---+=+⋅++⋅=++=, 所以; 在上是单调递增函数; (2)在区间(0,1)上有两个不同的零点, 等价于方程在区间(0,1)上有两个不同的根, 即方程在区间(0,1)上有两个不同的根, 所以方程在区间上有两个不同的根, 画出函数在(1,2)上的图象,如下图,由图知,当直线y =a 与函数的图象有2个交点时, 所以的取值范围为. 点睛:函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.25.(1)1a = (2)112m -≤≤ 【解析】【分析】(1)根据函数的奇偶性,可得结果.(2)根据(1)的条件使用分离常数方法,化简函数()f x ,可知()f x 的值域,结合不等式计算,可得结果.【详解】(1) ()2121a f +=-,()121112a f +-=- 因为()221x x a f x +=-是奇函数. 所以()()11f f =--,得1a =;经检验1a =满足题意(2)根据(1)可知()2121x x f x +=- 化简可得()2121x f x =+- 所以可知()2121x f x =+-当()0,x ∈+∞时,所以()1f x >对任意()0,x ∈+∞都有()22f x m m ≥- 所以212m m ≥-, 即112m -≤≤ 【点睛】 本题考查根据函数的奇偶性求参数,还考查了恒成立问题,对存在性,恒成立问题一般转化为最值问题,细心计算,属中档题.26.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克 【解析】【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =;当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+, 故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩. (2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩, 当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=;当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克.【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题.。
2019届高一年级上学期数学期末测试卷及参考答案

2019级高一年级上学期期末测试卷数学参考答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案A B A B D D C D A D C B【解析】1.集合{|3}A x x =<A ,故选A .2.将圆的方程2224110x y x y ++--=化为标准方程可得22(1)(2)16x y ++-=,由标准方程可得圆的半径为4,故选B .3.分两种情况:在同一平面内,垂直于同一条直线的两条直线平行;在空间内垂直于同一条直线的两条直线可以平行、相交或异面,故选A .4.5log 0.60a =<,0.60.6510.5(01)b c =>=∈,,,∴a c b <<,故选B .5.点(369)P ,,关于平面xOy 的对称点是1(369)P -,,,则垂足Q 是1PP 的中点,所以Q 的坐标为(360)P ,,,故选D .6.(4)(2)A a B a -,,,∵,且斜率为2,则422AB a k a--==-,解得8a =,故选D .7.∵直线2830()kx y k k -++=∈R 的方程可化为32(4)y k x -=+,当4x =-,3y =时方程恒成立,∴直线过定点(43)-,,故选C .8.原平面图形是直角梯形,高为2a ,上底为a ,下底为(1a +,面积是12(112a a ⨯⨯++2(2a =+,故选D .9.由两直线平行得8m =-,在直线3460x y --=上任取一点(20)P ,,则点P 到直线620x my +-=的距离为2216(8)d =+-,故选A .10.方程()20190f x -=在(0)-∞,上有解,∴函数()y f x =与2019y =在(0)-∞,上有交点,分别观察直线2019y =与函数()f x 的图象在(0)-∞,上交点的情况,选项A ,B ,C 无交点,D 有交点,故选D .11.由三视图可知该几何体为以2为半径,3为高的圆锥沿着轴截得的半个圆锥,所以211π232π32V ⎛⎫== ⎪⎝⎭,故选C .12.偶函数满足(1)(1)f f -=,即11lg(101)lg(101)a a -++=+-,解得12a =,奇函数满足(0)0f =,则00202b +=,解得1b =-,则11122a b +=-=-,故选B .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)题号13141516答案310x y +-=1116⎡⎫⎪⎢⎣⎭,24π【解析】13.由题得直线310x y -+=的斜率为13,所以所求直线的斜率为3-,所以所求直线的方程为23(1)y x +=--,即310x y +-=.14.设圆心(11),到直线22x y -=的距离为d ,则圆上的点到直线2x y -=的距离的最小值等于d r -22112-=.15.由题意,可作出函数图象如图1,由图象可知01601a a <<⎧⎨-⎩,≥,解之得116a <≤.16.平面四边形ABCD 中,24AB AD CD BD BD CD ====⊥,,,将其沿对角线BD 折成三棱锥A BCD -,使平面ABD ⊥平面BCD ,三棱锥A BCD -的顶点在同一个球面上,BCD △和ABC △都是直角三角形,BC 的中点就是球心,所以26BC =图1,所以球的表面积为24π.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)解:当1a >时,()log a f x x =在(0)+∞,上为增函数,…………………………(1分)∴在[327],上函数()f x 的最小值为(3)log 3a f =,最大值为(27)log 27a f =,……………………………………………………(3分)∴log 27log 32a a -=,即log 92a =,解得3a =;……………………………(5分)当01a <<时,()log a f x x =在(0)+∞,上为减函数,…………………………(6分)∴在[327],上函数()f x 的最小值为(27)log 27a f =,最大值为(3)log 3a f =,…………………………………………………………(8分)∴log 3log 272a a -=,即log 92a =-,解得13a =,………………………(9分)综上所述3a =或13a =.………………………………………………………(10分)18.(本小题满分12分)解:(Ⅰ)由已知得32405370x y x y --=⎧⎨--=⎩,,解得两直线交点为(21),,………………………………………………………(2分)设直线l 的斜率为1k ,∵l 与20x y ++=垂直,∴11k =,……………………………………………(4分)∵l 过点(21),,∴l 的方程为12y x -=-,即10x y --=.…………………………………(6分)(Ⅱ)设圆C 的半径为r=,………………………………………………………………………(8分)则由垂径定理得2224r =+=,∴2r =,…………………………(10分)∴圆的标准方程为22(3)4x y -+=.………………………………………(12分)19.(本小题满分12分)(Ⅰ)解:∵PD ⊥平面ABCD ,∴21123(23)8333P ABCD ABCD V PD S -==⨯= .……………………………(4分)(Ⅱ)证明:如图2,∵E F ,分别是PC PD ,的中点,∴EF CD ∥,由正方形ABCD ,∴EF AB ∥,又EF ⊄平面PAB ,∴EF ∥平面PAB ,……………(6分)同理可得EG PB ∥,可得EG ∥平面PAB ,又EF EG E = ,∴平面PAB ∥平面EFG .…………………………………(8分)(Ⅲ)证明:∵EM BC AD ∥∥,∴A D E M ,,,四点共面,由PD ⊥平面ABCD ,∴AD PD ⊥,…………………………………………………………………(9分)又AD CD ⊥,PD CD D = ,∴AD ⊥平面PCD ,∴AD PC ⊥,……………………………………………(10分)又PDC △为等腰三角形,E 为斜边的中点,∴DE PC ⊥,…………………………………………………………………(11分)又AD DE D = ,∴PC ⊥平面ADEM ,即PC ⊥平面ADM .……………………………(12分)20.(本小题满分12分)解:(Ⅰ)依题设,总成本为20000125x +,…………………………………(2分)则21300200000320260000125320x x x x y x x x ⎧-+-<∈⎪=⎨⎪->∈⎩N N ,≤,且,,,且.………………………(5分)(Ⅱ)当0320x <≤时,21(300)250002y x =--+,…………………………(7分)则当300x =时,max 25000y =;…………………………………………………(8分)当320x >时,60000125y x =-是减函数,…………………………………(9分)则6000012532020000y <-⨯=,……………………………………………(11分)∴当月产量300x =件时,自行车厂的利润最大,最大利润为25000元.图2………………………………………………………………………(12分)21.(本小题满分12分)解:(Ⅰ)由题意可知,设圆心为(1)a a +,.则圆C 为22()[(1)]8x a y a -+-+=,……………………………………………(2分)∵圆C 过点(63),,∴22(6)[3(1)]8a a -+-+=,…………………………………………………(4分)解得4a =,…………………………………………………………………(5分)即圆C 的方程为22(4)(5)8x y -+-=.………………………………………(6分)(Ⅱ)当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,即30kx y k --=,…………………………(7分)∵过点(30),的直线l 截圆所得弦长为∴1d =,则125k =,……………………………………………(8分)直线l 为125360x y --=;……………………………………………………(9分)当直线l 的斜率不存在时,直线l 为3x =,此时弦长为…………………………………………………(11分)综上,直线l 的方程为3x =或125360x y --=.…………………………(12分)22.(本小题满分12分)解:(Ⅰ)函数1()e ()e x x h x x =-∈-∞+∞,,函数()h x 为奇函数,……………………………………………………………(2分)函数()h x 的单调递增区间为()-∞+∞,.………………………………………(4分)(Ⅱ)据题意知,当[13]x ∈,时,max 1()()f x f x =,max 2()()g x g x =,…………………………………………………………………………(5分)∵()e x f x =在区间[13],上单调递增,∴3max ()(3)e f x f ==,即31()e f x =,………………………………………(7分)又∵22()4(2)4g x x x b x b =-++=--++,∴函数()y g x =的对称轴为2x =,……………………………………………(8分)∴函数()y g x =在区间[13],上的最大值为max ()(2)4g x g b ==+,即2()4g x b =+,……………………………………………………………(10分)由12()()f x f x =,得34e b +=,∴3e 4b =-.……………………………………………………………(12分)。
2019学年高一数学上学期期末考试试题(含解析)(1)

2019学年高一年级第一学期期末考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线的倾斜角为()A. 30°B. 60°C. 120°D. 150°【答案】A【解析】直线的斜率为,所以倾斜角为30°.故选A.2. 空间直角坐标系中,已知点,则线段的中点坐标为()A. B. C. D.【答案】A【解析】点,由中点坐标公式得中得为:,即.故选A.3. 一个三棱锥的正视图和俯视图如图所示,则该三棱锥的俯视图可能为()【答案】D【解析】由几何体的三视图可知,三棱锥的顶点在底面的射影在底面棱上,可知几何体如图:侧视图为:D.故选:D.4. 下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选A.5. 已知圆,圆,则两圆的位置关系为( )A. 相离B. 相外切C. 相交D. 相内切【答案】A【解析】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选A.6. 设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是( )A. B. C. D.【答案】D【解析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上。
根据点A(−1,−1)和点C(1,0)的坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选:D.7. 直三棱柱中,若,则异面直线与所成角的余弦值为( )A. 0B.C.D.【答案】A【解析】连接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即异面直线与所成角为90°,所以余弦值为0.故选A.8. 已知是两相异平面,是两相异直线,则下列错误的是( )A. 若,则B. 若,,则C. 若,,则D. 若,,,则【答案】B【解析】对于A,由面面垂直的判定定理可知,经过面的垂线,所以成立;对于B,若,,不一定与平行,不正确;对于C,若,, 则正确;对于D,若,,,则正确.故选B.9. 若是圆上动点,则点到直线距离的最大值( )A. 3B. 4C. 5D. 6【答案】C【解析】圆的圆心为(0,3),半径为1.是圆上动点,则点到直线距离的最大值为圆心到直线的距离加上半径即可. 又直线恒过定点,所以.所以点到直线距离的最大值为4+1=5.故选C.10. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于( )A. B. C. D. 2【答案】C【解析】如果主视图是从垂直于正方体的面看过去,则其面积为1;如果斜对着正方体的某表面看,其面积就变大,最大时,(是正对着正方体某竖着的棱看),面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是1,最大是,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.11. 直线与圆相交于两点,若,则的取值范围是( )A. B. C. D.【答案】C【解析】圆,即.直线与圆相交于两点,若,设圆心到直线距离.则,解得.即,解得故选C.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.12. 已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为( )A. B.C. D.【答案】B【解析】设,直线的斜率为,直线的斜率为.有直线的斜率与直线的斜率的差是1,所以.通分得:,整理得:.故选B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0.(2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知圆,圆,则两圆公切线的方程为__________.【答案】【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案为:.14. 已知点为圆上的动点,则的最小值为__________.【答案】-4【解析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为:-4.15. 如图,二面角的大小是30°,线段,与所成的角为45°,则与平面所成角的正弦值是__________.【答案】【解析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,由CD⊥l,AC⊥l得, l⊥面ACD,可得AD⊥l,因此,∠ADC为二面角α−l−β的平面角,∠ADC=30°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角。
2019年高一数学上期末试卷及答案(1)

2019年高一数学上期末试卷及答案(1)一、选择题1.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞2.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( )A .()0,1B .[)0,1C .(]0,1D .[]0,13.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦ C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.函数y =a |x |(a >1)的图像是( ) A .B .C .D .5.已知131log 4a =,154b=,136c =,则( ) A .a b c >>B .a c b >>C .c a b >>D .b c a >>6.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>7.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .68.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:x1 2 1.5 1.625 1.75 1.875 1.8125 ()f x-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.99.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<10.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U11.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .412.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值二、填空题13.若函数()(0,1)xf x a a a =>≠且在[1,2]上的最大值比最小值大2a,则a 的值为____________.14.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______. 15.函数20.5log y x =的单调递增区间是________16.函数22log (56)y x x =--单调递减区间是 .17.已知函数1()41x f x a =+-是奇函数,则的值为________. 18.已知函数()211x x xf -=-的图象与直线2y kx =+恰有两个交点,则实数k 的取值范围是________.19.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()af x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______.20.已知函数222y x x -=+,[]1,x m ∈-.若该函数的值域为[]1,10,则m =________.三、解答题21.已知函数()10()mf x x x x=+-≠. (1)若对任意(1)x ∈+∞,,不等式()2log 0f x >恒成立,求m 的取值范围. (2)讨论()f x 零点的个数.22.对于函数()()()2110f x ax b x b a =+++-≠,总存在实数0x ,使()00f x mx =成立,则称0x 为()f x 关于参数m 的不动点.(1)当1a =,3b =-时,求()f x 关于参数1的不动点;(2)若对任意实数b ,函数()f x 恒有关于参数1两个不动点,求a 的取值范围; (3)当1a =,5b =时,函数()f x 在(]0,4x ∈上存在两个关于参数m 的不动点,试求参数m 的取值范围.23.已知二次函数()f x 满足()02f =,()()12f x f x x +-=. (1)求函数()f x 的解析式;(2)若关于x 的不等式()0f x mx -≥在[]1,2上有解,求实数m 的取值范围; (3)若方程()2f x tx t =+在区间()1,2-内恰有一解,求实数t 的取值范围. 24.已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集;(3)若()82x tf x ≥+对x ∈R 恒成立,求t 的取值范围. 25.已知函数21()f x x x=-是定义在(0,)+∞上的函数.(1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式()220f x x m ++<恒成立,求实数m 的取值范围.26.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <…,341x x =g ,从而得解【详解】 解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题2.B解析:B 【解析】 【分析】先化简集合A,B,再求B A ð得解. 【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}B A x x =≤<ð. 故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.3.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B.考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .5.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.6.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞; 对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.7.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.8.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.9.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.10.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.11.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.12.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题13.或【解析】【分析】【详解】若∴函数在区间上单调递减所以由题意得又故若∴函数在区间上单调递增所以由题意得又故答案:或解析:12或32 【解析】 【分析】 【详解】若01a <<,∴函数()xf x a =在区间[1,2]上单调递减,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又01a <<,故12a =.若1a >,∴函数()xf x a =在区间[1,2]上单调递增,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又1a >,故32a =. 答案:12或3214.【解析】【分析】不动点实际上就是方程f (x0)=x0的实数根二次函数f (x )=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可解析:10,33⎡⎫--⎪⎢⎣⎭【解析】 【分析】不动点实际上就是方程f (x 0)=x 0的实数根,二次函数f (x )=x 2+ax +4有不动点,是指方程x =x 2+ax +4有实根,即方程x =x 2+ax +4有两个不同实根,然后根据根列出不等式解答即可. 【详解】解:根据题意,f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,得x =x 2+ax +4在[1,3]有两个实数根,即x 2+(a ﹣1)x +4=0在[1,3]有两个不同实数根,令g (x )=x 2+(a ﹣1)x +4在[1,3]有两个不同交点,∴2(1)0(3)01132(1)160g g a a ≥⎧⎪≥⎪⎪⎨-<<⎪⎪-->⎪⎩,即24031001132(1)160a a a a +≥⎧⎪+≥⎪⎪⎨-<<⎪⎪-->⎪⎩,解得:a ∈10,33⎡⎫--⎪⎢⎣⎭; 故答案为:10,33⎡⎫--⎪⎢⎣⎭. 【点睛】 本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.15.【解析】【分析】先求得函数的定义域然后利用同增异减来求得复合函数的单调区间【详解】依题意即解得当时为减函数为减函数根据复合函数单调性同增异减可知函数的单调递增区间是【点睛】本小题主要考查复合函数的单 解析:[)1,0-【解析】【分析】先求得函数的定义域,然后利用“同增异减”来求得复合函数的单调区间.【详解】依题意220.50log 0x x ⎧>⎨≥⎩,即201x <≤,解得[)(]1,00,1x ∈-U .当[)1,0x ∈-时,2x 为减函数,0.5log x 为减函数,根据复合函数单调性“同增异减”可知,函数20.5log y x =递增区间是[)1,0-.【点睛】本小题主要考查复合函数的单调区间的求法,考查函数定义域的求法,属于基础题. 16.【解析】【分析】先求出函数的定义域找出内外函数根据同增异减即可求出【详解】由解得或所以函数的定义域为令则函数在上单调递减在上单调递增又为增函数则根据同增异减得函数单调递减区间为【点睛】复合函数法:复 解析:(,1)-∞-【解析】【分析】先求出函数的定义域,找出内外函数,根据同增异减即可求出.【详解】由2560x x -->,解得6x >或1x <-,所以函数22log (56)y x x =--的定义域为(,1)(6,)-∞-+∞U .令256u x x =--,则函数256u x x =--在(),1-∞-上单调递减,在()6,+∞上单调递增,又2log y u =为增函数,则根据同增异减得,函数22log (56)y x x =--单调递减区间为(,1)-∞-.【点睛】复合函数法:复合函数[]()y f g x =的单调性规律是“同则增,异则减”,即()y f u =与()u g x =若具有相同的单调性,则[]()y f g x =为增函数,若具有不同的单调性,则[]()y f g x =必为减函数.17.【解析】函数是奇函数可得即即解得故答案为 解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为12 18.【解析】【分析】根据函数解析式分类讨论即可确定解析式画出函数图像由直线所过定点结合图像即可求得的取值范围【详解】函数定义域为当时当时当时画出函数图像如下图所示:直线过定点由图像可知当时与和两部分图像 解析:(4,1)(1,0)--⋃-【解析】【分析】根据函数解析式,分类讨论即可确定解析式.画出函数图像,由直线所过定点,结合图像即可求得k 的取值范围.【详解】函数()211x x x f -=-定义域为{}1x x ≠ 当1x ≤-时,()2111x x xf x -==---当11x -<<时,()2111x x xf x -==+- 当1x <时,()2111x x xf x -==--- 画出函数图像如下图所示:直线2y kx =+过定点()0,2由图像可知,当10k -<<时,与1x ≤-和11x -<<两部分图像各有一个交点;当41-<<-k 时,与11x -<<和1x <两部分图像各有一个交点.综上可知,当()()4,11,0k ∈--⋃-时与函数有两个交点故答案为:()()4,11,0--⋃-【点睛】本题考查了分段函数解析式及图像画法,直线过定点及交点个数的求法,属于中档题. 19.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想 解析:{}1-【解析】【分析】由幂函数()af x x =为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值.【详解】因为11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,幂函数为奇()a f x x =函数,且在(0,)+∞上递减, a ∴是奇数,且0a <,1a ∴=-.故答案为:1-.【点睛】本题主要考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20.4【解析】【分析】根据二次函数的单调性结合值域分析最值即可求解【详解】二次函数的图像的对称轴为函数在递减在递增且当时函数取得最小值1又因为当时所以当时且解得或(舍)故故答案为:4【点睛】此题考查二次 解析:4【解析】【分析】根据二次函数的单调性结合值域,分析最值即可求解.【详解】二次函数222y x x -=+的图像的对称轴为1x =,函数在(),1x ∈-∞递减,在[)1,x ∈+∞递增,且当1x =时,函数()f x 取得最小值1,又因为当1x =-时,5y =,所以当x m =时,10y =,且1m >-,解得4m =或2-(舍),故4m =.故答案为:4【点睛】此题考查二次函数值域问题,根据二次函数的值域求参数的取值. 三、解答题21.(1)14m >;(2)当14m >或14m <-时,有1个零点;当14m =或0m =或14m =-时,有2个零点;当104m <<或104m -<<时,有 3个零点 【解析】【分析】(1)利用不等式恒成立,进行转化求解即可,(2)利用函数与方程的关系进行转化,利用参数分离法结合数形结合进行讨论即可.【详解】解:(1)由()20f log x >得,2210m log x log x+-> 当(1,)x ∈+∞时,20log x >变形为()2220log x log x m -+>,即()222m log x log x >-+ 而()222221412log x log x log x ⎛⎫+ ⎪-⎭--⎝+=当212log x =即2x =时,()()2ma 22x 14log x log x =-+ 所以14m > (2)由()0f x =可得00()x x x m x -+=≠,变为()0m x x x x =-+≠令()222211,024,0,011,024x x x x x g x x x x x x x x x ⎧⎛⎫--+>⎪ ⎪⎧-+>⎪⎝⎭=-==⎨⎨+<⎩⎛⎫⎪+-< ⎪⎪⎝⎭⎩ 作()y g x =的图像及直线y m =,由图像可得:当14m >或14m <-时,()f x 有1个零点. 当14m =或0m =或14m =-时,()f x 有2个零点: 当104m <<或104m -<<时,()f x 有 3个零点.【点睛】本题考查不等式恒成立以及函数的单调性的应用,考查函数的零点的判断,考查分类讨论的思想方法,考查运算能力,属于中档题.22.(1)4或1-;(2)()0,1;(3)(]10,11.【解析】【分析】(1)当1a =,3b =-时,结合已知可得2()24f x x x x =--=,解方程可求;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,结合二次方程的根的存在条件可求;(3)当1a =,5b =时,转化为问题2()64f x x x mx =++=在(0,4]上有两个不同实数解,进行分离m ,结合对勾函数的性质可求.【详解】解:(1)当1a =,3b =-时,2()24f x x x =--,由题意可得,224x x x --=即2340x x --=,解可得4x =或1x =-,故()f x 关于参数1的不动点为4或1-;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,则210ax bx b ++-=恒有2个不同的实数根(0)a ≠,所以△24(1)0b a b =-->恒成立,即2440b ab a -+>恒成立,∴216160a a ∆=-<,则01a <<,∴a 的取值范围是()0,1;(3)1a =,5b =时,2()64f x x x mx =++=在(0,4]上有两个不同实数解, 即46m x x-=+在(0,4]上有两个不同实数解, 令4()h x x x=+,04x <≤, 结合对勾函数的性质可知,465m <-≤,解可得,1011m <≤.故m 的范围为(]10,11.【点睛】本题以新定义为载体,主要考查了函数性质的灵活应用,属于中档题.23.(1)2()2f x x x =-+;(2)2m ≤;(3)5t =或14t ≤<【解析】【分析】(1)由待定系数法求二次函数的解析式;(2)分离变量求最值,(3)分离变量,根据函数的单调性求实数t 的取值范围即可.【详解】解:(1)因为()f x 为二次函数,所以设2()f x ax bx c =++, 因为(0)2f =,所以2c =,因为(1)()2f x f x x +-=,所以22ax a b x ++=,解得1,1a b ==-,所以2()2f x x x =-+;(2)因为()0f x mx -≥在[]1,2上有解,所以22mx x x ≤-+,又因为[1,2]x ∈,所以max 21m x x ⎛⎫≤+- ⎪⎝⎭, 因为2212212x x +-≤+-=, 2m ∴≤;(3)因为方程()2f x tx t =+在区间()1,2-内恰有一解,所以22(2)x x t x -+=+,因为(1,2)x ∈-,令2(1,4),m x =+∈则()()2222tm m m ---+=,即258tm m m =-+ 85t m m∴=+-,又8()5g m m m=+-在单调递减,在4)单调递增,(1)1854g =+-=,8(4)4541g =+-=,55g ==,所以5t =或14t ≤<.【点睛】本题主要考查二次函数的图象及性质,关键是参变分离将有解问题或有一个解的问题转化为最值问题,属于中档题.24.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞-【解析】【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可.(3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可.【详解】(1)因为()22x x f x k -=+⋅且(0)4f =,故:14k +=, 解得3k =.(2)因为()()log ()2x a g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=n ,则log (32?)0x a ->n ,等价于:当1a >时,321x ->n ,解得()2,log 3x ∈-∞当01a <<时,321x -<n ,解得()2log 3,x ∈+∞.(3)()82xt f x ≥+在R 上恒成立,等价于: ()()228230x x t --+≥n 恒成立; 令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故: 2(83)m m -+的最小值为:-13,故:只需13t ≤-即可.综上所述,(],13t ∈-∞-.【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.25.(1)证明见解析(2)m 1≥【解析】【分析】(1)12,(0,)x x ∀∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据单调性得到221x x m ++>,即()221212m x x x >--=-++,得到答案.【详解】(1)函数单调递减,12,(0,)x x ∀∈+∞,且12x x <,()()()()2221121212122222121211x x x x x x f x f x x x x x x x -++⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭∵120x x <<,∴210x x ->,2212120x x x x ++>,22110x x > ∴12()()f x f x >,∴()f x 在(0,)+∞单调递减;(2)()()2201f x x m f ++<=,故221x x m ++>, ()221212m x x x >--=-++,(0,)x ∈+∞,故m 1≥.【点睛】本题考查了定义法证明函数单调性,利用单调性解不等式,意在考查学生对于函数性质的灵活运用. 26.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克 【解析】【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =;当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+, 故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩. (2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩, 当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=;当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克.【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题.。
2019年高一数学上期末试卷含答案(1)

2019年高一数学上期末试卷含答案(1)一、选择题1.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()n n A .B .C .D .2.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<3.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>4.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞)D .(-∞,-2]5.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<6.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:x1 2 1.5 1.625 1.75 1.875 1.8125 ()f x-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6 B .1.7C .1.8D .1.97.函数ln x y x=的图象大致是( )A .B .C .D .8.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭9.函数y =的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)10.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+11.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭12.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞二、填空题13.已知()y f x =是定义在R 上的奇函数,且当0x …时,11()42x xf x =-+,则此函数的值域为__________.14.已知f (x )是定义域在R 上的偶函数,且f (x )在[0,+∞)上是减函数,如果f (m ﹣2)>f (2m ﹣3),那么实数m 的取值范围是_____.15.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________19.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.20.对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1xf x x=-+在R 上封闭,则b a -=____.三、解答题21.已知函数()2log f x x =(1)解关于x 的不等式()()11f x f x +->;(2)设函数()()21xg x f kx =++,若()g x 的图象关于y 轴对称,求实数k 的值.22.王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国668个城市中有超过23的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2016年到2019年产生的包装垃圾量如下表:(1)有下列函数模型:①2016x y a b -=⋅;②sin2016xy a b π=+;③lg()y a x b =+.(0,1)a b >>试从以上函数模型中,选择模型________(填模型序号),近似反映该城市近几年包装垃圾生产量y (万吨)与年份x 的函数关系,并直接写出所选函数模型解析式;(2)若不加以控制,任由包装垃圾如此增长下去,从哪年开始,该城市的包装垃圾将超过40万吨?(参考数据:lg 20.3010,=lg30.4771=)23.已知定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,()20201f =,且当1x >时,()0f x >. (1)求()1f ;(2)求证:()f x 在定义域内单调递增; (3)求解不等式12f<. 24.已知函数()212xxk f x -=+(x ∈R )(1)若函数()f x 为奇函数,求实数k 的值;(2)在(1)的条件下,若不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立,求实数a的取值范围.25.义域为R 的函数()f x 满足:对任意实数x,y 均有()()()2f x y f x f y +=++,且()22f =,又当1x >时,()0f x >.(1)求()()0.1f f -的值,并证明:当1x <时,()0f x <; (2)若不等式()()()222221240f aa x a x ----++<对任意[] 1,3x ∈恒成立,求实数a 的取值范围.26.已知函数()224x x a f x =-+,()()log 0,1a g x x a a =>≠.(1)若函数()f x 在区间[]1,m -上不具有单调性,求实数m 的取值范围; (2)若()()11f g =,设()112t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】函数f (x )=(1212xx-+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx-+)cosx <0,函数的图象在x 轴下方. 排除D . 故答案为C 。
2019年高一数学上期末试题带答案(1)

2019年高一数学上期末试题带答案(1)一、选择题1.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( )A .a b c <<B .a b c >>C .b a c >>D .c a b >>2.若函数2()2x f x mx mx =-+的定义域为R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞3.函数()2sin f x x x =的图象大致为( )A .B .C .D .4.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]5.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =- D .()lg 1(0)y x x =+>6.函数ln x y x=的图象大致是( )A .B .C .D .7.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 8.已知01a <<,则方程log xa a x =根的个数为( ) A .1个B .2个C .3个D .1个或2个或3根9.函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( )A .()1,3B .()1,1-C .()()1,01,3-UD .()()1,00,1-U10.函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-1211.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}12.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.15.若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;16.已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.17.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.18.若函数()()22f x x x a x a =+--在区间[]3,0-上不是单调函数,则实数a 的取值范围是______.19.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____ 20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4.(1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.22.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由.23.已知全集U =R ,集合{|25},{|121}M x x N x a x a =-=++剟剟. (Ⅰ)若1a =,求()R M N I ð;(Ⅱ)M N M ⋃=,求实数a 的取值范围.24.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?25.已知函数()212xxk f x -=+(x ∈R ) (1)若函数()f x 为奇函数,求实数k 的值;(2)在(1)的条件下,若不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立,求实数a的取值范围.26.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好. 附:80()f x x x=+在单调递减,在)+∞单调递增.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.2.A解析:A 【解析】【分析】根据题意可得出,不等式mx 2-mx +2>0的解集为R ,从而可看出m =0时,满足题意,m ≠0时,可得出280m m m ⎧⎨=-<⎩V >,解出m 的范围即可. 【详解】∵函数f (x )的定义域为R ;∴不等式mx 2-mx +2>0的解集为R ; ①m =0时,2>0恒成立,满足题意; ②m ≠0时,则280m m m ⎧⎨=-<⎩V >; 解得0<m <8;综上得,实数m 的取值范围是[0,8) 故选:A . 【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.3.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.6.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-Q ()(), ∴排除B ,当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.7.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.8.B解析:B 【解析】 【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.9.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--Q (),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图, 若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<, 若10x -≤≤ ,则不等式0xf x ()>等价为0f x ()< ,此时1x -<<0 , 综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.10.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 11.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.12.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题13.-40∪4+∞)【解析】【分析】由奇函数的性质可得f (0)=0由函数单调性可得在(04)上f (x )<0在(4+∞)上f (x )>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根解析: [-4,0]∪[4,+∞) 【解析】 【分析】由奇函数的性质可得f (0)=0,由函数单调性可得在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,结合函数的奇偶性可得在(-4,0)上的函数值的情况,从而可得答案. 【详解】根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,又由f (x )在区间(0,+∞)上单调递增,且f (4)=0,则在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,又由函数f (x )为奇函数,则在(-4,0)上,f (x )>0,在(-∞,-4)上,f (x )<0, 若f (x )≥0,则有-4≤x≤0或x≥4, 则不等式f (x )≥0的解集是[-4,0]∪[4,+∞); 故答案为:[-4,0]∪[4,+∞). 【点睛】本题考查函数的单调性和奇偶性的综合应用,属于基础题.14.【解析】【分析】不动点实际上就是方程f (x0)=x0的实数根二次函数f (x )=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可解析:10,33⎡⎫--⎪⎢⎣⎭【解析】 【分析】不动点实际上就是方程f (x 0)=x 0的实数根,二次函数f (x )=x 2+ax +4有不动点,是指方程x =x 2+ax +4有实根,即方程x =x 2+ax +4有两个不同实根,然后根据根列出不等式解答即可. 【详解】解:根据题意,f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,得x =x 2+ax +4在[1,3]有两个实数根,即x 2+(a ﹣1)x +4=0在[1,3]有两个不同实数根,令g (x )=x 2+(a ﹣1)x +4在[1,3]有两个不同交点,∴2(1)0(3)01132(1)160g g a a ≥⎧⎪≥⎪⎪⎨-<<⎪⎪-->⎪⎩,即24031001132(1)160a a a a +≥⎧⎪+≥⎪⎪⎨-<<⎪⎪-->⎪⎩, 解得:a ∈10,33⎡⎫--⎪⎢⎣⎭; 故答案为:10,33⎡⎫--⎪⎢⎣⎭. 【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.15.【解析】【分析】根据条件可化为分段函数根据函数的单调性和函数值即可得到解不等式组即可【详解】当时当时且当时且当时且若函数在时取得最小值根据一次函数的单调性和函数值可得解得故实数的取值范围为故答案为: 解析:[)5,+∞【解析】 【分析】根据条件可化为分段函数,根据函数的单调性和函数值即可得到()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩解不等式组即可. 【详解】当1x <时,()()121861927f x x m mx x m m x =-+-+-=+-+, 当12x ≤<时,()()121861725f x x m mx x m m x =-+-+-=+-+, 且()112f m =+,当23x ≤<时,()()121861725f x x mx m x m m x =-+-+-=-+-, 且()27f =,当3x ≥时,()()126181927f x x mx m x m m x =-+-+-=--++, 且()32f m =+,若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,根据一次函数的单调性和函数值可得()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩,解得5m ≥,故实数m 的取值范围为[)5,+∞ 故答案为:[)5,+∞ 【点睛】本题考查了由分段函数的单调性和最值求参数的取值范围,考查了分类讨论的思想,属于中档题.16.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题解析:3,4⎛⎤-∞- ⎥⎝⎦ 【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++, 设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦.故答案为;3,4⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.17.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【解析:10,4⎛⎫⎪⎝⎭【解析】 【分析】由已知可构造()2log xa a t x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+Q 为增函数,且[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解, 整理得:20x x a a t -+=, 令,0xm a m => ,20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可,解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.18.【解析】【分析】将函数转化为分段函数对参数分类讨论【详解】转化为分段函数:为更好说明问题不妨设:其对称轴为;其对称轴为①当时因为的对称轴显然不在则只需的对称轴位于该区间即解得:满足题意②当时此时函数 解析:()()9,00,3-⋃【解析】 【分析】将函数转化为分段函数,对参数a 分类讨论. 【详解】()()22f x x x a x a =+--,转化为分段函数: ()222232,2,x ax a x a f x x ax a x a⎧-+≥=⎨+-<⎩. 为更好说明问题,不妨设:()2232h x x ax a =-+,其对称轴为3a x =; ()222g x x ax a =+-,其对称轴为x a =-.①当0a >时, 因为()h x 的对称轴3ax =显然不在[]3,0-,则 只需()g x 的对称轴位于该区间,即()3,0a -∈-, 解得:()0,3a ∈,满足题意. ②当0a =时,()223,0,0x x f x x x ⎧≥=⎨<⎩,此时函数在区间[]3,0-是单调函数,不满足题意. ③当0a <时,因为()g x 的对称轴x a =-显然不在[]3,0- 只需()h x 的对称轴位于该区间即可,即()3,03a∈- 解得:()9,0a ∈-,满足题意. 综上所述:()()9,00,3a ∈-⋃. 故答案为:()()9,00,3-⋃. 【点睛】本题考查分段函数的单调性,难点在于对参数a 进行分类讨论.19.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0【解析】 【分析】根据分段函数的解析式,代入求值即可求解. 【详解】 因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==, 11511()()()sin()66662f f f π==-=-=-, 所以1111()()066f f -+=.【点睛】本题主要考查了分段函数求值,属于中档题.20.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a 的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点解析:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭【解析】 【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论1a >,01a <<两种情况,即可得到所求a 的范围. 【详解】函数函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,当01a <<时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递减,可得()22222a f x a a +<<++,()f x 的值域为[)3,+∞,可得223a +≥,解得112a ≤<; 当1a >时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递增,可得()2225f x a a >++>,则()f x 的值域为[)3,+∞成立,1a >恒成立. 综上可得()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭.故答案为:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭.【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的思想方法,考查推理和运算能力,属于中档题.三、解答题21.(1)23()(2)14f x x =-+;(2)[1,4];(3)[2,)+∞. 【解析】 【分析】(1)由()()22f x f x +=-,得对称轴是2x =,结合最小值可用顶点法设出函数式,再由截距求出解析式;(2)根据二次函数的单调性确定函数的最大值和最小值,然后求解. (3)求出()f x 在[0,3]的最大值4,对函数()2lg 1lg mg x x x=+- 换元lg t x =,得()21m g x y t t ==+-,[1,2]t ∈,由421mt t≤+-用分离参数法转化. 【详解】(1)∵()()22f x f x +=-,∴对称轴是2x =,又函数最小值是1,可设2()(2)1f x a x =-+(0a >),∴(0)414f a =+=,34a =. ∴23()(2)14f x x =-+. (2)若2a b ≤≤,则min ()1f x a ==,7(1)24f =<,∴3b ≥且23()(2)14f b b b =-+=,解得4b =.∴1,4a b ==,不变区间是[1,4];若02a b <<≤,则()f x 在[,]a b 上是减函数,∴223()(2)14433()(2)14f a a b a b f b b a⎧=-+=⎪⎪∴==⎨⎪=-+=⎪⎩或4,因为02a b <<≤,所以舍去;若2a b ≤<,则()f x 在[,]a b 上是增函数,∴223()(2)143()(2)14f a a a f b b b⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,∴,a b 是方程()f x x =的两根,由()f x x =得23(2)14x x -+=,124,43x x ==,不合题意. 综上1,4a b ==;(3)23()(2)14f x x =-+,[0,3]x ∈时,max ()(0)4f x f ==, 设2lg 1lg my x x=+-,令lg t x =,当[10,100]x ∈时,[1,2]t ∈. 21my t t=+-, 由题意存在[1,2]t ∈,使421mt t≤+-成立,即225m t t ≥-+, [1,2]t ∈时,22525252()48t t t -+=--+的最小值是222522-⨯+⨯=,所以[2,)m ∈+∞.【点睛】本题考查求二次函数解析式,考查二次函数的创新问题,考查不等式恒成立和能成立问题.二次函数的解析式有三种形式:2()(),f x a x m h =-+12()()(),f x a x x x x =--2()f x ax bx c =++,解题时要根据具体的条件设相应的解析式.二次函数的值域问题要讨论对称轴与区间的关系,以确定函数的单调性,得最值.难点是不等式问题,对于任意的1[0,3]x ∈,说明不等式恒成立,而存在[10,100]x ∈,说明不等式“能”成立.一定要注意是转化为求函数的最大值还是最小值. 22.(1)12k =(2)0a ≤(3)存在,316m =- 【解析】 【分析】(1)利用公式()()0f x f x --=,求实数k 的值; (2)由题意得()2log 21xa <+恒成立,求a 的取值范围;(3)()214xxh x m =++⋅,[1,2]x ∈,通过换元得21y mt t =++,[2,4]t ∈,讨论m 求函数的最小值,求实数m 的值. 【详解】(1)f x ()是偶函数()()0f x f x ∴--=,()()22log 21log 210x x kx kx -∴++-++=,22112log (21)0210212x x kx x k x x R k k -+∴==∴-=∈∴-=∴=+Q .(2)由题意得()2log 21xa <+恒成立,()2211log 2100x x a +>∴+>∴≤Q .(3)()214x xh x m =++⋅,[1,2]x ∈,令2x t =,则21y mt t =++,[2,4]t ∈,1°当0m =时,1y t =+的最小值为3,不合题意,舍去; 2°当0m >时,21y mt t =++开口向上,对称轴为102t m=-<, 21y mt t ∴=++在[2,4]上单调递增min 432y m ∴=+=,104m ∴=-<,故舍去;3°当0m <时,21y mt t =++开口向下,对称轴为102t m=->, 当132m -≤即16m ≤-时,y 在4t =时取得最小值, min 3165216y m m ∴=+=∴=-,符合题意; 当132m->即106m -<<时,y 在2t =时取得最小值,min 14324y m m ∴=+=∴=-,不合题意,故舍去;综上可知,316m =-. 【点睛】本题考查复合型指,对数函数的性质,求参数的取值范围,意在考查分类讨论的思想,转化与化归的思想,以及计算能力,本题的难点是第三问,讨论m ,首先讨论函数类型,和二次函数开口方向讨论,即分0m =,0m >,和0m <三种情况,再讨论对称轴和定义域的关系,求最小值.23.(Ⅰ)(){|22R M C N x x =-≤<I 或35}x <≤(Ⅱ)2a ≤ 【解析】 【分析】(Ⅰ)1a =时,化简集合B ,根据集合交集补集运算即可(Ⅱ)由M N M ⋃=可知N M ⊆,分类讨论N =∅,N ≠∅即可求解.【详解】(Ⅰ)当1a =时,{}|23N x x =≤≤ ,{|2R C N x x =<或}3x > .故 (){|22R M C N x x =-≤<I 或35}x <≤. (Ⅱ),M N M ⋃=QN M ∴⊆当N =∅时,121a a +>+,即0a <; 当N ≠∅时,即0a ≥.N M ⊆Q ,12215a a +≥-⎧∴⎨+≤⎩解得02a ≤≤. 综上:2a ≤. 【点睛】本题主要考查了集合的交集,补集运算,子集的概念,分类讨论,属于中档题.24.(1)()) 0f x x =≥,()()205g x x x =≥;(2) 当投资A 产品116万元,B 产品15916万元时,收益最大为16140. 【解析】 【分析】(1)设出函数解析式,待定系数即可求得;(2)构造全部收益关于x 的函数,求函数的最大值即可. 【详解】(1)由题可设:()f x k =,又其过点()1,0.2, 解得:10.2k =同理可设:()2g x k x =,又其过点()1,0.4, 解得:20.4k =故())05f x x =≥,()()2 05g x x x =≥ (2)设10万元中投资A 产品x ,投资B 产品10x -,故:总收益()()10y f x g x =+-()2105x - 7a +t =,则t ⎡∈⎣,则:221455y t t =-++=2211615440t ⎛⎫--+ ⎪⎝⎭故当且仅当14t =,即116x =时,取得最大值为16140. 综上所述,当投资A 产品116万元,B 产品15916万元时,收益最大为16140. 【点睛】本题考查待定系数法求函数解析式、以及实际问题与函数的结合,属函数基础题. 25.(1)1k =(2)30a -≤≤ 【解析】 【分析】(1)根据()00f =计算得到1k =,再验证得到答案.(2)化简得到()()24f x f ax -≥-对[]1,2x ∈-恒成立,确定函数单调递减,利用单调性得到240x ax +-≤对[]1,2x ∈-恒成立,计算得到答案. 【详解】(1)因为()f x 为奇函数且定义域为R ,则()00f =,即002021k -=+,所以1k =.当1k =时因为()f x 为奇函数,()()12212121x x x x f x f x -----===-++,满足条件()f x 为奇函数.(2)不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立即()()24f x f ax -≥-对[]1,2x ∈-恒成立,因为()f x 为奇函数,所以()()24f x f ax -≥-对[]1,2x ∈-恒成立(*)在R 上任取1x ,2x ,且12x x <,则()()()21121212122221212()()12121212x x x x x x x x f x f x ----=-=++++, 因为21x x >,所以1120x +>,2120x +>,21220x x ->, 所以()()120f x f x ->,即()()12f x f x >, 所以函数()f x 在区间(1,)-+∞上单调递减; 所以(*)可化为24x ax -≤-对[]1,2x ∈-恒成立, 即240x ax +-≤对[]1,2x ∈-恒成立.令()24g x x ax =+-, 因为()g x 的图象是开口向上的抛物线,所以由()0g x ≤有对[]1,2x ∈-恒成立可得:()()10,20,g g ⎧-≤⎪⎨≤⎪⎩即140,4240,a a --≤⎧⎨+-≤⎩ 解得:30a -≤≤,所以实数a 的取值范围是30a -≤≤.【点睛】本题考查了函数的奇偶性,单调性,恒成立问题,意在考查学生的综合应用能力.26.(1)78;(2)221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩,N x ∈,9天. 【解析】【分析】(1)由题意得第6天后剩余配料为(86)200400-⨯=(千克),从而求得P ;(2)由题意得221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 求出分段函数取得最小值时,对应的x 值,即可得答案.【详解】(1)第6天后剩余配料为(86)200400-⨯=(千克), 所以3(85)6040078200P ⨯-=+⨯=; (2)当6x ≤时,200109021090y x x x =++=+, 当6x >时,23(5)2009060200(6)3167240200x y x x x x -=+++⋅⋅-=++, 所以221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 设平均每天支付的费用为()f x 元,当06x ≤≤时,2109090()210x f x x x+==+, ()f x 在[0,6]单调递减,所以min ()(6)225f x f ==;当6x >时,2316724080()3167x x f x x x x ++⎛⎫==++ ⎪⎝⎭,可知()f x 在单调递减,在)+∞单调递增,又89<<,(8)221f =,2(9)2203f =,所以min 2()(9)2203f x f == 综上所述,该厂9天购买一次配料才能使平均每天支付的费用最少.【点睛】本题考查构建函数模型解决实际问题、函数的单调性和最值,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对勾函数图象的应用.。
2019年高一上学期数学期末考试题及答案

2019年高一上学期数学期末考试题及答案考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.sin 690 ( )A. 12B. 12C. 32 D. 322.设集合 2 1 2 0 , 1 ,则 ( )A. 12,1B. 1,1 1,2C. 1,2D. 12,23.已知向量 3,1 , , 2 , 0,2 ,若 ,则实数 的值为()A. 43 B. 34 C. 34 D. 434.已知sin153,cos62,log1213,则()A. B. C. D.5.在中,点满足 3 ,且,则()A. 12B. 12C. 13D. 136.已知函数s in,0, 0,0,其部分图象如下图,则函数的解析式为()A. 2sin124B. 2sin1234C. 2sin1434D. 2sin247.函数1212tan的图象()A. 关于轴对称B. 关于轴对称C. 关于轴对称D. 关于原点轴对称8.为了得到函数sin26的图象,可以将函数cos2 的图象()A. 向右平移6个单位长度 B. 向右平移3个单位长度C. 向左平移6个单位长度 D. 向左平移3个单位长度9.不等式312 3 对任意实数恒成立,则实数的取值范围是()A. ,14,B. 1,4C. 4,1D. ,41,10.将函数32的图象向左平移1个单位,再向下平移1个单位得到函数,则函数的图象与函数2sin24的图象的所有交点的横坐标之和等于()A. 2B. 4C. 6D. 811.设函数ln的两个零点为1, 2,则()A. 120B. 121C. 121D. 012112.已知定义在上的偶函数满足1,且当1,0时,438,函数log12118,则关于的不等式的解集为()A. 2,11,0B. 74,11,14C. 54,11,34D. 32,11,12第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.813log3tan210__________.14.已知向量1,2,,则向量与的夹角为__________.15.某教室一天的温度(单位:℃)随时间(单位:)变化近似地满足函数关系:202sin246,0,24,则该天教室的最大温差为__________℃.16.若函数3,12 3 2 2, 1恰有两个零点,则实数的取值范围为__________.三、解答题17.已知0,sin cos.(1)当1时,求;(2)当55时,求tan的值.18.已知函数23ln313的定义域为.(1)求;(2)当时,求412221的值域.19.已知函数2sin,0,2的最小正周期为,且图象关于3对称.(1)求和的值;(2)将函数 的图象上所有横坐标伸长到原来的4倍,再向右平移 3个单位得到函数 的图象,求 的单调递增区间以及 1的 取值范围.20.已知 .(1)若 1,解不等式 2 ;(2)若对任意的 1,4 ,都有 4 成立,求实数 的取值范围.21.已知函数 为 上的偶函数, 为 上的奇函数,且 log 4 4 1 .(1)求 , 的解析式;(2)若函数 12log 2 2 2 2 0 在 上只有一个零点,求实数 的取值范围.22.已知 2 2 1 3 .(1)若函数 在 32,3 单调递减,求实数 的取值范围;(2)令 1,若存在 1, 2 32,3 ,使得 1 2 12成立,求实数 的取值范围. 参考答案1.A【解析】sin 690 sin 720 690 sin 30 12,故选A.2.C【解析】因为 12 2 1 1 ,所以 1 2 ,故选C.3.A【解析】因为 4 , ,所以3 4 0,故 43,故选A.4.D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1, 若 x1, x2 R, x1
x2 ,使得
f (x1)
f (x2 ) 成立,
则实数 a 的取值范围是 .
17.函数 y log0.5 x2 的单调递增区间是________
18.若函数 f(x)是定义在 R 上的偶函数,在(-∞,0]上是减函数,且 f(2)=0,则使得 f(x)<0
同理得 f (x2 ) f (x3) 0, f (x1) f (x3) 0,
即 f(x1)+f(x2)+f(x3)>0,选 A. 点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个 函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注 意转化在定义域内进行
B. b a c
C. c a b
D. b c a
21x ,x1
11.设函数 f x 1 log2x, x 1,则满足 f
x
2 的 x 的取值范围是 (
)
A. 1, 2
B. 0, 2
C.1,
D.0,
12.若不等式
x2
ax
1
0
对于一切
x
0,
1 2
恒成立,则
a
的取值范围为(
CRB x a 4或x a 4 ,
因为 A CRB ,所以 6 a 4或2 a 4 ,即 a 10或a 2 ,故选 C.
【点睛】 本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合 的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.
6.函数 f (x) 的反函数图像向右平移 1 个单位,得到函数图像 C ,函数 g(x) 的图像与函数
图像 C 关于 y x 成轴对称,那么 g(x) ( )
A. f (x 1)
B. f (x 1)
C. f (x) 1
D. f (x) 1
7.已知全集为 R ,函数 y ln 6 x x 2 的定义域为集合
2.已知集合 A { 2,1, 0,1, 2}, B x | (x 1)(x 2) 0,则 A B ( )
A. 1, 0
B.0,1
C. 1, 0,1
D.0,1, 2
3.函数 f x log1 x2 2x 的单调递增区间为( )
2
A. ,1
B. 2,
C. ,0
D. 1,
4.把函数 f x log2 x 1 的图象向右平移一个单位,所得图象与函数 g x 的图象关 于直线 y x 对称;已知偶函数 h x 满足 hx 1 hx 1 ,当 x0,1 时,
x
的值,不等式
f
x
1 2
x
m 恒成立,求实数
m
的
取值范围 .
22.王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国 668 个
城市中有超过 2 的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正 3
在逐年攀升,有关数据显示,某城市从 2016 年到 2019 年产生的包装垃圾量如下表:
f 0 0.设函数 g x f x mmR .若函数 g x 的零点都是函数
h x f f x m 的零点,则 h x 的最大零点为________.
三、解答题
21.设 f x log1 10 ax ,a 为常数.若 f 3 2 . 2
(1)求 a 的值;
(2)若对于区间3, 4 上的每一个
8.B
解析:B 【解析】 【分析】
当 0 x 7 时, f (x) 为单调增函数,且 f (2) 0 ,则 f (x) 0 的解集为 2, 7,再结合
f (x) 为奇函数,所以不等式 f (x) 0 的解集为 (2, 0) (2, 7].
【详解】
当 0 x 7 时, f (x) 2x x 6 ,所以 f (x) 在 (0, 7] 上单调递增,因为 f (2) 22 2 6 0 ,所以当 0 x 7时, f (x) 0 等价于 f (x) f (2) ,即 2 x7, 因为 f (x) 是定义在[7, 7] 上的奇函数,所以 7 x 0 时, f (x) 在[7, 0) 上单调递增, 且 f (2) f (2) 0 ,所以 f (x) 0 等价于 f (x) f (2) ,即 2 x 0 ,所以不等 式 f (x) 0 的解集为 (2, 0) (2, 7]
对于 A: y x2 的值域为0, ;
对于 B:
x2
0 , x2
1 1 ,0
1 x2 1
1,
y
1 x2
1
的值域为
0,1
;
对于 C: y 2x 的值域为 ,0 ;
对于 D: x 0,x 11,lg x 1 0 ,
y lgx 1 的值域为 0, ;
故选:D. 【点睛】 此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题. 6.D 解析:D 【解析】 【分析】 首先设出 y g(x) 图象上任意一点的坐标为 (x, y) ,求得其关于直线 y x 的对称点为
解析:C 【解析】 【分析】
由 6 x x 2 0可得 A x | 2 x 6 , CRB x a 4或x a 4 ,再通过 A 为
CRB 的子集可得结果.
【详解】
由 y ln6 xx 2 可知, 6 x x 2 0 2 x 6 ,所以 A x | 2 x 6 ,
k k
log2 log2
4 6
1
,求解不等式组可得:
1
log6
2
k
1 2
.
即
k
的取值范围是
log6
2,
1 2
.
本题选择 C 选项.
点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题
等知识,意在考查学生的转化能力和计算求解能力.
5.D
解析:D 【解析】 【分析】 利用不等式性质及函数单调性对选项依次求值域即可. 【详解】
h x g x 1;若函数 y k f x hx 有五个零点,则正数 k 的取值范围是
()
A. log3 2,1
B.log3 2,1
C.
log
6
2,
1 2
D.
log
6
2,
1 2
5.下列函数中,值域是 0, 的是( )
A. y x2 C. y 2x
B.
y
1 x2 1
D. y lgx 1(x 0)
A. 2,7
B. 2,0 2,7
C. 2,0 2,
D.7,2 2,7
9.已知函数 f (x) ln x , g(x) x2 3 ,则 f (x) ?g(x) 的图象大致为( )
A.
B.
C.
D.
10.若 a b 30.3 , log 3 , c log0.3 e ,则( )
A. a b c
2019 年高一数学上期末试卷(及答案)(1)
一、选择题
1.已知定义在 R 上的增函数 f(x),满足 f(-x)+f(x)=0,x1,x2,x3∈R,且 x1+x2>0,x2+
x3>0,x3+x1>0,则 f(x1)+f(x2)+f(x3)的值 ( )
A.一定大于 0
B.一定小于 0
C.等于 0
D.正负都有可能
40 万吨?(参考数据: lg 2 0.3010, lg 3 0.4771 )
23.已知 f x 2x1 a 2x a R .
(1)若 f x 是奇函数,求 a 的值,并判断 f x 的单调性(不用证明);
(2)若函数 y f x 5 在区间(0,1)上有两个不同的零点,求 a 的取值范围.
A, B x | a 4 x a 4,且 A R B ,则 a 的取值范围是( )
A. 2 a 10
B. 2 a 10
C. a 2或 a 10
D. a 2 或 a 10
8.定义在7,7上的奇函数 f x ,当 0 x 7时, f x 2x x 6,则不等式
f x 0 的解集为
26.已知 (1)若函数
. 的定义域为 ,求实数 的取值范围;
(2)若函数 在区间
上是递增的,求实数 的取值范围.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A 解析:A 【解析】 因为 f(x) 在 R 上的单调增,所以由 x2+x1>0,得 x2>-x1,所以
f (x2 ) f (x1) f (x1) f (x2 ) f (x1) 0
)
A. a 0 二、填空题
B. a 2
C. a 5 2
D. a 3
13.已知函数
f
x
x
22
,
x
0
,则关于
x
的方程
f
2
x
af
x
0 a 0, 3
x 3 , x 0
的所有实数根的和为_______.
14.已知 loga
x
2
y
loga
x
2
loga
y
,则
x y
的值为_________________.
2
故选:C. 【点睛】 本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能 力,属于中等题.
4.C
解析:C 【解析】 分析:由题意分别确定函数 f(x)的图象性质和函数 h(x)图象的性质,然后数形结合得到关于 k 的不等式组,求解不等式组即可求得最终结果.
详解:曲线 f x log2 x 1 右移一个单位,得 y f x 1 log2 x ,
的 x 的取值范围是________.