材料成形技术之金属压力加工
机械制造工程第六章节

固态成形——金属压力加工
胎模锻工作示意图
固态成形——金属压力加工
固态成形——金属压力加工
4、应用条件
1)生产批量; 2)锻件质量要求,各种加工方法所达到的加
工质量不一样; 3)锻件的尺寸、重量大小; 4)锻件形状复杂程度。
固态成形——金属压力加工
5、模锻和自由锻相比有什么特点?
1) 加工质量; 2) 加工效率; 3) 工艺投入费用; 4) 灵活性大小; 5) 适用范围大小; 6) 工人劳动强度; 7) 对工人技术要求。
这时的温度称为回复温度T回。 T回=(0.25~0.3)T熔(T回、T熔为用绝对温度表示的
回复温度、熔点)。
固态成形——金属压力加工
(三)再结晶
1、再结晶的概念 变形后的金属在较高温度加热时,由于原子扩散
能力增大,被拉长(或压扁)、破碎的晶粒通过 重新生核、长大变成新的均匀、细小的等轴晶。 这个过程称为再结晶。
(七)胀形
固态成形——金属压力加工
固态成形——金属压力加工
(八)旋压
固态成形——金属压力加工
六、冲模的分类和结构
1. 简单冲模 2. 连续冲模 3. 复合冲模
固态成形——金属压力加工
冲模
固态成形——金属压力加工
第四节 金属的其他塑性成形工艺
一、压力加工新工艺
1、精冲
2、冷镦
3、辊锻
摩察压力机上预锻和弯曲
固态成形——金属压力加工
连杆锻模的工作原理
固态成形——金属压力加工
压力机上模锻工作原理
固态成形——金属压力加工
平锻机上模锻工作原理示意图
固态成形——金属压力加工
3、胎模锻 胎模锻是介于自由锻和模锻之间的一种
wwei材料成形技术(塑性)1

二、金属塑性成形的基本生产方式 1、轧制:金属毛坯在两个轧辊之间受压变形而形成各 种产品的成形工艺,图6-1。 2、挤压:金属毛坯在挤压模内受压被挤出模孔而变形 的成形工艺,图6-3。 3、拉拔:将金属坯料拉过拉拔模的模孔而变形的成形 工艺,图6-5。 4、自由锻:金属毛坯在上下砥铁间受冲击或压力而变 形的成形工艺,图6-7(a)。 5、模锻:金属坯料在既有一定形状的锻模模膛内受击 力或压力而变形的成形工艺,图6-7(b) 。
塑性愈大、变形抗力愈小,材料的可锻性愈好
4、可锻性的影响因素
(1)化学成分 A、碳钢中碳和杂质元素的影响
C、H、P(冷脆)、S (热脆) B、合金元素的影响
塑性降低,变形抗力提高。
(2)内部组织
单相组织(纯金属或者固溶体)比多相组织塑性好。 细晶组织比粗晶组织好; 等轴晶比柱状晶好。 面心立方结构的可锻性最好,体心立方结构次之, 而密排六方结构可锻性最差。
冲击力和压力
锻压是锻造与冲压的总称。
★锻造:在加压设备及工(模)具作用下,使坯料、铸锭产生局 部或全部的塑性变形,以获得一定几何尺寸、形状和质量的锻件 的加工方法。锻造通常是在高温(再结晶温度以上)下成形的,
因此也称为金属热变形或热锻。
★锻造特点:1、压密或焊合铸态金属组 织中的缩孔、缩松、空隙、气泡和裂纹。 2、细化晶粒和破碎夹杂物,从而获得一 定的锻造流线组织。因此,与铸态金属 相比,其性能得到了极大的改善。 3、主要用于生产各种重要的、承受重载荷的机器零件或毛坯。 如机床的主轴和齿轮、内燃机的连杆、起重机的吊钩等。 4、高温下金属表面的氧化和冷却收缩等各方面的原因,锻件精度 不高、表面质量不好,加之锻件结构工艺性的制约。
2、晶粒和分布在晶界上的非金属夹杂物ห้องสมุดไป่ตู้沿变形方向被拉长, 但是拉长的晶粒可经再结晶又变成等轴细粒状,而这些夹杂物不能 改变,就以细长线条状保留下来,形成了所谓的纤维组织。 纤维组织的化学稳定性很高,只有经过锻压才能改变其分布方向, 用热处理是不能消除或改变纤维组织形态的。 纤维组织使金属的力学性能具有明显的方向性。
金属工艺学(热)压力加工

4. 胎模锻 是在自由锻设备上使用 胎膜生产模锻件的工艺 方法。 胎膜种类:扣模、筒模 和合模
第二节 锻造工艺规程的制订
一、绘制锻件图 考虑内容: 1 敷料、余量和公差 为了简化零件的形状和结构,便于锻造而增加的一部分金属, 称为敷料。 在零件的加工表面上为切削加工而增加的尺寸,称为余量。 锻件公差是锻件名义 尺寸的允许变动量。
(4)应避免深孔或多孔结构。 (5)模锻件的整体结构应力求简单。
作业: 111页 (2)、(3)、(5)、(9)、(11)
第二节 锻造工艺规程的制订
2 分模面 上下锻模在模锻件上的分界面。 确定原则: (1)应保证模锻件能从模膛中取出来。 (2)应保证制成锻模后,上下两模沿分模面的模膛轮廓一致。 (3)应选在使模膛深度最浅的位置上。 (4)应使零件上所加敷料最少。 (5)最好是一个平面。
第二节 锻造工艺规程的制订
第一节 锻造方法
1. 自由锻工序 分为基本工序、辅助工序和精整工序 (1)基本工序 使金属坯料实现主要的变形要求,达到或 基本达到锻件所需尺寸和形状的工序。 镦粗 使坯料高度减小、横截面积增大的工序 拔长 使坯料横截面积减小、长度增大的工序 冲孔 使坯料具有通孔或盲孔的工序 弯曲 使坯料轴线产生一定曲率的工序 扭转 使坯料的一部分相对于另一部分绕其轴线旋转一定 角度的工序 错移 使坯料的一部分相对于另一部分平移错开的工序 切割 是分割坯料或去除锻件余量的工序 (2)辅助工序 是指进行基本工序之前的预变形工序。 (3)精整工序 完成基本工序后,提高锻件尺寸及位置精 度的工序。
金属工艺学(热)
金属材料成形工艺及控制

金属材料成形工艺及控制金属材料成形是指将金属原料通过一系列工艺操作,经过塑性变形、应变硬化和回复变形等过程,最终得到所需形状与性能的金属制品的工艺过程。
金属材料成形工艺有很多种,包括铸造、锻造、压力加工、挤压、拉伸、冲压、粉末冶金等。
每种成形工艺都具有其独特的特点和适用范围,需要根据材料性质和产品要求选择合适的成形工艺。
一、铸造是金属材料成形的基本方法之一,通过将金属熔化后注入模具中,经过凝固、冷却和后处理等过程得到所需产品。
铸造工艺分为砂型铸造、金属型铸造、石膏型铸造、压力铸造等多种类型,适用于生产各类形状的金属制品。
二、锻造是指将金属原料置于模具中,经过加热和高压的力量作用下,使金属材料发生塑性变形,最终得到所需形状的工艺方法。
锻造工艺分为自由锻造、模锻、冷锻等多种类型,适用于生产各类尺寸较大、形状复杂的零部件。
三、压力加工是指通过金属材料受到外力压缩、拉伸、弯曲等作用,使其发生塑性变形,并最终得到所需形状的金属成形方法。
压力加工包括挤压、拉伸、剪切、折弯等多种工艺,适用于生产各类薄板、管材、棒材等产品。
四、挤压是指将金属加热至熔点后,在压机的作用下通过模具挤出,得到所需形状的工艺方法。
挤压工艺适用于生产各类型材、异型材、电线电缆、铝箔等产品。
五、拉伸是指通过将金属材料置于拉伸机中,受到拉力的作用下,使其发生塑性变形,最终得到所需形状的金属成形方法。
拉伸工艺适用于生产各类细丝、线材、管子等产品。
六、冲压是指通过冲压机将金属板材置于模具中,经过冲击力的作用下,使其发生塑性变形,最终得到所需形状的金属成形方法。
冲压工艺适用于生产各类薄板金属产品,如汽车车身板、电器外壳等。
七、粉末冶金是指将金属粉末与非金属粉末按一定配比混合,压制成坯料后通过烧结等过程,最终得到具有一定形状和性能的金属制品的工艺方法。
粉末冶金工艺适用于生产各类复杂形状、高精度的金属制品。
以上是金属材料成形工艺的简要介绍,为了保证金属制品质量和实现成形工艺的控制,需要进行相应的工艺控制。
(完整版)金属工艺学(压力加工)

锻造齿轮毛坯,应对棒料镦粗加工,使其纤维呈放射状,有利于齿轮的受力。 曲轴毛坯的锻造,应采用拔长后弯曲工序,使纤维组织沿曲轴轮廓分布,这样曲轴 工作时不易断裂。
第三节 金属的可锻性
金属的可锻性是衡量材料在经受压力加工时获得优质制品难 易程度的工艺性能。
转体锻件。
第二节 锻造工艺规程的制订
一、绘制锻件图
锻件图是以零件图为基础,结 合锻造工艺特点绘制而成。
1.敷料、余量及公差
敷料:为了简化零件的形状和 结构、便于锻造而增加的 部分金属。
加工余量:在零件的加工表面 上,为切削加工而增加的 尺寸。
锻件公差:是锻件名义尺寸允 许的变动量。金工动画\锻 件图.exe
二、常用的压力加工方法:
a)轧制 b)挤压 c)拉拔 d)自由锻 e)板料冲压 f)模锻
金工动画\压力加工\视 频\挤压.avi
金工动画\压力加工\视频\镦粗.avi
三、压力加工的特点 (1)改善金属的组织、提高力学性能。 (2)材料的利用率高。 (3)较高的生产率。 (4)毛坯或零件的精度较高。 钢和非铁金属可以在冷态或热态下压力 加工。可用作承受冲击或交变应力的重要零 件,但不能加工脆性材料(如铸铁)。
可锻性常用塑性和变形抗力来衡量。金属的可锻性取决于金属 的本质和加工条件。
一、 金属的本质
1.化学成分的影响 纯金属的可锻性比合金好;碳钢的含碳量越低,可锻性
越好。 2.金属组织的影响
纯金属及单相固溶体比金属化合物的可锻性好;细小的 晶粒粗晶粒 好;面心立方晶格比体心立方晶格好 。
二、加工条件
1.变形温度的影响 热变形可锻性提高.但温度过高将发生过热、过烧、脱
第三篇金属压力加工

近代物理学证明,实际晶体内部存在大最缺陷。其中,以 位错(图3-2a对金属塑性变形的影响最为明显。由于位 错的存在,部分原子处于不稳定状态。在比理论值低得 多的切应力作用下,处于高能位的原子很容易从一个相 对平衡的位置上移动到另一个位置上(图3-2b),形成 位错运动。位错运动的结果,就实现了整个晶体的塑性 变形(图3-2c)。
4、多晶体的塑性变形:金属都是由大量微小晶粒组成的 多晶体。其塑性变形可以看成是由组成多晶体的许多单个 晶粒产生变形(称为晶内变形)的综合效果。 由于构成晶体的晶粒位向不同,还有晶界的阻碍,在其滑 移,变形时,分先后次序逐批进行。同时晶间的滑动和转 动(称为晶间变形)。如图,每个晶粒内部都存在许多滑 移面,因此整块金属的变形量可以比较大。低温时,多晶 体的晶间变形不可过大,否则将引起金属的破坏。
(2)拉拔 金属坯料被拉过拉拔模的模孔而变形的加工方法。
(3) 挤压 金属坯料在挤压模内被挤出模也而变形的加工方法。
(4) 锻造 金属坯料在抵铁或锻模模膛内变形而获得产品的方法。
(5)板料冲压 金属板料在冲模间受外力作用而产生分离或变形 的加工方法。
• 一般常用的金属型材、板材、管材和线材等原材料,大都是通过 轧制、挤压、拉拔等方法制成的。机械制造业中的许多毛坯或零 件,特别是承受重载荷的机件,如机床的主轴、重要齿轮、连杆、 炮管和枪管等,通常采用锻件作毛坯。板料冲压广泛用于汽车、 电器、仪表零件及日用品工业等方面。
2、变形速度的影响 变形速度即单位时间的变形程度。 (1)随着变形速度的增大,回复和再结晶不能及时克服 冷变形强化现象,金属则表现出塑性下降、变形抗力增大 (图3-9中a点以左),可锻性变差。
压力加工的定义、分类和特征

压力加工的定义、分类和特征一、定义压力加工指的是通过施加机械压力,改变金属的形状、尺寸、性质和密度的方法。
通俗地讲,就是形成、压制、切削、弯曲、拔拉等各种金属成形工艺的统称。
压力加工是机械工艺、材料工程、制造工程等领域中非常重要的一项技术。
其主要目的是通过加工切削来创造人类所需的各种产品、零部件和构件。
较之于其他加工方式,压力加工具有精度高、尺寸稳定、表面质量好等优点,在应用中占据重要地位。
二、分类压力加工可以根据加工方法和所引入的形变类型的不同被分为多种不同类型的加工方式。
1. 挤压加工挤压加工是将金属坯料放入在钢管内的模具或一对轮滚中,用外部力通过轴向压缩来改变坯料形状的加工方法。
通常,这种加工方式用于生产管材、型材、线材等常规材料。
2. 压延加工压延加工也称为轧制加工,是在连续三辊或四辊轧机上,将坯料通过多次塑性变形达到理想的尺寸、形状和性质的加工方法。
压延加工的最常见例子就是热轧和冷轧钢材。
3. 铸造加工铸造加工是通过铸造熔融金属,使其流体在模具中,工艺过程中使其凝固并在模具中形成所需形状并得到所需零部件。
常见的铸造加工方式包括铸钢、铸铁、铝合金铸造等。
4. 冲压加工冲压加工也称冲裁加工,是通过将金属板料放在冲床上,使用冲裁模具以极高的速度进行冲切、镂空、弯曲等多种变形来达到所需形状的加工方式。
冲压加工常用于生产金属零件和非金属耗材等。
5. 锻造加工锻造加工是在锻压机中,通过重复施加过程中的强制变形,使金属在坯料形状、尺寸、性质和密度等方面得到改变的一种加工方式。
它可以分为手挤扁锻造、冲锻造、自由锻造、锤击锻造等多种方式。
三、特征不同的压力加工方式有着不同的特征,但在整体上,压力加工共享一些基本特征:1. 有限的变形压力加工具有明显的加工变形或塑性变形,这种变形的限度是有限的。
在加工过程中,物料可能发生裂纹、断裂或回弹等失效,超出其可承受的变形区间。
2. 内部应力在压力加工过程中,由于受到机械力的作用,金属里的晶粒和晶体结构受到了变形。
金属压力加工

图2—17 简单冲模基本构造
1-定位销 2-导板 3-卸料板 4-凸模 5-凸模固定板 6-垫板 7-模柄 8-上模版 9-导套 10-导柱 11-凹模 12-凹模固定板 13-下模板
常用锻造材料的锻造温度见表3—1(教材)。 主要工艺方法有:自由锻造、模型锻造和特种锻造。 锻件内部组织致密、均匀,机械性能优良,可承受较大
负荷和冲击,可减少零件结构尺寸;锻造生产效率高, 成本较低,锻件精度高。 主要用于重要零件(如轴、齿轮等)的毛坯生产,但不 适用于普通铸铁等脆性材料加工。
14一工作活塞 15一压缩活塞 16一连杆 17、18一上、下旋阀
二、自由锻造的基本工序
自由锻造时,锻件的形状是通过一些基本变形工序,将坯 料逐渐锻造成的。
自由锻造基本工序有镦粗、拔长、冲孔、弯曲、扭转、错 移、切断等,其中以前三种工序应用最多。
1、镦粗 是使坯料高度减小,横截面积增大的锻造工序 镦粗加工用于锻制齿轮坯、法兰盘等圆盘工件;也可作为
ห้องสมุดไป่ตู้
进行机械加工。 冲压加工很容易实现自动化,生产率很高。 冲压加工主要设备是冲床和压力机。
一、冲压设备——冲床
图2—13 开式双柱冲床 1—导轨 1—床身 3—电动机 4—连杆 5—制动器 6—曲轴 7—离合器 8—带轮 9—V形带
10—滑块 11—工作台 12—踏板 13—减速系统 14—拉杆
图2—11单模膛模锻 1--砧座 2—楔块 3—模座 4、8—楔铁 5—下模 6—坯料 7—上模 9—锤头
多模膛模锻 锻模上有多个模膛。 适用于形状复杂需要经过多次成形的锻件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、可锻性概念 • 金属的锻造性能,是指金属材料在压力加工时获得优质产品难易程度的
工艺性能。 • 衡量指标:金属的塑性和变形抗力。塑性越高,变形抗力越小,则金属
的可锻性越好。 • 二、影响可锻性的因素 • 1.金属的本质 • 化学成分 纯金属的可锻性比合金好。而钢的可锻性随碳和合金元素的
• 3.温变形 • 金属在回复温度和再结晶温度之间的变形,称为温变形。兼有冷
变形、热变形的综合特点。
四、金属锻件的特点
• 1、金属更加致密。 • 2、获得细化的再结晶组织。因此,金属的力学性能得到很大提高
。 • 3、形成纤维组织,或称流线。 • 纤维组织 金属晶界上的夹杂物随晶粒沿变形最大方向被拉长得
• 锻造温度范围 • 开始锻造的温度称为始锻温度,指金属在锻造前加热允许的最高温度。
始锻温度过高必将产生过热、过烧、脱碳和严重氧化等缺陷。 • 过热 加热温度过高,导致晶粒急剧长大的现象。该缺陷可以通过重新
的热处理加以消除。 • 过烧 加热温度过高(过热之后),导致晶界严重氧化,甚至局部熔化
的现象。 产生该缺陷后,性能极脆,并不能挽救,只能报废。 • 停止锻造的温度称为终锻温度,指金属热变形允许的最低温度。终锻温
度过低,金属的加工硬化严重,变形抗力急剧增加,使加工难于进行。
碳钢的锻造温 度范围
2)变形速度
• 纤维组织的稳定性很高,不能用热处理或其它方法加以消除,只 有经过锻压使金属变形,才能改变其方向和形状。
合理利用纤维组织
• 1、应使零件在工作中所受的最大正应力方向与纤维方 向重合,2、最大切应力方向与纤维方向垂直,3、并 使纤维分布与零件的轮廓相符合,尽量不被切断。
第二章 常用金属的锻造性能
第三篇 金属压力加工
4、自由锻 自由锻是利用冲击力或压力,使放在上下砧之间的金属坯 料变形,从而得到所需锻件的压力加工方法。 5、模锻 模锻是利用冲击力或压力,使放在锻模模膛内的金属坯料变 形,最后充满模膛而成形的压力加工方法。 6、板料冲压 板料冲压是利用压力,使放在冲模间的金属板料产生分 离或变形的压力加工方法。
质量分数的增加而变差。 • 组织结构 固溶体(如奥氏体)的可锻性好,而化合物(如渗碳体)差
。金属在单相状态下的可锻性比在多相状态下的好。 • 细晶粒金属的塑性较粗晶粒的好,可锻性较好。(但变形抗力较大)
二、影响可锻性的因素
• 2.压力加工条件
• 1)变形温度 随着温度的升高,钢的强度下降,塑性上升,即钢的可锻 性变好。因此,压力加工都力争在高温下进行,即采用热变形。
• 再结晶消除了全部加工硬化,使金属的强度和硬度明显下降, 塑性和韧性显著提高。
• 一般纯金属的再结晶温度为:
•
T再结晶≈0.4T熔点(K)
• 消除金属加工硬化的热处理方法叫再结晶退火。
• 再结晶的特点
• 1、只有产生加工硬化的金属才能产生再结晶。
• 2、不同于同素异构转变,不发生晶体结构变化。
• 3、可以细化晶粒。但过份地延长加热时间,则晶粒还会不断长 大,使金属力学性能下降。
第三篇 金属压力加工
2、挤压: 挤压是利用压力 ,将金属坯料从挤压模的模孔 中挤出而成形的压力加工方法 。①正挤压;②反挤压;③复 合挤压。
第三篇 金属压力加工
3、拉拔 拉拔是利用拉力,将金 属坯料拉过拉拔模的模孔而成形 的压力加工方法。常需经多次拉 拔,依次通过形状和尺寸逐渐变 化的模孔,才能得到所需截面的 产品。
二、回复和再结晶
• 1.回复
• T回复=(0.25~0.3)T熔点(K) 式中T回复为金属回复的绝对温度; • T熔点为金属熔化的绝对温度。
• 回复使晶格扭曲被消除,内应力明显降低,但力学性能变化不 大,部分地消除了加工硬化。
2.再结晶
• 再结晶 以某些碎晶或杂质为晶核,成长为新的等轴细晶粒的 过程称为再结晶。
第三篇 金属压力加工
• 金属压力加工是利用外力, 使金属坯料产生塑性变形, 从而获得具有一定形状、尺 寸和力学性能的原材料、毛 坯或零件的加工方法。
• 压力加工方法分类 • 1、轧制 轧制是借助于
摩擦力和压力使金属坯料通 过两个旋转的轧辊间的空隙 而变形的压力加工方法。 • 轧制主要用于生产各种规格 的钢板、型钢和钢管等钢材 。
到的组织。
纤维组织的特点
• 变形程度越大,纤维组织越明显。
• 常用锻造比Y表示变形程度。坯料拔长时的锻 式中F0为坯料拔长前的横截面积;F为坯料拔长后的横截面积。
• 纤维组织使金属在性能上具有方向性。
• 纵向(平行于纤维方向)上的塑性、韧性提高,
• 横向(垂直于纤维方向)上的塑性、韧性则降低。
• 二、多晶体的塑性变形 • 1、每个晶粒变形不均匀 • 2、晶粒间也产生滑动和转动。 • 3、变形抗力大
§1-3 塑性变形后金属的组织和性能
• 一、加工硬化 • 金属在室温下进行塑性变形时,随着变形程度的增加,强度
和硬度不断提高,塑性和冲击韧性不断降低,这种现象称为 加工硬化。 • 加工硬化的金属内部组织变化特点。 • 1、各晶粒沿变形最大的方向伸长, • 2、位错密度增加,晶格严重扭曲,产生内应力; • 3、滑移面和晶粒间产生碎晶。
第一章 金属的塑性成形工艺基础
§1-1 金属塑性变形的实质
一、单晶体的塑性变形 单晶体塑性变形的主要方式是滑移。 滑移是在切应力作用下,晶体的一部分原子相对另一部分原子 ,沿着一定的晶面(滑移面)和一定的方向(滑移方向)产生 的移动。
§1-1 金属塑性变形的实质
• 实际晶体的滑移不象理想晶体那样,而是 通过位错运动实现的。
二、回复和再结晶
三、冷变形、热变形和温变形
• 1.冷变形 金属在回复温度以下的变形称为冷变形,具有加工硬 化组织。 冷变形特点
• 冷变形可以使工件获得较高的精度和表面质量。冷变形也是强化 金属的一种重要手段。但变形抗力大。
• 2.热变形 金属在再结晶温度以上的变形称为热变形,具有再结 晶组织。
• 热变形特点 金属在热变形过程中,也产生加工硬化,但随时被 再结晶所消除。热变形时,金属的变形抗力小,塑性好。工件的 表面质量低于冷变形。