非牛顿流体
非牛顿流体原理

非牛顿流体原理非牛顿流体是指在流动过程中,其黏度随着剪切速率的变化而变化的流体。
与牛顿流体不同,非牛顿流体在受力作用下,其黏度并不保持不变,而是会随着流动状态的改变而发生变化。
这种流体的特性在实际生活和工业生产中都有着重要的应用,因此对于非牛顿流体的原理和特性的研究具有重要意义。
首先,我们来介绍一下非牛顿流体的分类。
根据其流动特性,非牛顿流体可分为剪切稀化流体和剪切增稠流体两种类型。
剪切稀化流体是指在受到外力作用时,其黏度会随着剪切速率的增加而减小的流体,如淀粉浆、墨水等;而剪切增稠流体则是指在受到外力作用时,其黏度会随着剪切速率的增加而增加的流体,如果冻、牙膏等。
这两种类型的非牛顿流体在实际应用中具有不同的特点和用途。
其次,我们来探讨一下非牛顿流体的原理。
非牛顿流体的黏度变化与其内部微观结构和分子间相互作用有着密切的关系。
在剪切稀化流体中,当外力作用下,流体内部的颗粒会发生重排和分散,从而导致黏度的降低;而在剪切增稠流体中,外力作用会导致流体内部的颗粒聚集和排列,从而使得黏度增加。
这种原理使得非牛顿流体具有了特殊的流变特性,可以根据具体的应用需求来调控其流动性能。
除此之外,非牛顿流体还具有一些特殊的流动特性。
例如,在非牛顿流体的流动过程中,会出现剪切变稀、剪切变稠等现象,这种非线性的流变特性使得非牛顿流体在实际应用中具有了更广泛的用途。
同时,非牛顿流体还表现出了记忆效应和时间依赖性,这也为其在一些特殊领域的应用提供了可能。
总的来说,非牛顿流体的原理和特性对于我们深入理解流体力学和实际应用具有着重要的意义。
通过对非牛顿流体的研究,我们可以更好地利用其特殊的流变特性,开发出更加符合实际需求的流体材料和工艺。
因此,对于非牛顿流体的深入研究和应用具有着重要的意义,也将会在未来的科技发展中发挥着重要的作用。
非牛顿流体分类

非牛顿流体分类引言非牛顿流体是一类在流动过程中不遵循牛顿流体力学模型的物质。
与牛顿流体相比,非牛顿流体的粘度在剪切应力变化下会发生变化,即非线性变化。
非牛顿流体在日常生活和工业领域都有广泛应用。
本文将对非牛顿流体进行分类,介绍几种典型的非牛顿流体,并探讨其基本特性和应用领域。
非牛顿流体分类根据流变学特性和粘度变化规律,非牛顿流体可以分为以下几类:塑性流体塑性流体是一类在剪切应力超过一定临界值时才开始流动的流体。
其特点是具有一定的流动阻力,但流动起来后保持稳定流动。
常见的例子包括黏土、糊状果酱等。
塑性流体在建筑、陶瓷、油漆等领域有广泛应用,如建筑中使用的填缝剂和涂料。
压差型流体压差型流体是一类在剪切应力下产生应力反应的流体。
其粘度随着剪切应力的增加而下降,流动起来的粘度较低。
常见的压差型流体例子有胶体溶液、稀胶等。
在食品、医药、化妆品等领域,压差型流体被广泛应用于制备胶体、乳液等。
剪切变稀流体剪切变稀流体是一类在剪切应力下粘度随剪切速率减小的流体。
其流动性随着剪切速率的增加而增强。
著名的剪切变稀流体是液态凝胶。
液态凝胶在医药、冶金、化妆品等领域有重要应用,例如制备药物控释体、金属陶瓷等。
剪切变稠流体剪切变稠流体是一类在剪切应力下粘度随剪切速率增大的流体。
其流动性随着剪切速率的增加而减小。
常见的例子有颗粒悬浮液、糨糊、混凝土等。
在建筑、化工等领域,剪切变稠流体被广泛应用于制备混凝土、陶瓷、纸浆等。
粘弹性流体粘弹性流体是一类同时具有粘性和弹性特性的流体。
在微小剪切应力作用下,粘弹性流体表现出弹性固体的特性;在较大剪切应力作用下,则表现出流体的特性。
常见的粘弹性流体有胶体溶液中的聚合物溶液、高分子液体等。
粘弹性流体在油墨、涂料、聚合物复合材料等领域被广泛应用。
应用领域非牛顿流体在众多领域有着广泛的应用。
以下为几个典型应用领域的介绍:1.石油工业:非牛顿流体在地质储层模拟、油井压裂等方面发挥着重要作用。
通过对非牛顿流体的研究和应用,可以提高石油开采的效率和产量。
非牛顿流体

所以:p头
8Q2 22de4
31
钻头水眼有效直径 若有n1个d1, n2个d2 , 则水眼有效直径:
de n1d12 n2d22
31
工程流体力学
六、钻井泵的泵压和功率的计算
• 钻井泵的泵压计算公式:
p泵 gE0 g(hL地面 hL杆 hL挺 hL头 hL环 hL局
24
24
工程流体力学
25
25
工程流体力学
四、水头损失的计算
1、流态的判别:(同牛顿流体用雷诺数)
1)、圆管综合雷诺数:
vd Re综 (1 0d )
6v
Re综 2000 Re综 2000
结构流 紊流
26
26
工程流体力学
2)塑性流体在环形空间流动时的综合雷诺数:
Re 环
vd (1 0d当
其流变方程以幂定律形式表示:
k(du)n
dy
稠度系数
流性指数
凡是流变规律符合幂定律形式的流体,称为幂律流体。
9
9
工程流体力学
流性指数n反映了拟塑 性流体的流变性偏离牛顿流 体的程度。
1)当n=1时,为牛顿流体流变 方程。
2)当n<1时,拟塑性流体, n 越小,表明拟塑性流体和牛 顿流体的流变性差别越大。 K越大,粘度越大。故拟塑 性流体两大特性参数:n,k
4
4
工程流体力学
二、牛顿流体的流变性
1. 流变方程: du
dy
2. 特点:
(1)受到外力作用就流动;
(2)在恒温恒压下, 与 du 的比值为常数
即粘度为常数;
dy
(3)流变曲线是通过原点的直线,其斜率为 动力粘度的倒数,即 tan 1
非牛顿流体

非牛顿流体非牛顿流体,又称假流体,是指在外力作用下其黏度随应力变化的物质。
相比牛顿流体,非牛顿流体在不同应力下表现出不同的流动行为,从而引发了许多有趣的研究和应用。
非牛顿流体的研究起源于物理学家艾萨克·牛顿对流体力学的研究中发现的其黏度不随剪切速率变化的物质,即牛顿流体。
然而,在实际应用中,许多流体并不符合牛顿流体的特性。
有些流体在剪切力作用下表现出凝固行为,这被称为剪切稀化;而另一些流体则表现出溶解行为,称为剪切稠化。
剪切稀化是指在外力作用下,一些非牛顿流体的黏度随着剪切速率的增加而减小。
这种流体的黏度随着外力的增加而发生变化,具有了一种可逆性。
这种流体的一个典型例子是玉米浆。
当玉米浆处于静止状态时,其黏度较高,表现出稠糊状;而当玉米浆受到剪切力作用时,其黏度会大幅度减小,变得更加流动。
剪切稠化则是指在外力作用下,一些非牛顿流体的黏度随剪切速率的增加而增加。
与剪切稀化相反,这种流体的黏度随着外力的增加而变得更加粘稠。
一个典型的例子是底漆涂料。
底漆涂料在施加较低的剪切力之前,呈现出较低的黏度,但随着施加的剪切力增加,其黏度会显著增加,变得更加粘稠。
非牛顿流体的研究对许多领域都有重要的应用价值。
例如在食品工业中,非牛顿流体的研究可用于改善食品的质感和口感。
通过调整非牛顿流体的黏度,可以改变食品的口感和浓稠度,从而提升食品的美观和口味。
此外,在油漆和涂料工业中,非牛顿流体的研究也具有重要的应用价值。
通过理解非牛顿流体的流动行为,可以控制油漆和涂料的黏度,从而提高涂层的质量和稳定性。
此外,非牛顿流体还可以应用于石油工业,例如在油井钻探和输送过程中,非牛顿流体可以提供更好的润滑和减少摩擦。
非牛顿流体的研究也为医学和生物学领域提供了许多有益的应用。
例如,在血液流变学中,非牛顿流体的研究可以帮助科学家更好地了解血液在血管中的流动行为,从而为心血管疾病的诊断和治疗提供依据。
此外,非牛顿流体的研究还可以应用于药物传输和药剂学中,以帮助科学家更好地设计给药系统,提高药物的传递效率和疗效。
非牛顿流体

非牛顿流体1. 引言非牛顿流体是指在流动过程中其流变性质会随剪切应力的变化而改变的流体。
与牛顿流体不同的是,非牛顿流体的黏度不是一个固定的常数,而是一个与剪切速率相关的函数。
非牛顿流体广泛存在于日常生活和工业生产中,如牛奶、酸奶、液态口红等。
本文将介绍非牛顿流体的基本概念和分类,以及其在科学研究和工业应用中的重要性和应用。
2. 非牛顿流体的基本概念和分类2.1 基本概念非牛顿流体具有以下几个基本特征:•剪切变应力与剪切速率不成正比关系;•流动过程中粘度随剪切速率的变化而改变;•可存在较大的弹性变形。
2.2 分类根据流变特性的不同,非牛顿流体可以分为多种类型,下面介绍其中几种常见的类型:2.2.1 粘弹性流体粘弹性流体具有既具有液体的粘性特性,又具有固体的弹性特性。
在低剪切速率下表现为固体,而在高剪切速率下则表现为液体。
常见的粘弹性流体有琼脂、凝胶等。
2.2.2 塑性流体塑性流体在低应力下表现为固体,只有在超过一定应力阈值后才能发生流动。
常见的塑性流体有泥浆、黏土等。
2.2.3 剪切稀释流体剪切稀释流体的黏度会随剪切速率的增加而降低。
当剪切速率较低时,流体黏度较高,表现为固体;当剪切速率较高时,流体黏度较低,表现为液体。
常见的剪切稀释流体有牛奶、酸奶等。
2.2.4 剪切增稠流体剪切增稠流体的黏度会随剪切速率的增加而增加。
当剪切速率较低时,流体黏度较低,表现为液体;当剪切速率较高时,流体黏度较高,表现为固体。
常见的剪切增稠流体有淀粉水溶液等。
3. 非牛顿流体的重要性和应用非牛顿流体在科学研究和工业应用中具有广泛的重要性和应用价值。
以下列举了其中几个方面的应用:3.1 食品工业非牛顿流体在食品工业中有着重要的应用。
例如,牛奶和酸奶属于剪切稀释流体,其黏度会随剪切速率的增加而降低。
这就是为什么在搅拌或喝牛奶时会感觉液体更容易流动,而在静止时则更像是固体的原因。
3.2 石油工业在石油工业中,非牛顿流体的应用也非常广泛。
流体力学-9非牛顿流体

• 开始流动后,其流变曲线的斜率随剪切速率的增大而减小;
• 呈现触变性,在一定剪切速率下,其剪切应力随外力作用 时间的延续而下降,最后达到平衡。
流变方程: (n 1)
n
0
K
d d
u y
流变曲线5
(2)反触变性流体(震凝性非牛顿流体)
• 在恒定的剪切速率下,其剪切应力随剪切时间的延续而增 大到一个最大值,静止一段时间后又下降,甚至恢复其初始 值;
塑性粘度流变曲线2直线2假塑性流体拟塑性流体在中等剪切速率范围内剪切应力与剪切速率的比值不是定值而是随剪切速率的增加曲线的斜率减小符合幂定律的关系
Chap 9 非牛顿流体
主要内容
1. 流变特性 2. 与时间无关的非牛顿流体 3. 与时间有关的非牛顿流体 4. 粘弹性非牛顿流体 5. 研究方法
1. 流变特性
与时间无关:剪切速率改变,平衡结构无滞后 地随之变化,变化是瞬时的、可逆的变化; 与时间有关:流变特性对剪切速率变化的响应 是滞后的,与剪切力作用时间长短有关,变化 过程不可逆。
流变曲线
5
3——幂函数
1——直线
4——幂函数
du
O
dy
1——牛顿流体; 2——塑性流体(宾汉流体); 3——假塑性流体(拟塑性流体); 4——胀塑性流体;
• 高分子溶液、悬浮液,易凝原油在低于反常点时。
流变方程:在中等剪切速率范围内,实用的表达式是幂
定律方程
n
K
du dy
流变行为指数,表明偏离牛 顿流体的程度。
假塑性流体, (n 1)
稠度系数,表明流体的粘稠
程度
流变曲线3——幂函数
(3)胀塑性流体 • 其流变特性与假塑性流体相反; • 粘度随剪切速率的增加而增大,静止时则恢复原状。 • 浓淀粉溶液、色料和某些悬浮液等。
非牛顿流体的本质与流动特性

非牛顿流体的本质与流动特性引言在流体力学领域中,牛顿流体是最常见的一种流体类型。
牛顿流体按照牛顿第二运动定律的描述可以简化为线性关系,流体的黏度不随剪切速率的改变而改变。
然而,在实际应用中,我们经常会遇到一些黏度随剪切速率变化的情况,这些流体被称为非牛顿流体。
非牛顿流体的本质与流动特性是流体力学中一个重要的课题。
本文将从非牛顿流体的定义、分类、流动特性以及应用等方面进行综述,以加深对非牛顿流体的理解。
非牛顿流体的定义非牛顿流体是指其黏度随剪切速率或剪切应力的改变而改变的流体。
与牛顿流体相比,非牛顿流体在应变速率较大时显示出了明显的非线性特征。
非牛顿流体的变形行为分为弹性变形和粘性变形两种。
弹性变形指的是流体在受力后恢复原状的能力,而粘性变形则是指流体在受力后无法完全恢复原状的现象。
非牛顿流体的分类根据非牛顿流体的流动性质和黏度变化规律,可以将其分为多种类型,下面介绍几种常见的非牛顿流体分类。
塑性流体塑性流体是一种在低应力下表现为固体,而在较高应力下才表现为流体的非牛顿流体。
当外力大于一定临界值时,塑性流体才能发生流动。
塑性流体的流动规律可由卡塞格伦模型描述,该模型将塑性流体视为一种存在阻力的弹簧系统。
粘弹性流体粘弹性流体是指既具有弹性固体的特性,又具有粘性流体的特性的一类材料,其黏度随变形速率和时间的改变而改变。
粘弹性流体可用弹簧和粘滞器并联的模型进行表征,其流变行为介于弹性固体和牛顿液体之间。
纳米流体纳米流体是指在普通流体中加入纳米颗粒后形成的流体,纳米颗粒的添加使得流体具有了新的特性。
纳米流体的黏度和流变行为与纳米颗粒的浓度和形状密切相关。
纳米流体具有优异的热导性和力学性能,在热传导和润滑方面具有广泛的应用前景。
非牛顿流体的流动特性非牛顿流体的流动特性主要表现在其剪切应力与剪切速率之间的非线性关系上。
剪切稀释效应剪切稀释效应是非牛顿流体的一种典型的非线性特征,指的是黏度随剪切速率的增加而降低的现象。
非牛顿流体简介

非牛顿流体简介
非牛顿流体是一类具有特殊性质的物质,其粘度(流动性)不是恒定的,而是随着施加在物质上的应力或应变率的变化而变化。
与牛顿流体不同,牛顿流体的粘度在给定的温度和压力下是恒定的,例如水和空气。
非牛顿流体的行为无法用牛顿的粘度定律来描述,通常表现出更复杂的特性。
非牛顿流体可进一步分为以下几种类型:
1. 剪切稀化流体(或称拟塑性流体):这类流体的粘度随着剪切应力的增加而降低。
典型例子包括油漆和墨水,这使得它们在涂抹时更容易流动。
2. 剪切增稠流体(或称稠化流体):相对于剪切稀化流体,这类流体在施加剪切力时其粘度增加。
生活中的例子包括玉米淀粉和水的混合物,当快速搅拌这种混合物时,它会表现出像固体一样的性质。
3. 触变性流体:这类流体的粘度随时间变化,但这种变化是在特定的应力或剪切力作用下发生的。
一些油泥和胶体就属于这种类型,它们在搅拌后的一段时间内变得更加流动。
4. 视变性流体:这类流体在受到震动或振动时,其粘度会发生变化。
一些高分子溶液就属于这种类型。
非牛顿流体的这些特性使其在许多工业和科学应用中非常有用,从食品加工到高科技材料,再到医疗设备和消防领域都有应用。
研究这些材料的流变学特性有助于我们设计更出色的产品和工艺,以满足特定的应用需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Introduction
• 考虑了之前常被忽略的因素: 速度分布 加热和冷却在杀菌中的贡献 和环境空气的热交换 产品温度的非均匀分布 传质、传热过程中有效扩散参数
• 本研究的目的不是为了建立流体力学模型(需要复杂的有 限元去划分材料设备),而是通过全局平衡,使模型的复 杂度降低而容易使用,解决模型问题所需时间减少,保证 其在优化过程中的可行性。
Results & Discusssion
温度以及浓分布度
Results & Discusssion
模型假设的影响
Results &Conclusion
• 我们建立了在管系统中的非理想层流的非牛顿流体食物的 连续热加工过程的数学模型模拟,并用刺果番茄汁进行检 验,它是假塑性流体,加热主要是对酵母以及霉菌的破坏。 我们得到的结果是一致的,我们进行了一系列的模拟去研 究模型中假设的影响。 • 我们观察到: • (a)加热、冷却部分对于过程致死力有贡献; • (b)保温管的进口温度需要升高以补偿和周围环境的热 交换,从而导致致死力的上升; • (c)热量以及质量的有效扩散系数被用来表征非理想层 流,这对于温度分布以及过程的致死力有显著影响。
Mathematical Model
无量纲的轴向区域( η =z/L) 0-1(加热部分) 1-2(保温部分) 2-3(冷却部分) 无量纲径向结构域(x=r/Ri) 0(管中心) 1(内管的内壁)
Mathematical Model
传质方程
Mathematical Model
传热方程
Mathematical Model
Conclusion
• 为了达到SA=5.74的杀菌效果,最大流速下的经典的保温方 法需要19m长的保温管,然而我们推荐的模型预测达到相 同的杀菌效果只需要5m长的保温管。 模型要求:大量的过程参数,可以解方程的数学处理器。 优点:灵活性,可以通过很短的计算时间,表征热处理过 程中的不同阶段,从而满足设备设计以及处理过程的优化 的要求。 展望:进一步工作会是通过完全仪器单元以及参数评估程 序对模型进行更全面的确认,可以预料到这个全面的数学 模型可以促进食品工业生产出满足消费者要求的高品质的 加工产品。
Modeling of continuous thermal processing of a non-Newtonian liquid food under diffusive laminar flow in a tubular system 非牛顿流体在管式扩散层流系统中的连续加热模 型
Introduction
感谢聆听, 敬请指正!
食硕1306班 6130112082 武旭
个人见解
建立全面的模型,充分考虑各方面的影响,在保障安全性 的条件下,最大程度降低食品的加热程度,从而使风味、 营养得到较好的保留,符合市场需求。 因为文章中考虑的因素很多,所以需要的基本参数多,参 数的确定过程比较繁琐。在今后的应用过程中可以考虑建 立相关的数据库。 文章没有考虑加热、冷却速率对于致死力的影响。
Introduction
• 如今,消费者更注重食品的感官以及营养品质。因而,食 品行业也在对热加工条件以及设备进行重新审视。 • 已有对热量传递、停留时间分布、流体流动和流变性质的 研究,模型和仿真工具也已被用于来评价和优化食品连续热 加工过程。 • 该模型包括: 传热方程 传质方程 杀菌效果评价 速度分布
Mathematical Model
• 模型中扩散散参数是Def,A(食品中组分A的有效径向扩 散),Kef,p(食品的有效径向热传递),Kef,m是对于 加热以及冷却流体(流体的有效径向热传递)。 方程37---食品中组分A的径向扩散Pelect常数 方程38--食品径向热扩散Pelect常数 方程39--加热和冷却介质的径向热扩散Pelect常数
• 对流体食品的热加工常采用连续式设备,与间歇式设备相 比,可以提高生产效率,降低能耗、提高感官以及营养品 质。 低粘度,如牛奶和果汁,常用板式热交换器 高粘性或颗粒液体,如果泥、纸浆、调味汁、浓缩果汁, 需要在管状系统中处理。 • 在层流状态中,存在速度梯度,因而有明显的停留时间分 布。 • 通常的简化方法是考虑保温管中最大流速(最小停留时间) 下的热处理效果。因而,得到的产品虽然是安全的,但是 过度加工造成感官以及营养品质的下降,消费者难以接受。
成分A的破坏动力学参数是Tref,Dref,Za。 加热介质(hm)、冷却介质(hm)、周围空气(ha)的对 流系数可以通过经验公式得出。 还需要食品产品(Wp,CA0,Tp0),加热介质(Wm,Tm0), 冷却介质(Wm,Tm0),周围空气(Ta)。
下面的两个方程分别是食品产品,加热/冷却介质的扩散 速率。
Mathematical Model
• 对于理想状态:Def,A=0,Kef,p=kp,Kef,m=km ,可以通过 在设备中的停留时间的分布或是温度分布等试验数据,得 到有效扩散参数。 • 为了检验已建立的模型,我们进行了模拟案例以及假设的 灵敏度测试。用有限差分数值方法进行轴向、径向分布变 量的离散化。最佳离散点的确定,需考虑计算时间以及变 量SA(Ƞ=3)对数值点的依赖性。这个变量在数值方法中 有最大的灵敏度。
• 软件 gPROMS 3.2 (Process System Enterprise)被用于本案例 的模型以及模拟过程。
Results & Discusssion
模型假设的影响
Results & Discusssion
Study Case • 刺果番荔枝果汁加工(糖度18°Brix,PH<4,主要考虑霉 菌、酵母) • 使用小型设备 建立在数值测试的基础上,我们决定在每一部分选用400 个轴向以及30个径向点来离散变量。计算机模拟时间为 2.6min。
传热方程
Mathematical Model
传热方程
Mathematical Model
速度分布
杀菌效果评价
Mathematical Model
• 除去已列方程,解决模型问题,还需以下信息 设备的尺寸 食品的平均热物理特性 加热/冷却介质 内管 外管 保温层
Mathematical Model