2020选择填空专题答案
2020年秋季国家开放大学《管理英语3》形考任务(1-8)试题答案解析

OXygen is a necessary element to enable you to IiVe alive. FOr healthy life, WindOWS and doors must be Wide and USUally be kept OPen at IeaSt for 15 hours a day1as VentiIatiOn Of air makes you fresh and healthy.
It is Very necessary to make your house IOOk greener because it has a direct impact On your health. If you keep your house greener, you Will get rid Of many dangerous diseases. Here are SOme WayS to keep it greener.
选择一项:
A.WiIl have returned
B.returns
C.WiII return
未回答
满分50.00
F标记题目
题干
二、阅读理解
阅读下面的文章,根据文章内容判断文章后的句子是正确(T)还是错误(F)e(每题10分)
Managing OneSelf
We IiVe in an age full Of OPPOrt Un ities: If you are Smart eno ugh, and have got ambition and keep PUShing forward, you Can rise to the top Of your chosen PrOfeSSion, no matter Where you StarteCl out.
2020年小学网络知识测试题及答案

2020年小学网络知识测试题及答案一、选择填空(每小题6分)1、蹭网的主要目的是( )A.拥塞攻击B.信息窃听C.节省上网费用D.信号干扰正确2、互联网始于1969年的哪个国家? ( )A.法国B.中国C.英国D.美国3、政府信息系统应至少配备1名( )A.数据库管理员B.密钥管理员C.信息安全员D.病毒防护员4、以下信息安全事件中,不属于党政机关常见信息安全事件的是( )A.木马、蠕虫及病毒对计算机的破坏B.系统因遭恶意攻击和破坏而无法提供服务C.重要、敏感信息的泄露D.系统因遭篡改而导致扣费、转账等非法操作5、微软结束对WindowsXP的支持服务,以下哪项是最好的应对措施( )A.设置开机密码B.升级系统至Windows7C.安装360安全卫士D.开启自动更新功能6、涉密信息系统的等级由系统使用单位确定,按照什么原则进行分级保护?( )A.谁主管,谁保障B.谁主管,谁运维C.谁主管,谁负责7、以下不属于人肉搜索的侵权范围的是( )A.人身自由权B.人格权C.隐私权D.肖像权8、国务院于哪年的6月28日印发了《关于大力推进信息化发展和切实保障信息安全若干意见》( )A.2013B.2012C.2010D.20119、下列关于我国涉及网络信息安全的法律说法正确的是( )A.《中华人民共和国电子签名法》的实施年份是2004年B.2003年全国人大常委会审核通过了《中华人民共和国电子签名法》C.在1979年的刑法中已经包含相关的计算机犯罪的罪名D.《关于维护互联网安全的决定》是我国目前为止直接规范网络信息安全的效力最高的法律文件10、网络隐私权的内涵包括( )A.以上皆是B.个人数据如有错误,拥有修改的权利C.网络隐私有不被他人了解的权利D.自己的信息由自己控制二、多选题(每小题8分)1、在日常操作中,应遵循以下道德规范( )A.资源共享,平等地使用网络中的信息资源B.尊重他人的知识产权,不盗用他人的智力成果C.不用计算机干扰他人生活D.不用计算机进行盗窃2、下列关于我国涉及网络信息安全的法律说法不正确的是( )A.《中华人民共和国电子签名法》的实施年份是2004年B.2003年全国人大常委会审核通过了《中华人民共和国电子签名法》C.在1979年的刑法中已经包含相关的计算机犯罪的罪名D.《关于维护互联网安全的决定》是我国目前为止直接规范网络信息安全的效力最高的法律文件3、我国桌面操作系统,主要有哪三大公司?( )A.诺基亚SymbianB.谷歌ChromeOSC.微软WindowsD.苹果MacOSX4、从技术管理的角度分析,可以从( )两个方面来提高操作系统的安全性。
2020年电力行业安全生产培训考试题库及答案(选择、填空、判断)

2020年电力行业安全生产培训考试题库及答案(选择、填空、判断)一.选择1、《安规》中明确规定,单人值班不得单独从事(B)工作A、巡视B、修理C、检查2、高压设备上工作的安全措施分(B)类A、一B、三C、四3、10KV及以下电气设备不停电的安全距离是(B)米。
A、0.35B、0.7C、1.54、220KV电气设备不停电的安全距离是(C)米。
A、0.7B、2C、35、500KV电气设备不停电的安全距离是(C)米。
A、3B、4C、56、工作人员工作中正常活动范围与220KV带电设备的安全距离是(A)米。
A、3B、4C、57、工作人员工作中正常活动范围与500KV带电设备的安全距离是(C)米。
A、3B、4C、58、工作人员工作中正常活动范围与10KV及以下带电设备的安全距离是(A)米。
A、0.35B、0.7C、1.59、使用摇表测量高压设备绝缘,至少应由(B)人担任。
A、1B、2C、310、高压试验工作应(A)。
A、填写第一种工作票B、填写第二种工作票C、可以电话联系11、SF6设备工作区空气中SF6气体含量不得超过(B)ppm。
A、500B、1000C、150012、在运用中的高压设备上工作,分为(B)类:A、二B、三C、四13、设备运行后每(A)个月检查一次SF6气体含水量,直至稳定后,方可每年检测一次含水量。
A、三B、四C、五14、SF6设备运行稳定后方可(C)检查一次SF6气体含水量。
A、三个月B、半年C、一年15、工作人员进入SF6配电装置室,必须先通风(C)min,并用检漏仪测量SF6气体含量。
A、5B、10C、1516、短路变流器二次绕组,必须(A)A、使用短路片或使用短路线B、使用短路片搭接C、使用导线缠绕17、在电气设备上工作,应填用工作票或按命令执行,其方式有(A)种。
A、三B、四C、五18、带电作业和在带电设备外壳上的工作,应填用(B)。
A、电气第一种工作票B、电气第二种工作票C、热机工作票19、控制盘和低压配电盘、配电箱、电源干线上的工作,应填用(B)。
备考2020年小升初英语专题复习 选词填空 含答案

9.【答案】too;do more exercises
【考点】选词填空
【解析】【分析】句意:他……胖了。他应该……。too太,修饰形容词,to到,介词,fat胖的,是形容词,should应该,情态动词后面接动词原形,多做运动domoreexercises,doesmoreexercises三单形式,故答案为too,do more exercises.
(goes/went)to work by car. There were always many sick people in the hospital. Mr Greenwas very busy in the day time. Sometimes he had no time to eat lunch. He liked eating Chinese foodand
(4)句意:这是……?根据答语SheisLisa.她是丽莎。问句用who谁引导,故答案为Who.
(5)句意:她在唱歌。她……得好吗?根据前句singing唱,可知后句谓语用动词sing唱,情态动词后面接动词原形,故答案为sing.
(6)句意:不。她……唱。但她唱得不好。likedoingsth喜欢做某事,本句是一般现在时,注意是第三人称单数,谓语用动词三单形式,like-likes,故答案为likes.
【点评】本题主要考查动词的用法,注意时态及固定结构。
【点评】本题考查了选词填空,注意平时牢记单词。
6.【答案】Where;amgoing
【考点】选词填空
【解析】【分析】句意:—你正在……?—我……科学博物馆。根据答语the science museum科学博物馆,指地点,疑问词用where在哪引导,根据问句用一般将来时,构成be goingto,本句主语是第一人称,be用am,故答案为Where,am going.
2020年江苏徐州中考英语试卷及答案

2020 江苏徐州中考英语试卷及答案一、选择填空(共15小题;每小题1分,满分15分)从下列各题所给的A、B、C、D 四个选项中,选择可以填入空白处的最佳选项。
1.Look at the picture on the right. What is the woman probably saying?A. Come in please.B. Turn round please.C. Stand up please.D. Hold on please.2.I met Nancy my way home yesterday.A. inB. atC. byD. on3.Give me a chance, I will give you a wonderful surprise.A. orB. andC. butD. so4.We can the TV. Nobody is watching it.A. turn offB. turn onC. turn upD. turn down 5.Could you please pass me a to write with?A. rulerB. tapeC. penD. knife6.— Alice has gone out.— Oh, has she? What time she _?A. has; goneB. is; goingC. will; goD. did; go7.My grandma is a really nice person —one of people I know.A. niceB. nicerC. nicestD. the nicest 8.W e’re not very close friends we’ve known each other for a long time.A. untilB. althoughC. asD. if9.It’s lucky we booked a room; otherwise we’ll have to stay now.A. somewhereB. anywhereC. nowhereD. everywhere 10.Mother had a hard time getting Helen up in the morning. She called and called, but Helen wake up.A. wouldn’tB. mustn’tC. needn’tD. shouldn’t 11.You look the same now as you looked ten years ago. You’ve changed.A. completelyB. hardlyC. greatlyD. already12.If steel is heavier than water, why are ships able to on the sea?A. floatB. flyC. fallD. flow13.It’s an either-or situation — we can buy a camera this year or we can go on holiday but we can’t do .A. otherB. eitherC. allD. both14.— Are you sure you won’t come for a drink with us?—, if you insist.A. Not at allB. All right thenC. It dependsD. I don’t care 15.Tom became interested in books at a very young age. He read every book he could find andbought books of all kinds. Today Tom has a big collection of books. His favourite books are mystery novels and books about detective stories.The story mainly tells us .A. why Tom does the readingB. how Tom learned to readC. how much Tom likes to readD. what Tom’s favourite books are二、完形填空(共15 小题;每小题1 分,满分15 分)阅读下面的短文,从短文后各题所给的A、B、C、D 四个选项中,选择最佳选项。
国家开放大学2020年春季学期电大《商务英语4》试题及答案

一、选择填空题(每题10分,共5题)—Betty, we'll have a buffet party next Saturday. Will you join us?—_______ , Susan. Thank you!选择一项:A. I'd love toB. I'm afraid notC. By no means反馈你的回答正确解析:本题考核表达“回复邀请”的交际用语。
第一说话人邀请对方参加聚会,听者表示有兴趣参加,所以答案是A。
正确答案是:I'd love to—I had a really good weekend at the seaside.—____________.选择一项:A. Oh, that's very nice of youB. Oh, I'm glad to hear thatC. It's a pleasure解析:本题考核表达“赞赏”的交际用语。
第一说话人谈到在海边度过愉快的周末,选项A 表示感谢;选项B表示赞赏,选项C表示很乐意,所以答案是B。
正确答案是:Oh, I'm glad to hear thatTrademarks, proprietary service marks and regulations need _____ carefully.选择一项:A. to be observedB. be observedC. being observed译文:要认真遵守商标权、专属服务标志权和规章制度。
解析:句中need表示“需要,应该……”时,是实意动词,后面可以接动词不定式作宾语,但是动词不定式observe与主语之间是被动关系,所以答案是A。
正确答案是:to be observedWe didn't understand how difficult it was to ____ such a breakfast.选择一项:A. districtB. distributeC. distract译文:我们不明白配销这样一份早餐有多么困难。
2020年最新高考数学--以圆或隐圆为背景的选择填空题(解析版)

专题一 压轴选择填空题第4关 以圆或隐圆为背景的选择填空题【名师综述】直线与圆是高中数学的C 级知识点,是高中数学中数形结合思想的典型体现.近年来,高考对直线与圆的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与函数或不等式或轨迹相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显直线与圆的交汇价值.【典例解剖】类型一 以动点轨迹为圆考查直线与圆、圆与圆位置关系典例1.(2020上海控江中学高三月考)设三角形ABC 是位于平面直角坐标系xOy 的第一象限中的一个不等边三角形,该平面上的动点P 满足:222222||||||||||||PA PB PC OA OB OC ++=++,已知动点P 的轨迹是一个圆,则该圆的圆心位于三角形ABC 的( ) A .内心 B .外心C .重心D .垂心【答案】C 【解析】【分析】可设(,)P x y ,()11,A x y ()22,B x y ,()33,C x y ,由222222||||||||||||PA PB PC OA OB OC ++=++列出关系式,由P 的轨迹为圆,求出圆心坐标即可【详解】设(,)P x y ,()11,A x y ()22,B x y ,()33,C x y ,由222222||||||||||||PA PB PC OA OB OC ++=++得:222222222222112233112233()()()()()()x x y y x x y y x x y y x y x y x y -+-+-+-+-+-=+++++ 展开整理,得22123123332()2()0x y x x x x y y y y +-++-++=.∴2222123123123123111[()][()][()()]339x x x x y y y y x x x y y y -+++-++=+++++. ∴圆的圆心坐标为1231(()3x x x ++,1231())3y y y ++,为三角形ABC 的重心,故选C .【名师点睛】本题考查直线与圆的综合应用,圆的轨迹方程的求法,重心坐标公式的应用,计算量偏大,化简时需进行整体代换,简化运算难度,属于中档题. 【举一反三】(2020上海洋泾中学高三月考)已知定圆C :()2245x y -+=,其圆心为()4,0C ,点A 为圆C 所在平面内一定点,点P 为圆C 上一个动点,若线段PA 的中垂线与直线PC 交于点Q ,则动点Q 的轨迹可能为______.(写出所有正确的序号)(1)椭圆;(2)双曲线;(3)抛物线;(4)圆;(5)直线;(6)一个点. 【答案】(1)(2)(4)(6) 【解析】(1)若点A 在圆C 外部,=QA QC PC AC ->Q 点的轨迹是以,A C 为焦点的双曲线;(2)若点A 在圆上,则C Q ,点重合,如图,点Q 点的轨迹为点C ;(3)若点A 在圆内部且不为圆心,则QA QC PC +==AC <Q 点的轨迹是以,A C 为焦点的椭圆;(4)若点A 在圆内部且为圆心,,A C 重合时,Q 为半径PA 的中点,所以点Q 是以C 为半径的圆.综上所述,Q 点的轨迹可能是(1)(2)(4)(6)四种情况 答案为:(1)(2)(4)(6)类型二 以圆中直角三角形建立函数关系式或方程或不等式典例2.(2020上海师大附中期中)已知点A ,B ,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++u u u r u u u r u u u r 的最大值为( )A .6B .7C .8D .9【答案】B 【解析】由题意,AC 为直径,所以24437PA PB PC PO PB PB ++=+≤+≤+=u u u r u u u r u u u r u u u r u u u r u u u r,当且仅当点B 为(-1,0)时,PA PB PC ++u u u r u u u r u u u r取得最大值7,故选B .考点:直线与圆的位置关系、平面向量的运算性质 【名师点睛】与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想.由平面几何知识知,圆上的一点与圆外一定点距离最值在定点和圆心连线与圆的两个交点处取到.圆周角为直角的弦为圆的半径,平面向量加法几何意义这些小结论是转化问题的关键. 【举一反三】1.(2020上海七宝中学高三月考)已知a b v v 、是平面内两个互相垂直的单位向量,且此平面内另一向量c v 在满足()()340a c b c +-=v v v v,均能使c b k -≤v v 成立,则k 的最小值是_________.【答案】52【解析】【分析】根据题意,()()()1,0,0,1,,a b c x y v v v===,利用()()340a c b c +⋅-=r r r r ,求得,x y 的关系,利用圆的几何性质,再求出c b -vv 的最大值,从而求出k 的最小值.【详解】因为a b v v 、是平面内两个互相垂直的单位向量,所以可设 ()()()1,0,0,1,,a b c x y v v v ===, ()33,a c x y ∴+=+r r ,()4,4b c x y -=--r r,又()()340a c b c +⋅-=r r r r ,()()340x x y y ∴-++-=,即()22325224x y ⎛⎫++-= ⎪⎝⎭, 它表示的圆心在3,22M ⎛⎫- ⎪⎝⎭,半径为52的圆,c b -v v 表示圆上的点到(0,1)B 的距离,圆心M 到点(0,1)B 的距离为d =c b ∴-r r 的最大值为52=,要使c b k -≤r r 恒成立,52k ≥,即k 的最小值是52,故答案为52.【名师点睛】本题主要考查向量模的几何意义、轨迹方程的应用以及圆的几何意义,考查了转化思想的应用,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将不等式恒成立问题转化为圆上动点到定点距离的最值问题是解题的关键. 类型三 利用数形结合揭示与刻画直线与圆、圆与圆位置关系典例3.(2020上海青浦中学月考)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( ) A .1 B .2 C .3 D .4【答案】C 【解析】【分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +. 【详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A , 所以d 的最大值为1213OA +=+=,选C . 【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化. 【举一反三】(2020上海徐汇区一模)若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是( ) A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞UD .(25,9)(11,)--+∞U【答案】D【解析】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为(x ﹣3)2+(y ﹣4)2=25+k ,则k >﹣25,圆心坐标为(3,4), 圆C 1:x 2+y 2=1的圆心坐标为(0,0),半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点,则|C 1C 2|1或|C 1C 2|1,即51或51,解得﹣25<k <﹣9或k >11. ∴实数k 的取值范围是(﹣25,﹣9)∪(11,+∞),故选D .【精选名校模拟】1.(2020上海七宝中学月考)已知实数x 、y 满足:22(2)1x y +-=,ω=的取值范围是( )A .B .[1,2]C .(0,2]D .2【答案】B 【解析】【分析】构造直线0x +=,过圆上一点P 作直线的垂线PM 2sin POM =∠,求出sin POM ∠的范围即可得出.【详解】设(,)P x y 为圆22(2)1x y +-=上的任意一点,则P 到直线0x +=的距离PM =P 到原点的距离OP =22sin PMPOM OP==∠. 设圆22(2)1x y +-=与直线y kx =1=,解得k =,POM ∴∠的最小值为30︒,最大值为90︒,1sin 12POM ∴∠剟,12sin 2POM ∴∠剟,故选B .【名师点睛】本题主要考查直线与圆的位置关系,距离公式的应用,解题关键是数形结合思想的应用,能阅读出ω=2.(2020上海南模中学高三月考)设1x 、2x 是关于x 的方程220x mx m m ++-=的两个不相等的实数根,那么过两点211(,)A x x ,222(,)B x x 的直线与圆()2211x y -+=的位置关系是( )A .相离.B .相切.C .相交.D .随m 的变化而变化.【答案】D 【解析】22212121,ABx x k x x x x -==+∴-Q 直线AB 的方程为21121()()y x x x x x -=+-. 即1212()y x x x x x =+-,所以直线AB的方程为22,y mx m m d =-+-===因为2240,4()0,03m m m m ∆>∴-->∴<<, 所以221999225,(),(,),()()161616256t g t t t t g t g m =>∴=+∈+∞>=令,所以1615d =<=,所以直线AB 与圆可能相交,也可能相切,也可能相离. 3.(2020上海一模冲刺练)若对于任意角θ,都有cos (2)sin 1x y θθ+-=,则直线:cos (2)sin 1l x y θθ+-=围成的正多边形的最小面积是( )A.B .4C.D .不确定【答案】D 【解析】【分析】先根据点()02P ,到直线cos (2)sin 1x y θθ+-=的距离为1,确定直线为以()02,为圆心,1为半径的圆的切线,再取特殊直线运算否定ABC 即得选项. 【详解】由对于任意角θ,都有cos (2)sin 1x y θθ+-=,则点()02P ,到直线cos (2)sin 1x y θθ+-=1=,即此直线为以()02,为圆心,1为半径的圆的切线, 当三条切线如图所示时,则正三角形ABC 的面积11233S =⨯⨯=, 即存在直线:cos (2)sin 1l x y θθ+-=,即选项A ,B ,C 错误,故选D .4.(2020上海交大附中月考)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C 【解析】【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.【详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1),(-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都.结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误,故选C .5.(2020上海浦东复旦附中高三月考)在平面直角坐标系中,A ,B 分别是 x 轴和 y 轴上的动点,若以 AB 为直径的圆 C 与直线 240x y +-= 相切,则圆 C 面积的最小值为___ . 【答案】45π【解析】由题意,圆心C 到原点的距离与到直线的距离相等,所以面积最小时,圆心在原点到直线的垂线中点上,则d =r =,45S π=. 6.(2020上海二中高三期中考试)若定义域均为D 的三个函数f (x ),g (x ),h (x )满足条件:对任意x ∈D ,点(x ,g (x )与点(x ,h (x )都关于点(x ,f (x )对称,则称h (x )是g (x )关于f (x )的“对称函数”.已知g (x )f (x )=2x+b ,h (x )是g (x )关于f (x )的“对称函数”,且h (x )≥g (x )恒成立,则实数b 的取值范围是_____.【答案】)+∞ 【解析】【分析】根据对称函数的定义,结合h (x )≥g (x )恒成立,转化为点到直线的距离d≥1,利用点到直线的距离公式进行求解即可【详解】∵x ∈D ,点(x ,g (x )) 与点(x ,h (x ))都关于点(x ,f (x ))对称,∴g (x )+h (x )=2f (x ), ∵h (x )≥g (x )恒成立,∴2f (x )=g (x )+h (x )≥g (x )+g (x )=2g (x ),即f (x )≥g (x )恒成立, 作出g (x )和f (x )的图象,则g (x )在直线f (x )的下方或重合, 则直线f (x )的截距b >0,且原点到直线y=2x+b 的距离d≥1,1=≥⇒b ≤,即实数b 的取值范围是+∞),故答案为:)+∞.7.(2020上海育才中学高三月考)已知平面直角坐标系中两点12(,)A a a 、12(,)B b b ,O 为原点,有122112AOB S a b a b ∆=-.设11(,)M x y 、22(,)N x y 、33(,)P x y 是平面曲线2224x y x y +=-上任意三点,则12212332T x y x y x y x y =-+-的最大值为________【答案】20. 【解析】【分析】将圆的方程化为标准方程,得出圆心坐标和半径长,由题意得12212332T x y x y x y x y =-+-12212332222OMN OPN OMNP x y x y x y x y S S S ∆∆≤-+-=+=四边形,转化为圆内接四边形中正方形的面积最大,即可得出T 的最大值.【详解】将圆的方程化为标准方程得()()22125x y -++=,圆心坐标为()1,2-122123321221233222OMN OPN T x y x y x y x y x y x y x y x y S S ∆∆∴=-+-≤-+-=+2OMNP S =四边形,由于圆内接四边形中,正方形的面积最大,所以当四边形OMNP 为正方形时,T =所以2220T ≤⨯=,故答案为:20.8.(2020上海浦东新区高三期末)若函数2y ax a =+存在零点,则实数a 的取值范围是________.【答案】 【解析】【分析】将函数2y ax a =+()()2,()f x a x g x =+=像,观察图像得出实数a 的取值范围.【详解】设()()2,()f x a x g x =+=2y ax a =+存在零点等价于()()2,()f x a x g x =+=函数()()2f x a x =+的图像恒过点(2,0)-,当其和函数()g x =a ==,所以()()2,()f x a x g x =+=03a ≤≤,故答案为:.9.(2020永安三中高三期中考试)若曲线y =y x b =+始终有交点,则b 的取值范围是_______.【答案】[-【解析】由题设可知x b +=b x =有解,令借cos ,[0,]x θθπ=∈,则sin θ=,所以sin cos )4b πθθθ=-=-,由于0θπ≤≤,故3444πππθ-≤-≤,结合正弦函数的图像可知sin()124πθ-≤-≤,则)[4b πθ=-∈-,应填答案[-. 【名师点睛】解答本题的思路是依据题设条件将其转化为方程x b +=进而分离参数b x ,然后通过三角换元将其转化为求函数sin cos )4b πθθθ=-=-的值域问题,最后借助正弦函数的图像求出其值域使得问题获解.10.(2020上海四中高三期中考试)若点()1,1P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为________. 【答案】210x y --=【解析】因为(1,1)P 为圆2260x y x +-=的弦MN 的中点,所以圆心坐标为()3,0,31201MN k -=-=-,MN 所在直线方程为()121y x -=-,化简为210x y --=,故答案为210x y --=. 11.(2020上海华师大二附中高三月考)设1234,,,a a a a R ∈,且14231a a a a -=,则代数式222212341324a a a a a a a a +++++的最小值为______.【解析】【分析】由222212341324a a a a a a a a +++++结构特征,构造向量12(,)OA a a a ==u u u r r ,34(,)OB b a a ==u u u r r,设,a b r r 的夹角为θ,14231,,a a a a a b -=r r 不共线,0θπ<<,222212341324a a a a a a a a +++++=22||||2||||a b a b a b a b ++⋅≥+⋅r r r r r r r r ,转化为求2||||a b a b +⋅r r r r的最小值,由14231a a a a -=,可得1||||,sin a b θ=r r cos sin a b θθ⋅=r r ,转化求2cos cos 2sin sin sin θθθθθ++=的最小值,即为(sin ,cos )M θθ与点(0,2)P -连线的斜率最小值,即可得结果.【详解】设12(,)OA a a a ==u u u r r ,34(,)OB b a a ==u u u r r,设,a b r r的夹角为θ,14231,,a a a a a b -=r r 不共线,0θπ<<,222212341324a a a a a a a a +++++=22||||2||||a b a b a b a b ++⋅≥+⋅r r r r r r r r,sin θ===1||||||||a b a b ==r r , 1cos ||||,sin sin a b a b θθθ=⋅=r r r r ,2||||a b a b +⋅r r r r 2cos cos 2sin sin sin θθθθθ+=+= ① 设(sin ,cos )M θθ,(0θπ<<),(0,2)P -,①式表示点(0,2)P -与单位圆(y 轴右侧)的点M 连线斜率,当PM12.(2020上海建平中学高三期中)已知a v 、b v 、2c v是平面内三个单位向量,若a b ⊥v v ,则4232a c a b c +++-v v v v v的最小值是________【答案】【解析】【分析】设2(,)c e x y ==r r ,(1,0)a =r ,(0,1)b =r ,将问题转化为求|2||64|a e a b e +++-r r r r r的最小值,再证明|2||2|a e a e +=+r r r r ,从而将原问题转化为求|2||64|a e a b e +++-r r r r r的最小值. 【详解】令2c e =r r,设(1,0)a =r ,(0,1)b =r ,e r 对应的点C 在单位圆上,所以问题转化为求|2||64|a e a b e +++-r r r r r的最小值.因为2222(2)(2)330a e a e e a +-+=-=r r r r r r ,所以|2||2|a e a e +=+r r r r ,所以|64||2|a e a b e ++-=+r r r rr ,表示C 点到点(2,0)-和(6,4)的距离之和,过点(2,0)-和(6,4)的直线为220x y -+=,原点到直线220x y -+=1=<,所以与单位圆相交,所以|2||64|a e a b e +++-r r r r r的最小值为:点(2,0)-和(6,4)之间的距离,即13.(2020上海高三模拟考试)已知关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y R ++++-=∈,当方程有实数根时,则实数t 的取值范围________. 【答案】[4,0]- 【解析】【分析】根据方程有实数根,再结合复数相等,建立条件关系可得点的轨迹为以()1,1-为半径的圆,再结合直线t y x =-与圆的位置关系即可得解.【详解】因为关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y R ++++-=∈有实数根,得222()0t t xy t x y i +++++=,由复数相等的充要条件可得:2220t t xy t x y ⎧++=⎨+-=⎩,消t 得22(1)(1)2x y -++=,则所求点的轨迹为以()1,1-为半径的圆,直线t y x =-≤,解得40t -≤≤,故答案为[4,0]-.14.(2020上海南模中学高三期中)在平面直角坐标系中,记曲线C 为点(2cos 1,2sin 1)P θθ-+的轨迹,直线20x ty -+=与曲线C 交于A 、B 两点,则||AB 的最小值为________.【答案】【解析】 【分析】由2121x cos y sin θθ=-⎧⎨=+⎩消去θ得(x +1)2+(y ﹣1)2=4,得曲线C 的轨迹是以C (﹣1,1)为圆心,2为半径的圆,再根据勾股定理以及圆的性质可得弦长的最小值. 【详解】 由2121x cos y sin θθ=-⎧⎨=+⎩消去θ得(x +1)2+(y ﹣1)2=4,∴曲线C 的轨迹是以C (﹣1,1)为圆心,2为半径的圆, 又直线20x ty -+=恒过点D ()2,0-,且此点在圆内部 故当CD AB ⊥时|AB |最短,∴|AB |==故答案为:15.(2020上海青浦中学高三月考)已知AC 、BD 为圆()()22:1216O x y -+-=的两条相互垂直的弦,垂足为121,2M n n ⎛⎫+- ⎪⎝⎭则四边形ABCD 的面积n S 的极限值为___________.【答案】32 【解析】 【分析】由题意可得四边形ABCD 的面积n S 的表达式:2n AC BDS ⨯=,由于点121,2M nn ⎛⎫+- ⎪⎝⎭的极限位置是圆心,且此时四边形面积取到极限值,此时几何图形形状可求得面积的极限 【详解】由题可知,AC 、BD 为圆()()22:1216O x y -+-=的两条相互垂直的弦,垂足为121,2M n n ⎛⎫+- ⎪⎝⎭,由2n AC BDS ⨯=,由点121,2M nn ⎛⎫+- ⎪⎝⎭的极限位置是圆心()1,2,此时AC 、BD 都是直径,故n S 的极限值为22r ,4r =,n S 的极限值为32,圆内接四边形恰好为正方形 故答案为:32.16.(2020上海建平中学高三月考)在ABC ∆中,2BC =,45A ∠=︒,B Ð为锐角,点O 是ABC ∆外接圆的圆心,则OA BC ⋅u u u v u u u v的取值范围是______.【答案】(2,- 【解析】【分析】建立适当的直角坐标系,写出各点的坐标,进一步利用向量的数量积,将问题转化成求三角函数的值域问题,从而得到OA BC ⋅u u u r u u u r的取值范围.【详解】如图所示:||2BC =,90BOC ∠=°,45CAB ∠=︒,由于B Ð为锐角,则点A 只能在左半圆上,设AOB θ∠=,则)A θθ3()22ππθ<<,B ,C ,所以OA θ=u u u r )θ,(BC =u u u r ,2cos 2sin )4OA BC πθθθ⋅=-+=-u u u r u u u r ,因为322ππθ<<,所以5444πππθ<-<,则sin()124πθ-<-≤,所以2)4πθ-<-≤故答案为:(2,-.17.(2020上海松江区一模)若实数,0a b >,满足abc a b c =++,221a b +=,则实数c 的最小值为________【答案】- 【解析】【分析】先由题意,根据基本不等式,得到12≤ab ,得出112-≤-ab ,再由221a b +=,得到()212+-=a b ab ,根据abc a b c =++得()()()()22233+==+-+-+a b c a b a b a b ,令=+t a b ,根据题意得到(=+∈t a b ,由函数单调性,得到3=-y t t的最值,进而可求出结果. 【详解】因为,0a b >,221a b +=,所以2212a b ab +=≥,即12≤ab ,当且仅当a b =时,取等号;因此111122-≤-=-ab , 又221a b +=,所以22212++=+a b ab ab ,即()212+-=a b ab ,由abc a b c =++得1+=-a b c ab ,所以()()()()22233+==+-+-+a b c a b a b a b ,令=+t a b,因为+===a b ,当且仅当a b =时取等号.所以(=+∈t a b , 又易知函数3=-y tt在(t ∈上单调递增,因此32=-≤=-y tt,因此()()2233==≥=-+--+ca b ta b t即实数c的最小值为-,故答案为:-18.(2020江苏盐城中学月考)在平面直角坐标系xOy中,已知点()2,2A,E、F为圆()()22:114C x y-+-=上的两动点,且EF=,若圆C上存在点P,使得,0AE AF mCP m+=>u u u r u u u r u u u r,则m的取值范围为________.【答案】1⎤-⎦【解析】取EF中点为M,连接AM,则2+=u u u r u u u r u u u u rAE AF AM,又圆()()22:114C x y-+-=上存在点P,使得,0AE AF mCP m+=>u u u r u u u r u u u r,所以2=u u u u r u u u rAM mCP,因此22==u u u u r u u u rAM m CP m,即=u u u u rm AM;因为E、F为圆()()22:114C x y-+-=上的两动点,且EF=1==CM,设(,)M x y1=,即()()22111x y-+-=即为动点M的轨迹;所以AMu u u u r表示圆()()22111x y-+-=上的点与定点()2,2A之间的距离,因此11-≤≤+u u u urAC AM AC,11≤≤u uu u rAM11≤≤m,故答案为:1⎤⎦.。
2020-2021年 七年级英语下册选词填空选择题练习(word)1

2020-2021年七年级英语下册选词填空选择题练习(word)1一、七年级英语下册选词填空专项目练习(含答案解析)1.选择方框内的短语并用其适当的形式填空(2)The noise went on ________. I couldn't get any sleep.(3)It was a very strange feeling—l was afraid, but excited ________.(4)The little girl ________ the forest to visit her grandmother yesterday.(5)Tina came home late yesterday because she met an old friend ________ home and talked with him for a while.(6)Many builders are working on the ________ to build a house.(7)Jack ________ the door for several times, but nobody answered.(8)I didn't pass the exam again and my mother ________ it.【答案】(1)clean up(2)all night(3)at the same time(4)walked through(5)on her way(6)building site(7)knocked on(8)felt unhappy about【解析】【分析】building site建筑工地;all night整晚;at the same time与此同时;walk through步行穿过;feel unhappy about对......感觉不满意;knock on敲;on one's way在路上;clean up打扫干净(1)句意:在你出去之前你必须打扫干净你的房间,它是如此脏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习一:选择题与填空题的基本解法参考答案一、选择题:例1.[解析] 解法一:由题意得⎩⎪⎨⎪⎧ a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4·a 1q 5=a 21q 9=-8,∴⎩⎪⎨⎪⎧ q 3=-2,a 1=1或⎩⎪⎨⎪⎧ q 3=-12,a 1=8.∴a 1+a 10=a 1(1+q 9)=-7.解法二:由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8.∴a 1+a 10=a 1(1+q 9)=-7.选)(D .例2.解:由f (x +2)=-f (x )得f =-f =f =-f =f (-,由f (x )是奇函数,得f (-=-f =-,所以选B .也可由f (x +2)=-f (x ),得到周期T =4,所以f =f (-=-f =-.例3.[解析] 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a ,又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2aba 2+b2=a ,解得a =3b ,∴ba=13,∴e =c a =a 2-b 2a=1-ba2=1-132=63.选A ) 例4.(提示:∵,(0,)2παβ∈,∴422πβπα-<-<,∴266βππα-=-或;同理26απβ-=-,∴0αβ+=(舍)或23αβπ+=,所以选B ) 例5【解析】(把yx看作可行域内的点与原点所在直线的斜率,不难求得答案 ,选A 。
) 例6【解析】事实上不难看出,曲线方程[]214(2,2)y x x =-∈-的图象为22(1)4(22,13)x y x y +-=-≤≤≤≤,表示以(1,0)为圆心,2为半径的上半圆,如图。
直线(2)4y k x =-+过定点(2,4),那么斜率的范围就清楚了,选D例7解:令x y xy sin ,100==,这两个方程的曲线交点的个数就是原方程实数解的个数.由于直线x y 1001=的斜率为1001,又.1sin 1≤≤-x 所以仅当100100≤≤-x 时,两图象有交点.由函数x y sin =的周期性,把闭区间[]100,100-分成()[]()[][].100,152,12,2,1162,100ππππ⨯++--k k ,,14,15( --=k ),14,,2,1,0,1,2 --共32个区间,在每个区间上,两图象都有两个交点,注意到原点多计一次,故实际交点有63个.即原方程有63个实数解.故选)(C例8【解析】()f x即可得出结论,如下左图知选B )例9解:E 为抛物线2x y =的内部(包括周界),F 为动圆()122=-+a y x 的内部(包括周界).该题的几何意义是a 为何值时,动圆进入区域E ,并被E 所覆盖.(图略)a 是动圆圆心的纵坐标,显然结论应是()+∈≥R c c a ,故可排除()()D B ,,而当1=a 时,.F F E ≠ (可验证点()1,0到抛物线上点的最小距离为23).选()A . 例10.B 解:取直线),)(,的坐标可得分别为(则4400,,:N M x y l = 故故垂直平分线为),中点为(线段,22,5||||MN P x x NF MF n N M =++=+= 22,4,4:=-==+'n a a y x l 则故例11.(提示:特殊化处理,不妨设三棱锥S-ABC 是棱长为3的正三棱锥,K 是FC 的中点,12,V V 12,V V 分别表示上下两部分的体积则328()327S DEF S ABC V V --==,12844278423V V -∴==-+,选C )例12.(提示:特殊化处理,不妨设△ABC 为直角三角形,则圆心O 在斜边中点处,此时有OH OA OB OC =++,1m =,选B 。
)例13.解:[解析] 由题意知m 2-1=n 2+1,即m 2=n 2+2,(e 1e 2)2=m 2-1m 2·n 2+1n 2=⎝ ⎛⎭⎪⎫1-1m 2⎝ ⎛⎭⎪⎫1+1n 2,因为m 2=n 2+2,m >1,n >0,所以m >n ,(e 1e 2)2>1,所以e 1e 2>1.选(A )例14.解:[解析] 将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有VC -AA 1B =VA 1-ABC =VABC -A 1B 1C 13.故选B .例15.解:当30o αβ==时,可排除A 、B 选项,当15oαβ==时代入C 选项中,即:0cos302sin15oo<<两边平方234sin 154o<1cos304230.2682o -=⨯=-≈矛盾故选D例16.解:C A m l m l ,)1(////,,是假命题,故可排除推不出∴⊂⊂βαβα ②也是假命题。
故选择D例17.解:∵ 2-ax 是在[0,1]上是减函数,所以a >1,排除答案A 、C ;若a =2,由2-ax >0得x <1,这与x ∈[0,1]不符合,排除答案D .所以选B .例18.解:我们可以简单的代入数据m=4及m=2,容易检验这两个数都是符合条件的,所以正确选项为B 。
例19.(提示:若选A 或B ,则周期为2π,与图象所示周期不符;若选D ,则与 “按向量a =(,0)6π-平移” 不符,选C 。
此题属于容易题)例20.[解析] 因为函数y =f (x )的定义域为{x |x ∈R 且x ≠0},且满足f (x )+f (-x )=0,所以f (x )为奇函数,故排除C 、D ,又f (e)=1-e +1<0,所以(e ,f (e ))在第四象限,排除B ,选A .例21.解:(代入法)f (x +π2)=sin[π3-2(x +π2)]+sin[2(x +π2)]=-f (x ),而 f (x +π)=sin[π3-2(x +π)]+sin[2(x +π)]=f (x ).所以应选B ; 另解:(直接法)y =32cos2x -12sin2x +sin2x =sin(2x +π3),T =π,选B . 例22.解:(代入法)把选择支逐次代入,当x =-2π时,y =-1,可见x =-2π是对称轴,又因为统一前提规定“只有一项是符合要求的”,故选A .另解:(直接法) ∵函数y =sin (2x +25π)的图象的对称轴方程为2x +25π=k π+2π,即 x =2πk -π,当k =1时,x =-2π,选A .例23.[解析] 构造函数g (x )=f xex,则g ′(x )=f ′x e x -e x ′f xex2=f ′x -f xex,因为∀x ∈R ,均有f (x )>f ′(x ),并且e x>0,所以g ′(x )<0,故函数g (x )=f xex在R 上单调递减,所以g (-2 018)>g (0),g (2 018)<g (0),即f -2 018e-2 018>f (0),f 2 018e2 018<f (0),也就是e2 018f (-2 018)>f (0),f (2 018)<e 2 018f (0).选D .二、填空题:例1. [解析] 在△ABC 中,因为3sin A =2sin B .由正弦定理可知3a=2b ,因为a =2,所以b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C =4+9-2×2×3×⎝ ⎛⎭⎪⎫-14=16,所以c =4.例2. [解析] 因为f (-x )=(-x )3-2(-x )+e -x -1e -x =-x 3+2x -e x+1e x =-f (x ).所以f (x )=x 3-2x +e x -1e x 是奇函数,因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a-1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2≥0,所以f (x )在R 上单调递增,所以2a 2≤1-a ,即2a 2+a -1≤0,所以-1≤a ≤12.例3.解:.)2(,)4()2(j m mi b a j m i m b a +-=--++=+∵)()(b a b a -⊥+,∴0)()(=-⋅+b a b a ∴0)4)(2()]4()2([)2(222=-+-⋅-++-++j m m j i m m m j m m ,而i ,j 为互相垂直的单位向量,故可得,0)4)(2()2(=-+-+m m m m ∴2-=m 。
例 4.解:22121)(+-+=++=x a a x ax x f ,由复合函数的增减性可知,221)(+-=x ax g 在),2(+∞-上为增函数,∴021<-a ,∴21>a 。
例5解:特殊化:令5,4,3===c b a ,则△ABC 为直角三角形,4cos ,cos 05A C ==,从而所求值为45。
例6.分析:此抛物线开口向上,过焦点且斜率为k 的直线与抛物线均有两个交点P 、Q ,当k 变化时PF 、FQ 的长均变化,但从题设可以得到这样的信息:尽管PF 、FQ 不定,但其倒数和应为定值,所以可以针对直线的某一特定位置进行求解,而不失一般性。
解:设k = 0,因抛物线焦点坐标为),41,0(a把直线方程a y 41=代入抛物线方程得a x 21±,∴aFQ PF 21||||==,从而a q p 411=+。
例7.解: 由于f(2+t)=f(2-t),故知f(x)的对称轴是x=2。
可取特殊函数f(x)=(x-2)2,即可求得f(1)=1,f(2)=0,f(4)=4。
∴f(2)<f(1)<f(4)。
例8.解析:考虑到三个数的大小关系是确定的,不妨令:a b b a===4212,,则l o g ,l o g l o g l o g l o g l o g b a b a b a ba b b b a ==<<213,,所以 例9.解析:设P(x ,y),则当∠=︒F P F 1290时,点P 的轨迹为x y 225+=,由此可得点P 的横坐标x =±35。
又当P 在x 轴上时,∠=F P F 120,点P 在y 轴上时,∠F P F 12为钝角,由此可得点P 横坐标的取值范围是:-<<355355x ; 例10.解:考虑到a 1,a 3,a 9的下标成等比数列,故可令a n =n ,又易知它满足题设条件,于是1042931a a a a a a ++++=1613。