非牛顿流体力学研究进展

合集下载

非牛顿流体的流变特性研究

非牛顿流体的流变特性研究

非牛顿流体的流变特性研究流变学是物理学和工程学的一个重要分支,研究物质的流动和变形行为。

非牛顿流体是一类特殊的流体,其流变特性与牛顿流体有所不同。

本文将探讨非牛顿流体的流变特性以及相关研究进展。

一、非牛顿流体简介非牛顿流体是指在变形应力与变形速率不成比例关系的流体。

与牛顿流体不同,非牛顿流体的黏度会随着剪切速率或剪切应力的变化而变化。

根据剪切速率变化对黏度的影响,非牛顿流体可以分为剪切稀释流体和剪切增稠流体两类。

剪切稀释流体在剪切速率增加时,黏度会下降,即流体的流动性增加。

这种现象常见于高分子溶液、悬浊液等。

剪切增稠流体则在剪切速率增加时,黏度会增加。

其中最著名的例子是玉米淀粉和水混合后形成的液体,即所谓的“奇观物质”。

二、非牛顿流体的流变模型非牛顿流体的流变行为可以通过多种模型来描述,其中最常用的是幂律模型和卡门模型。

幂律模型基于幂律关系,即剪切应力与剪切速率的幂函数关系。

该模型形式如下:τ = K × (γ・)^n其中,τ表示剪切应力,K为比例常数,γ・为剪切速率,n为流变指数。

流变指数n的值可以用来刻画非牛顿流体的流变类型。

若n>1,表示为剪切增稠流体;若0<n<1,表示为剪切稀释流体;若n=1,表示为牛顿流体。

卡门模型则假设非牛顿流体的黏度与剪切应力呈指数关系。

该模型形式如下:η = A × e^(Bτ) + C其中,η表示黏度,A、B和C为常数,τ为剪切应力。

卡门模型适用于描述粘弹性较高的非牛顿流体。

三、非牛顿流体的研究进展随着科学技术的不断发展,非牛顿流体的研究也取得了丰富的进展。

研究人员通过实验和理论模拟,深入探讨了非牛顿流体的性质和应用。

在实验方面,研究人员通过流变仪等工具,对不同类型的非牛顿流体进行流变学特性测试。

例如,他们研究了聚合物溶液的剪切流变行为以及微乳液的流动性等。

实验结果揭示了非牛顿流体在不同温度、浓度和剪切条件下的特性,为相关领域的应用提供了理论基础。

非牛顿流体力学的理论与实验研究

非牛顿流体力学的理论与实验研究

非牛顿流体力学的理论与实验研究引言非牛顿流体是指其粘度与剪切率不呈线性关系的流体。

相比牛顿流体,非牛顿流体在流动时表现出复杂的力学性质,涵盖了许多实际应用中的重要流体,如血液、液态聚合物、液晶等。

非牛顿流体力学的理论与实验研究,对于解释和预测这些流体的行为具有重要意义。

本文将探讨非牛顿流体的力学特性、流变学模型及其在工业和生物医学领域的应用。

非牛顿流体的分类和特性根据粘度对剪切速率的依赖关系,非牛顿流体可以分为剪切稀化流体和剪切增稠流体。

剪切稀化流体的粘度随剪切速率的增加而降低,如稀胶、颗粒悬浊液等;剪切增稠流体的粘度则随剪切速率的增加而增加,如胶体溶液、聚合物溶液等。

此外,非牛顿流体还具有以下特性:1.时滞性:非牛顿流体的应变历史对其流变性能有影响。

在应变速率较慢的情况下,非牛顿流体的粘度可能会随时间而增加。

2.剪切变薄:当非牛顿流体在剪切应力作用下流动时,流动层内部粘度较低,形成剪切薄化现象。

这一现象广泛应用于润滑和涂覆等领域。

3.剪切率依赖:非牛顿流体的粘度与剪切速率相关。

粘度可以随着应力的增加而呈线性或非线性变化。

非牛顿流体的流变学模型为了描述非牛顿流体的流变行为,研究者们提出了多种流变学模型。

下面介绍几种常见的模型:1.简体模型:该模型假设非牛顿流体的粘度仅与剪切速率有关,与历史无关。

其中最简单的是功率法则模型,其表示为τ = K·(dγ/dt)^n,其中τ表示切应力,γ表示剪切应变速率,K为常数,n为指数。

2.复杂模型:这些模型考虑了非牛顿流体的时间依赖性,如Maxwell模型、Kelvin-Voigt模型和Jeffreys模型等。

Maxwell模型由弹簧和阻尼器串联组成,能够很好地描述非牛顿流体的粘弹性。

3.统计力学模型:这些模型通过统计物理学的方法,研究非牛顿流体的微观结构与流变行为之间的关系,如网格模型和聚合物模型等。

非牛顿流体的实验研究为了验证非牛顿流体的流变学模型,研究者们进行了大量的实验研究。

非牛顿流体力学研究进展

非牛顿流体力学研究进展

非牛顿流体力学研究进展摘要对非牛顿流体流变学特性的正确理解程度直接影响我们对非牛顿流体本质特性的理解,所以研究非牛顿流体的流变学特性有助于人类更好的驾驭非牛顿流体,对建立非牛顿流体的本构方程、从数学上描绘非牛顿流体具有重要的意义。

近来,国内外学者从非牛顿流体不同的应用范围对非牛顿流体的流变特性开展了大量的研究。

比如对聚合物和表面活性剂溶液流变特性的研究、对食品生产辅助材料流变特性的研究、以及对聚合物溶液和石油等流变特性的研究等。

关键词:非牛顿流体;本构方程;流变特性前言非牛顿流体是不服从粘度的牛顿定律的流体。

非牛顿流体力学是研究非牛顿流体的本构方程,材料参数(函数)的测量和非牛顿流体的流动等的学科。

在国内由于国民经济的急需,非牛顿流体力学日益受到科技界的重视,不少单位从应用的角度出发进行了这方面的研究工作。

1978年全国力学规划认为非牛顿流体力学是必须重视和加强力量的薄弱领域,此后非牛顿流体力学有了很大的发展。

1979年后在北京、成都、青岛等地举办了多次讲习班。

许多国外非牛顿流体力学家、流变学家访问了中国并举办了讲座。

1982年4月召开的第2届全国多相流体力学、非牛顿流体力学和物理一化学流体力学学术会议,同第l届会议相比,非牛顿流体力学方面的研究进展显著。

1983年10月第2届亚洲流体力学会议上,中国宣读了8篇非牛顿流体力学方面的论文。

1985年11月在长沙召开的第3届全国流体力学会议和第1届全国流变学会议上,宣读了非牛顿流体力学论文几十篇。

目前在北京、上海、成都等地正逐渐形成非牛顿流体力学研究和教学的基地。

非牛顿流体力学研究进展自然界最常见的流体以空气和水为代表,通常被认为是牛顿流体,它们的主要特征是切应力和切应变率之间的关系服从牛顿内摩擦定律,在流体力学的发展史上,经典流体力学的研究对象主要局限在牛顿流体的范畴,迄今为止已经形成了比较完整的理论体系。

应该指出的是,在自然界和工程技术界,还存在一系列形形色色的非牛顿流体,比如油漆、蜂蜜、牙膏、泥浆、煤水浆、沥青和火山熔岩等,它们往往具有与牛顿流体不同的本构方程和流动特性。

非牛顿流体力学的研究内容和研究方法

非牛顿流体力学的研究内容和研究方法

牛顿流体力学的研究内容和研究方法一.非牛顿流体力学的研究内容1.非牛顿流体流体力学的形成1867年.麦克斯韦提出线性粘弹性模型标志着非牛顿流体力学开始研究;1950年.奥尔德罗伊德提出建立非牛顿流体本构方程基本原理,把线性粘弹性理论推广到非线性范围;此后,W.诺尔、.埃里克森、.里夫林、C.特鲁斯德尔等人对非线性粘弹性理论的发展也做出贡献;1976年K.沃尔特斯等人创办国际性专业刊物《非牛顿流体力学杂志》;20世纪70年代后期,非牛顿流体力学、聚合物加工、流变技术等非牛顿流体力学的专着相继出版。

至此,标志着流体力学已发展成为一个独立的学科》体力学的研究内容2.研究内容非牛顿流体力学是流体力学的一个重要分支,主要非牛顿的流变规律;研究内容主要包括非牛顿流体流变参数的测定方法、非牛顿流体的本构方程以及非牛顿流体在复杂流场中的流变规律等内容。

在石油工程领域,钻井液和完井液的循环过程,油井采出液在泵或井筒内的流动过程,聚合物驱油的微观机理,压裂液和驱替液的注入过程,以及油田采出液的集输和处理等工艺流程都涉及非牛顿流体流动问题,这就要求从事石油工程技术的科学工作者必须将具备非牛顿流体力学方面的只是,以便在石油工程的建设和管理中更好地发挥作用。

二、非流体力学的研究方法1.实验方法实验方法的步骤:(1)运用相似理论,针对具体的研究对象确定相似准数和相似准则;(2)依据模型律来设计和制造模型,确定测量参数,选择相应仪器仪表,建立实验装置;(3)制定实验方案并进行实验,观察流动现象,测量流动参数;(4)运用量纲分析等方法整理和分析实验数据,与其他方法或着作所得的结果进行比较,从中总结出流动规律。

实验研究的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。

所得的结果缺点:对于不同的的流体需要进行不同的实验,实验结果的普遍性稍差。

非牛顿流体的流变学行为研究

非牛顿流体的流变学行为研究

非牛顿流体的流变学行为研究引言流变学是研究物质在外力作用下的变形和流动特性的科学,广泛应用于材料工程、地质学、食品工业等领域。

传统的流变学理论以牛顿流体为基础,即物质的粘性恒定不变。

然而,在许多实际物质中,粘性会随着剪切应力的变化而变化。

这种类型的物质被称为非牛顿流体。

非牛顿流体的流变学行为研究在材料科学和工程中具有重要的意义。

本文将从非牛顿流体的定义、分类以及其流变学行为的研究方法等方面进行详细探讨。

非牛顿流体的定义和分类非牛顿流体是指其粘性的变化与应变速率或应变历史相关的物质。

与牛顿流体相比,非牛顿流体在受力时会发生粘性变化,导致复杂的流动行为。

根据粘性变化的特点,非牛顿流体可分为剪切变稀型和剪切变稠型两类。

剪切变稀型(Shear-thinning)流体剪切变稀型流体在受到剪切力时,粘度会随着剪切速率的增加而减小。

这种流体在高剪切速率下呈现出低粘度的特点,常见的例子包括血液、胶体溶液等。

剪切变稀型流体常用的模型包括干式模型、流变模型和卡森模型等。

剪切变稠型(Shear-thickening)流体剪切变稠型流体在受到剪切力时,粘度会随着剪切速率的增加而增加。

这种流体在高剪切速率下呈现出高粘度的特点,常见的例子包括混凝土、土壤等。

剪切变稠型流体常用的模型包括巴塞尔模型、积累模型和卡西米尔模型等。

非牛顿流体的流变学行为研究方法非牛顿流体的流变学行为研究主要通过实验和理论模拟相结合的方法进行。

主要的研究方法包括流变仪测量、数值模拟和理论分析等。

流变仪测量流变仪是研究非牛顿流体流变学行为最常用的实验设备。

通过流变仪可以测量非牛顿流体的粘度、剪切应力和流动曲线等参数。

常用的流变仪包括旋转圆盘流变仪、旋转圆柱流变仪和剪切流变仪等。

流变仪测量结果可以用于非牛顿流体的模型拟合和参数提取。

数值模拟数值模拟是研究非牛顿流体流变学行为的重要方法之一。

通过建立非牛顿流体的数学模型和计算流体力学方法,可以对流体的流动和变形进行数值模拟。

非牛顿流体液滴生成和冲击动力学研究 国基金

非牛顿流体液滴生成和冲击动力学研究 国基金

非牛顿流体液滴生成和冲击动力学研究国基金非牛顿流体作为一种特殊的物质类型,其在液滴生成和冲击动力学方面的研究具有重要意义。

本文主要针对国家基金所关注的这一领域,详细探讨非牛顿流体液滴生成过程及其在冲击过程中的动力学行为。

一、非牛顿流体液滴生成研究1.液滴生成过程非牛顿流体液滴生成过程主要包括液滴的形成、生长和断裂三个阶段。

在形成阶段,流体在表面张力的作用下形成液滴;在生长阶段,液滴逐渐吸收周围流体,体积增大;在断裂阶段,液滴从流体源脱离,形成独立液滴。

2.影响因素非牛顿流体液滴生成过程受到多种因素的影响,主要包括:(1)流变性质:非牛顿流体的流变性质会影响液滴生成过程,如剪切稀化、剪切增稠等。

(2)表面张力:表面张力是液滴生成的重要驱动力,其大小直接影响液滴的形态和尺寸。

(3)流体流速:流体流速会影响液滴的生长速度和断裂过程。

(4)环境条件:如温度、湿度等,也会对液滴生成过程产生影响。

二、非牛顿流体液滴冲击动力学研究1.冲击过程非牛顿流体液滴冲击动力学主要研究液滴在撞击固体表面时的行为。

冲击过程包括液滴的变形、飞溅、反弹等。

2.影响因素(1)液滴性质:如液滴的粘度、表面张力等,会影响冲击过程中的液滴行为。

(2)固体表面性质:如表面粗糙度、润湿性等,会影响液滴在固体表面的铺展和反弹。

(3)冲击速度:冲击速度是影响液滴冲击动力学行为的关键因素,速度越大,液滴的变形和飞溅现象越明显。

(4)冲击角度:液滴冲击固体表面的角度也会影响冲击过程。

三、研究意义与应用前景非牛顿流体液滴生成和冲击动力学研究,对于揭示非牛顿流体在复杂环境下的行为规律,具有重要的理论意义。

此外,该研究在工业、农业、生物医学等领域具有广泛的应用前景,如涂料、农药喷洒、生物样本处理等。

研究非牛顿流体与水流传输过程的研究

研究非牛顿流体与水流传输过程的研究

研究非牛顿流体与水流传输过程的研究随着工业和科技的发展,流体力学的研究越来越受到人们的关注。

非牛顿流体作为一类特殊的流体,其性质与牛顿流体明显不同,其在相关领域的应用也逐渐得到了重视。

本文将介绍非牛顿流体的基本性质以及其在水流传输过程中的研究现状。

一、非牛顿流体的基本性质非牛顿流体是指其剪切应力与剪切速率不符合牛顿流体的比例关系,因此它们具有一些独特的性质。

其中最常见的非牛顿流体是粘弹性流体和塑性流体。

粘弹性流体的流变学特性介于固体和液体之间,表现出粘度和弹性的双重特性。

在受到剪切应力的作用下,粘弹性流体会发生形变,但不会立即回复至原状,而是会有一定的时间延迟。

这类流体可被用于伸展、填缝和粘合等方面。

塑性流体则是在达到一定剪切应力阈值后才表现出流动性。

这类流体可用于固体加工、模具填充等领域,其中最典型的塑性流体就是塑料。

二、非牛顿流体的应用非牛顿流体在工业、化工、生物和医药等领域中有广泛的应用。

其中最常见的应用包括:1.油墨和涂料:非牛顿流体的高粘度和抗剪切性能使其成为制造油墨和涂料的理想材料。

2.食品:非牛顿流体的变形和流动性能使其成为制造果酱、酸奶、卡脆饼干等食品的理想材料。

3.皮肤保养品:非牛顿流体的流变特性使其成为制造护肤品的理想材料。

4.药物:粘弹性流体能够维持药物在患处的稳定性,而塑性流体则可用于眼药水和鼻腔喷雾。

三、非牛顿流体在水流传输过程中的研究现状水流传输过程中,流体性质的变化对传输效果有着重要的影响,其中非牛顿流体的研究也取得了一定的进展。

1.微通道内的非牛顿流体流动行为通过微流体技术,研究者可以更直观地观察到非牛顿流体在小管道中的流动行为,以及其可视化的效果。

研究表明,填料微通道结构可以增加流体相互作用,改善流体混合性,进而促进反应过程的展开。

2.非牛顿流体在排水沟中的应用针对城市排水问题,研究者通过将非牛顿流体与水混合,制成耐水性能较好的聚合物,此聚合物可用于制造排水沟防渗涂料、绿化水景等工程中,以提高其抗渗透性、防漏性和装饰性,达到保护生态环境的效果。

非牛顿流体力学的研究内容和研究方法

非牛顿流体力学的研究内容和研究方法

牛顿流体力学的研究内容和研究方法一.非牛顿流体力学的研究内容1.非牛顿流体流体力学的形成1867年J.C.麦克斯韦提出线性粘弹性模型标志着非牛顿流体力学开始研究;1950年J.G.奥尔德罗伊德提出建立非牛顿流体本构方程基本原理,把线性粘弹性理论推广到非线性范围;此后,W.诺尔、J.L.埃里克森、R.S.里夫林、C.特鲁斯德尔等人对非线性粘弹性理论的发展也做出贡献;1976年K.沃尔特斯等人创办国际性专业刊物《非牛顿流体力学杂志》;20世纪70年代后期,非牛顿流体力学、聚合物加工、流变技术等非牛顿流体力学的专著相继出版。

至此,标志着流体力学已发展成为一个独立的学科》体力学的研究内容2.研究内容非牛顿流体力学是流体力学的一个重要分支,主要非牛顿的流变规律;研究内容主要包括非牛顿流体流变参数的测定方法、非牛顿流体的本构方程以及非牛顿流体在复杂流场中的流变规律等内容。

在石油工程领域,钻井液和完井液的循环过程,油井采出液在泵或井筒内的流动过程,聚合物驱油的微观机理,压裂液和驱替液的注入过程,以及油田采出液的集输和处理等工艺流程都涉及非牛顿流体流动问题,这就要求从事石油工程技术的科学工作者必须将具备非牛顿流体力学方面的只是,以便在石油工程的建设和管理中更好地发挥作用。

二、非流体力学的研究方法1.实验方法实验方法的步骤:(1)运用相似理论,针对具体的研究对象确定相似准数和相似准则;(2)依据模型律来设计和制造模型,确定测量参数,选择相应仪器仪表,建立实验装置;(3)制定实验方案并进行实验,观察流动现象,测量流动参数;(4)运用量纲分析等方法整理和分析实验数据,与其他方法或著作所得的结果进行比较,从中总结出流动规律。

实验研究的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。

所得的结果缺点:对于不同的的流体需要进行不同的实验,实验结果的普遍性稍差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非牛顿流体力学研究进展摘要对非牛顿流体流变学特性的正确理解程度直接影响我们对非牛顿流体本质特性的理解,所以研究非牛顿流体的流变学特性有助于人类更好的驾驭非牛顿流体,对建立非牛顿流体的本构方程、从数学上描绘非牛顿流体具有重要的意义。

近来,国内外学者从非牛顿流体不同的应用范围对非牛顿流体的流变特性开展了大量的研究。

比如对聚合物和表面活性剂溶液流变特性的研究、对食品生产辅助材料流变特性的研究、以及对聚合物溶液和石油等流变特性的研究等。

关键词:非牛顿流体;本构方程;流变特性前言非牛顿流体是不服从粘度的牛顿定律的流体。

非牛顿流体力学是研究非牛顿流体的本构方程,材料参数(函数)的测量和非牛顿流体的流动等的学科。

在国内由于国民经济的急需,非牛顿流体力学日益受到科技界的重视,不少单位从应用的角度出发进行了这方面的研究工作。

1978年全国力学规划认为非牛顿流体力学是必须重视和加强力量的薄弱领域,此后非牛顿流体力学有了很大的发展。

1979年后在北京、成都、青岛等地举办了多次讲习班。

许多国外非牛顿流体力学家、流变学家访问了中国并举办了讲座。

1982年4月召开的第2届全国多相流体力学、非牛顿流体力学和物理一化学流体力学学术会议,同第l届会议相比,非牛顿流体力学方面的研究进展显著。

1983年10月第2届亚洲流体力学会议上,中国宣读了8篇非牛顿流体力学方面的论文。

1985年11月在长沙召开的第3届全国流体力学会议和第1届全国流变学会议上,宣读了非牛顿流体力学论文几十篇。

目前在北京、上海、成都等地正逐渐形成非牛顿流体力学研究和教学的基地。

非牛顿流体力学研究进展自然界最常见的流体以空气和水为代表,通常被认为是牛顿流体,它们的主要特征是切应力和切应变率之间的关系服从牛顿内摩擦定律,在流体力学的发展史上,经典流体力学的研究对象主要局限在牛顿流体的范畴,迄今为止已经形成了比较完整的理论体系。

应该指出的是,在自然界和工程技术界,还存在一系列形形色色的非牛顿流体,比如油漆、蜂蜜、牙膏、泥浆、煤水浆、沥青和火山熔岩等,它们往往具有与牛顿流体不同的本构方程和流动特性。

此外,随着科学技术的发展,某些原本被认为是牛顿流体的介质在精细的观测或特殊的情况下也被发现存在非牛顿流体的特性。

以血液在毛细管中的流动为例,Poiesulell于19世纪初的研究结果认为它具有牛顿流的特征;1942年CoPIey的测量却表明它存在剪切稀化的非牛顿流特性;1972年Huang等人的进一步实验测定了血液的迟滞环和应力衰减特性,定量给出了描述血液触变性的曲线。

再比如,在水锤这一类瞬变运动中,由于特征时间非常短,水也会在瞬间呈现出弹性等非牛顿流体才可能存在的特征。

在微流动中,当特征尺度非常小时,水分子旋转效应对流动的影响也会使水呈现出微极性流体所具有的非牛顿流特征。

当前,国际上非牛顿流体力学中重要的研究领域有以下几个方面。

(一)本构方程本构方程最好用张量形式写出,它不但能满足对坐标系具不变性的原则,而且形式简练。

对于不可压和各向同性的流体,其应力张量S可写成:S=pI十T,`式中p为标量,I为单位张量,T为偏应力张量。

非牛顿流体力学与牛顿流体力学不同,由于它不能用一种本构方程来适用各种流动情况,所以发展了各式各样的本构方程。

(1)广义牛顿流体这种流体没有弹性,但其粘度是剪切速率的函数,其本构方程如下: T=η(Ⅱ)A,其中A为里夫林一埃里克森张量(应变率张量的两倍);Ⅱ一1/2trA2,为A的第二个不变量;η(Ⅱ)为各种粘度函数。

(2)具有屈服应力的流体石油工业中的钻井泥浆和牙膏等物质具有一屈服应力τy。

当剪应力低于τy时,流体静止;当剪应力超过τy时,流体流动。

此种流体也称为粘塑性流体。

(3)触变性流体当施加剪切速率γ0于凝胶漆等物质时,剪切应力达到τ0。

当γ0保持时,剪切应力可能随时间下降,经过足够长的时间后,剪切应力会趋于一个平衡值τc 。

故表观粘度不仅依赖于剪切速率,还依赖于施加剪切速率的持续时间。

此种物质受到剪切作用时,结构发生变化,并导致表观粘度的变化.它们的本构方程为:τ=η(λ,γ)γ,d λ/dt=g(λ,γ),其中τ为剪切应力,γ为剪切速率,λ为结构参数,g(λ,γ)在平衡状态时等于零;λ在0和1之间取值,当λ等于零时,结构完全破坏。

(4)粘弹性流体 这是非牛顿流体力学近二十年来重点研究的邻域。

可分为下列几种类型:(a)微分型方程 最常用的是二阶流体的本构方程:T=ηA 十β1A 2+β2δA/δt ,其中β1、β2为材料常数;δ/δt 为牵连导数,有几种形式,这里采用如下形式:AL A L A V t t ++∇•+∂∂=+)(/A /A δδ其中L(=∇V)为速度梯度,上标“+”表示转置。

此外还有三阶流体和更高阶的流体。

若η、β1、β2取为Ⅱ的函数,则为广义二阶流体的本构方程。

二阶流体的本构方程比较简单,广泛用于粘弹流体的许多流动问题的求解。

但这类方程在推导中忽略了高阶项,故只适用于弹性小的流体,以及流动慢并且流动变化也慢(如简单的剪切流动、两同轴圆筒之间的定常流动和绕经光滑物体的蠕变流动等)的情况。

(b)隐含型方程(或称速率型方程):)/(/21t A A t T T δδληδδλ+=+,其中λ1、λ2、η为Ⅱ的函数,δT/δt 采用如下形式:+--∇•+∂∂=TL LT T V t T t )(//T δδ当λ1=0时,简化为微分型方程;当λ2=0时,则简化为麦克斯韦方程。

如果我们用摄动法求解,并展成λ1的级数,那么最后得到的解和用微分型方程所得的解是相同的。

(c)积分型方程 应用较多的是BKZ(Bernstein,Kearsley,Zapas)方程,可以写成: {}ds C m C ⎰∞-+=0121m T 式中s 为时间间隔;C 为右相关科希一格林(Cauchy 一Green)张量;C -1为C 的逆,也称芬格(Finger)应变。

m 1、m 2有各种各样的形式。

此外,还有其他形式的积分型方程。

如果将C 和C -1在s=O 处展成s 的幂级数,则我们可以得到微分型本构方程。

这样,三种不同类型的本构方程之间是有关系的。

(d)分子理论模型两个刚体小球用弹簧或不用弹簧连接起来(哑铃模型),用流体力学定律可计算对此哑铃的绕流。

考虑到布朗效应,可给出恒量地改变形状和位置的高分子键的取向或伸长的统计力学方法。

(二)粘弹性流体的流动流动问题是指由连续介质的运动方程和本构方程联立求解出粘弹流体的流动特性。

(1)测粘流动考虑一个定常的简单剪切流,其速度场为v1=u(x2),v2=v3=0(其中x2为坐标),则流动由三个材料函数所表征:S12=τ(γ)=γη(γ),S11一S22=σ1(γ)=γ2N1(γ),S22一S33=σ2(γ)=γ2N2(γ),其中S ij(i,j=1,2,3)为应力张量S的分量,σ1(γ)和σ2(γ)分别为第一和第二法向应力差。

这种由三个材料函数所表征的流动叫做测粘流动。

库特(Couette)和泊肃叶(Poiseuille)定常流动都是测粘流动。

测粘流动是粘弹流体中最简单的流动,这项基础性的研究,现已趋完善。

(2)伸长流动这是粘弹流体流动的一个重要研究领域。

纤维拉丝和薄膜吹塑基本上都是伸长流。

渗流、收缩流和润滑流场都类似于伸长流。

设流动速度场为v1=kx1,v2=-kx2/2,v3=-kx3/2,其中x i(i=1,2,3)为坐标;k为常数,即伸长应变率。

应力分布为S ij=0(i≠j),S11一S22=S11一S33=kμ(k),其中μ(k)称为拉伸粘度。

在数值为相对应的应变率k和γ时测得的拉伸粘度和剪切粘度的比值μ(k)/η(k)叫做特劳顿(Toruotn)比。

对于牛顿流体,这个比值为3;对于粘弹流体,它比3大得多,并且不是一个常数,而是一个k的函数。

这样只知道剪切粘度η是不够的,我们不能用它预示伸长粘度μ。

(3)收缩和发散流动它介于测粘流和伸长流之间,即使在简单的边界条件下,也呈现出复杂的流线分布和应力分布。

粘弹流体与牛顿流体具有本质不同的流场。

收缩流动的牛顿流体在中心产生惯性环流(小雷诺数无旋涡),粘弹流体则在壁面产生环流(即使在某些可忽略雷诺数的情况下)。

(4)在湍流流动中阻力的降低〔汤姆斯(Toms)效应〕和通过多孔介质时阻力的增加,能够用大伸长粘度作部分解释。

这是在第二次世界大战期间发现的,在牛顿流体中添加很少一点聚合物能导致湍流流动中阻力大量降低,然而在层流流动中溶剂和溶液的流动性质几乎是一样的。

这一发现在工业中已有广泛的应用。

相反地,对于多孔介质中的流动,在牛顿流体中添加聚合物能导致阻力增加。

在提高石油的回收率上,这一现象已被应用。

(三)流动的稳定性非牛顿流体流动稳定性在工业上有广泛的应用,虽然它的数学处理比较复杂,但现已获得一定的研究成果。

(1)在平面泊肃叶流动中,粘弹流体的弹性使流动失稳.粘弹流体和粘塑流体沿斜面流动时,弹性使流动失稳,但屈服应力能增加流动的稳定性.后一结果对胶片挤压涂布工艺有用。

(2)粘弹流体在圆筒库特流动中:(a)小弹性几乎不影响定常流动,而对流动稳定性的影响却十分显著;(b)弹性影响依赖于所选择的流体模型(本构方程),对于某种流体弹性使流动失稳,对于另一种流体弹性可增加流动的稳定性;(c)弹性影响主要依赖于第二法向应力差,例如当两圆筒的间隙比半径小很多和第二法向应力差大于零时,弹性使流动失稳,小于零时正好相反。

(四)测量技术非牛顿流体的流变特性测量是学科内容的一个重要组成部分。

(1)粘弹流体最基本的测量在测粘流动中已经提到:(a)粘度随剪切速率的变化,即表观粘度的测量;(b)法向应力差的测量。

(2)研究高分子材料的粘弹性性质时,广泛采用测量振动流动的方法,或称动态试验。

(3)应力松弛是粘弹流体的重要特征之一。

尽管非牛顿流体力学在我国的发展是相当快的但大多数研究课题与土业有关,如:聚合物加工,薄膜成型,润滑,石油等。

为了连续地生产和维持产品的质量,加工过程必须是稳定的,与牛顿流体流动不同非牛顿流体流动即使在很低的Re数时也可以是不稳定的,所以对非牛顿流体流动稳定性的研究比对牛顿流体更重要。

参考文献陈文芳,《非牛顿流体力学》,科学出版社(1984)朱克勤,非牛顿流体力学研究的若干进展,清华大学工程力学系,北京100084 范椿,国内非牛顿流体力学进展刘海燕,非牛顿流体研究进展及发展趋势。

相关文档
最新文档