13.1.2 三角形中的边角关系 教案
初中数学初二数学上册《三角形中的边角关系》教案、教学设计

1.创设情境,激发兴趣:通过引入生活中的实际问题,让学生感受到三角形在生活中的广泛应用,激发学生的学习兴趣;
2.分层次教学,注重个体差异:针对不同学生的认知水平,设计不同难度的教学活动和练习题,使每个学生都能在课堂上得到有效的提升;
3.引导探究,培养能力:以问题驱动的方式,引导学生通过观察、实践、讨论等途径,发现三角形的性质和定理,培养学生的探究能力和逻辑思维能力;
4.小组合作:布置小组合作任务,培养学生的团队协作能力和沟通表达能力。
-小组任务:每组共同完成一道综合性的三角形题目,要求组内讨论、分工合作,并在课堂上进行展示。
5.情感态度:关注学生的情感需求,布置富有挑战性而又有趣的任务,激发学生的学习兴趣和自信心。
-探索题:让学生自行设计一道与三角形相关的题目,并尝试用所学知识解决。
c.三角形内角和定理:三角形内角和等于180°;
d.三角形的边角关系:两边之和大于第三边,两边之差小于第三边。
3.结合实例讲解:教师通过具体例题,讲解如何运用三角形的边角关系解决实际问题。
(三)学生小组讨论
1.教学活动设计:教师将学生分成小组,每组讨论以下问题:
a.举例说明三角形在实际生活中的应用;
针对以上学情,教师在教学过程中应关注学生的个体差异,采用多种教学策略,激发学生的学习兴趣,培养学生的逻辑思维能力和数学素养。同时,关注学生的情感态度,营造轻松、愉快的学习氛围,使学生在愉悦的情感体验中掌握知识,提高能力。
三、教学重难点和教学设想
(一)教学重点
1.掌握三角形的定义、分类及特点;
2.理解并运用三角形内角和定理;
b.三角形内角和定理的证明;
c.如何利用三角形的边角关系解决实际问题。
第13章《三角形中的边角关系》集体备课教案0001

13.1 三角形中的边角关系(第一课时)主备人:王大国教学目标1、了解三角形的概念,掌握分类思想2、经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵3、让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值重、难点与关键重点:了解三角形分类思想,弄清三角形三边关系难点:对两边之差小于第三边的领悟关键:从观察、联想入手,应用连结两点之间的线中,线段最短这一原理进行迁移教学过程一、情境合一,探究新知1、投影图片,把事先收集的与三角形有关系的生活图片,运用投影仪播放,让学生对三角形有一个感性认识•如下图:教师活动:通过播放图片,引导学生认识三角形,并提出图中能找出的几个三角形具有什么样的特性•学生讨论教师归纳,由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形•教师活动:给出一个三角形,如图,并标上字母,引导学生体会用符号来表示一个三角形的方法,认识三角形的基本元素:边、角、顶点等学生活动:学会运用大小写字母来表示三角形的边与角,如图的三角形可记作" ABC三边可记作AB AC CA三个角可记作/ A、/ B、/ C,或可用三个字母表示为/ BAG / ABG / ACB.注意:表示边时要两个大写字母,或一个小写字母•注意小写字母标注的规律:通常顶点大写字母所对的变就是这个顶点的小写字母•2、教师给出不同类型的三角形,引导学生从边和角两种角度观察、分类(1 )从边的角度来分类有:不等边三角形等腰三角形(包括等边三角形)说明:对于等腰三角形来说,相等的两边称为腰,第三边称为底边。
两腰所夹的角称为顶角,腰与底边的夹角称为底角:而等边三角形的三边都相等,它是等腰三角形的特例(2 )从角的角度来分类有:锐角三角形(三个内角均为小于90°的角)直角三角形(有一个角是900)钝角三角形(有一个内角大于900)二、联系实际,合作探究1、问题牵引1.国庆节的晚上,小明从甲地到乙地后再往丙地走,并到达丙地,小红从甲地直接到丙地,如图所示,请你谈谈小明和小红谁走的路程长?依据是什么?学生活动:发现小红走的路程短,小明走的路程长。
八年级上册数学《三角形中的边角关系》教案

这就是说:三角形的任何两边的和大于第三边。
即:AB+BC>AC
又→AB>AC-BC 即 AC-BC<AB 三角形的任何两边之差小于第三边
五、拓展应用。
1.一木工师傅现有两根木条,木条长分别是 70cm 和 100cm,他要选择第三根木条,将它们钉
成一个三角形木架。设第三根木长为 xcm,求 x 的取值范围。
第周
星期
课时教案
第节
年月 日
课题
13.1.1 三角形中的边角关系
教学 目标
1、认识三角形及其各组成部分,会记三角形。 2、会按边给三角形分类。 3、掌握三角形的任何两边之和大于第三边,三角形的任何两边之差小于第三边。 4、学习三角形的分类方式,体会分类的作用,掌握分类的方法。
5、经历探索三边关系的过程,发展学生概括、归纳的能力。
四、交流
1.通过小组讨论,有以下四种情况:
(1)2cm、3cm、5cm
(2)2cm、3cm、6cm
(3)2cm、5cm、6cm
(4)3cm、5cm、6cm
实践可知(3)、(4)可以摆出三角形,(1)、(2)不能摆出三角形,我们可以发现,在这三根
牙签中,如果较小的两根的和不大于最长的第三根,就不能组成三角形。
作 《练习册》习题 业
本节课内容较为简单,学生掌握良好,课上反应热烈。 后 记
第2页共2页
(1)连接 AD,图中有几个三角形?写出这些
三角形。挑一个三角形,说出它的边与角。
过
(2)在 AB 上任取一点 E,连接 CE 呢?
二、三角形的分类
今天,我们先来看看三角形的边有什么特点! 从边来看,你能画出几种三角形?程A_A
_A
13.1三角形中的边角关系(第一课时)教学设计

沪科版数学学科八年级上册第十三章第一节《13.1三角形中的边角关系(第1课时)》教学设计【教学目标】1. 知识与技能:(1)了解三角形的意义,掌握三角形的表示方法。
(2)了解不等边三角形、等腰三角形和等边三角形,会按边将三角形分类。
(3)掌握三角形中三边之间的关系,并能利用这个关系解决问题。
2.过程与方法:在经历揭示“三角形三边之间的关系”的探究过程中,初步培养学生的逻辑思维能力、动手操作能力和数学活动的经验方法。
3.情感态度与价值观:(1)能积极参与数学学习活动,对数学有好奇心。
(2)在数学学习活动中获得成功的体验,建立对数学学习的自信心。
(3)体验数学的应用价值,感受环保意识、公德意识。
【教学重点】三角形三边之间的关系。
【教学难点】三角形三边之间关系的探究。
【教学方法】情境——自主 、探究——发现。
【教具准备】多媒体课件,三角板。
【教学过程】 一、畅所欲言师板书课题:§13.1三角形中的边角关系(1)。
师:为了能有效的进行学习,请大家分成学习小组,并准备好直尺或三角板、练习本。
二、自主学习1. 阅读课本67面,自主学习。
2. 活动:画一画,标一标,认一认,练一练。
(1)标出三角形的顶点、边、角等,用符号表示三角形。
如图“△ABC ”,读作“三角形ABC ”。
生1:顶点A 、顶点B 、顶点C 。
问题1.姚明是同学们熟悉而喜爱的篮球明星,他高大而帅 气,有人说:“姚明特厉害,他一步就能迈3米”,对 于这个说法,你信不信呢?(背景资料:姚明身高2.36米,体重139kg,腿长约1.30米。
) 生1:相信...... 生2:不相信......师:从这节课开始,我们将一起来研究三角形的相关知识, 来解决这个问题。
ABCcb a生2:边AB 也可用小写字母a 表示...... 生3:∠A 、∠B 、∠C 叫做三角形的内角。
(2)会将三角形按边分类,知道每类三角形的特征。
不等边三角行三角形等腰三角行(等边三角形是等腰三角形的特例。
八年级数学上册第13章13.1三角形中的边角关系第2课时三角形中角的关系教案新版

第2课时三角形中角的关系◇教学目标◇【知识与技能】1.会对三角形按角分类;2.掌握三角形的内角和定理,能应用三角形的内角和定理解决一些实际问题.【过程与方法】经历实验探究,得出三角形的内角和定理.【情感、态度与价值观】1.通过带领学生探索三角形的角的数量关系,引起学生的好奇心,激发学生的求知欲;2.发展学生的合情推理能力,使学生养成独立思考的习惯.◇教学重难点◇【教学重点】三角形的内角和定理.【教学难点】三角形的内角和定理的证明过程.◇教学过程◇一、情境导入上节课我们把三角形按边来分类,并研究了三角形三边之间的关系,同学们还记得三角形的三边之间是什么关系吗?那么三角形按角来分类呢?结论:三角形中,三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形.二、合作探究问题1:在介绍等腰三角形时,我们对它的边进行了区分,分为腰和底,那么直角三角形的边如何区分呢?结论:直角三角形中夹直角的两边叫做直角边,直角相对的边叫做斜边,直角三角形ABC 可以写成“Rt△ABC”,我们把不是直角三角形的归为一类,称为斜三角形,斜三角形包括锐角三角形和钝角三角形.问题2:在一个三角形中的三个内角之间有什么关系?结论:三角形的内角和等于180°.问题3:还记得小学阶段是怎样得到上述结论的吗?结论:用折叠、剪拼或用量角器度量的方法都能得到.问题4:在一个三角形中,最多能有几个钝角?最多能有几个直角呢?说明理由.结论:最多能有一个钝角,最多能有一个直角,因为三角形的内角和等于180°.典例已知,如图,AB∥CD,EH⊥AB,垂足为H.若∠1=50°,则∠E为多少度?[解析]设CD与EF交于点M,AB与EF交于点N,则∠EMD=∠1,又因为AB∥CD,所以∠BNE=EMD,所以∠E=90°-∠BNE=90°-∠1=40°.三、板书设计三角形中角的关系1.三角形按角度分类:三角形2.三角形的内角和定理:三角形的内角和等于180°.◇教学反思◇本节课学生通过自主学习,合作交流,认真探究,从而证明三角形内角和等于180°,培养了学生的操作、观察、分析能力和思维的全面性.。
三角形中的边角关系教案(00001)

沪科版本数学八年级上册3.1.2三角形中的边角关系教学设计讲授新课活动探究一:思考以下问题,做一做。
(小组讨论,3min)1. 同学请拿出你的三角板,观察三角形的内角有什么不同?2.画出三个角都是锐角的三角形3.画出有一个角的钝角的三角形。
怎么区分以下三种三角形呢?三角形中,三个角都是锐角的三角形叫做锐角三角形有一个角是直角的三角形叫做直角三角形有一个角是钝角的三角形叫做钝角三角形对于直角三角形,还有哪些要素呢?活动探究二:思考以下问题。
(小组讨论,2min)1三角形若按角来分类,分为哪几类?2三角形内角和是多少度?三角形按角分为同学们,自己制作一个三角形,将这个三角形折叠学生通过动手画图,锻炼了能力,学生能够用以学习的知识来解决,为学生掌握三角形之间角的关系做铺垫.学生回答直角三角形中夹直角的两边叫做直角边,直角相对的边叫做,直角三角形ABC可以写成Rt ABC。
学生回答三角形的内角和等于1800动手折叠三角形,锻炼学生的动手能力巩固练习学生独∠A=180°-54°-90°=36°在 ABC中,∠C=180°-∠A-(∠ABD + ∠DBC)=180°-36°-(54°+18°) =72°变式1下列说法正确的有( )1等腰三角形是等边三角形;2三角形按边分可分为等腰三角形、等边三角形和不等边三角形;3等腰三角形至少有两边相等;4三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A. 1,2B. 1,3,4C. 3,4D. 1,2,4变式2若三角形中的一条边是另一条边的2倍,且有一个角为30 °,则这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上都不对变式3:在△ABC中,若∠A:∠B:∠C=2:3:4,求∠A 、∠B和∠C的度数.拓展提高1.如果等腰三角形的一角为100°,则另两角分别为___________如果等腰三角形的一角为70°,则另两角分别为_________________。
沪科版八年级数学上册第13章教学课件:13.1.2 三角形中角的关系(共19张PPT)

45°
x=50
3.如图,则∠1+∠2+∠3+∠4=____2_8_0_°____ .
C
D4
1
40° 2
3
A
E
B
4.如图,四边形ABCD中,点E在BC 上,∠A+∠ADE=180°,∠B=78°,∠C=60°,求 ∠EDC的度数.
解:∵∠A+∠ADE=180°, ∴AB∥DE, ∴∠CED=∠B=78°. 又∵∠C=60°, ∴∠EDC=180°-(∠CED+∠C) =180°-(78°+60°) =42°.
当堂练习
1.下列各组角是同一个三角形的内角吗?为什么?
(1)3°, 150°, 27°
是
(2)60°, 40°, 90°
不是
(3)30°, 60°, 50°
不是
三角形的内角和为180°.
2.求出下列各图中的x值.
7 0
4 0
x
x=70
2x° x°
x=30
x° x° x°
x=60
x° 20°
25°
思考
三角形若按角来分类,可分为哪几类?
讲授新课
一 三角形按角分类 画一画:同学们手中有直角三角板,请再画一个内 角不是90°的三角形.
三个角都是锐角的三角形叫做锐角三角形; 有一个角是直角的三角形叫做直角三角形;
直角三角形ABC可以写成Rt△ABC; 有一个角是钝角的三角形叫做钝角三角形.
A
锐角三角形
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/52021/9/52021/9/52021/9/59/5/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月5日星期日2021/9/52021/9/52021/9/5 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/52021/9/52021/9/59/5/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/52021/9/5September 5, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/52021/9/52021/9/52021/9/5
13.1.2 三角形中角的关系(课件)沪科版数学八年级上册

课堂小结
三角形中角的关系
三角
直角三角形
内角和 三个内角的 形中 按角的大
等于180° 数量关系 角的 小分类
关系
斜三角形
感悟新知
例 2 ∠A,∠B,∠C是△ABC的三个内角.
知2-练
(1)已知∠A=40°,∠B=∠C,求∠B,∠C的度数;
(2)已知∠A-∠B=16°,∠C=54°,求∠A,∠B
的度数;
(3)已知∠A=12∠B=13∠C,求∠A,∠B,∠C的度数. 解题秘方:紧扣三角形的内角和定理建立方程(组)求解.
感悟新知
21.2-2)、剪拼(图13.1.2-3)的方法,将
三角形的三个角拼在一起,得到三角形的内角和,这体现
了数学中的转化思想.
感悟新知
知2-讲
特别解读 “三角形的内角和等于180°”揭示了三角形的三个内
角之间的数量关系. 若已知三角形中任意两个角的度数, 则可以求得第三个角的度数;若已知三个角的关系或三个 角的度数之比,可以求各个角的度数.
感悟新知
知1-练
解:(1)因为三个角都是锐角,所以△ABC是锐角三角形. (2)因为∠C=120°>90°,所以△ABC是钝角三角形. (3)因为∠C=90°,所以△ABC是直角三角形. 由角的大小判断三角形形状的方法: (1)若最大角为锐角,则该三角形为锐角三角形; (2)若最大角为直角,则该三角形为直角三角形; (3)若最大角为钝角,则该三角形为钝角三角形.
两个锐角.
2. 三角形按边分类和按角分类是两种不同的分类方式,各
自独立,无论按哪种标准分类,原则都是不重不漏.
3. 等腰直角三角形,按边分类属于等腰三角形,按角分类
属于直角三角形.
感悟新知
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.锐角三角形
C.钝角三角形
D.以上都不对
变式3:在△ABC中,若∠A:∠B:∠C=2:3:4,求∠A、∠B和∠C的度数.
拓展提高
1.如果等腰三角形的一角为100°,
则另两角分别为___________
如果等腰三角形的一角为70°,
则另两角分别为_________________
2.(1)一个三角形中最多有个直角?
(2)一个三角形中最多有个钝角?
(3)一个三角形中至少有个锐角?
(4)任意一个三角形中,最大的一个角的度数至少为______.
3.正五角星的每个锐角的度数是多少?
必做题:随堂练习P71第1,2题
选做题:习题13.1第2,3题
学生通过动手画图,锻炼了能力,学生能够用以学习的知识来解决,为学生掌握三角形之间角的关系做铺垫.
学生回答直角三角形中夹直角的两边叫做直角边,直角相对的边叫做,直角三角形ABC可以写成Rt ABC。
学生回答
三角形的内角和等于1800
学生通过讨论,画图进行证明过程的后小组展示。
学生要学习掌握这种转化思想,其是数学中的常用方法。
通过对例题的理解与掌握,对三角形内角和有个更深的认识。
∴∠A+∠B+∠ACB=180°
证法3:过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
∴∠B+∠C+∠BAC=180°
例2已知:如图,ABC中,BD⊥AC,垂足为D。
∠ABD=54°,∠DBC=18°.求∠A和∠C的度数。
解:由于BD⊥AC,(已知)
重点难点
重点
三角形的内角和定理.
难点
三角形内角和定理的证明过程
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
提问
三角形中按边长关系如何分类的呢?
三角形的三边之间是什么关系吗?
让学生回忆上节课所学习的内容。学生回答三角形中任意两边之和大于第三边,任意两边之差小于第三边
复习了旧知识,引入新知识,温故而知新。
板书
13.1.2三角形中的边角关系
1.三角形按角分类
2.三角形内角和
讲授新课
活动探究一:思考以下问题,做一做。(小组讨论,3min)
1.同学请拿出你的三角板,观察三角形的内角有什么不同?
2.画出三个角都是锐角的三角形
3.画出有一个角的钝角的三角形。
怎么区分以下三种三角形呢?
三角形中,三个角都是锐角的三角形叫做锐角三角形
有一个角是直角的三角形叫做直角三角形
有一个角是钝角的三角形叫做钝角三角形
学习
目标
【知识与技能】
1.掌握三角形的内角和定理.
2.能应用三角形的内角和定理解决一些简单的实际问题.
【过程与方法】
经历实验探究,得出三角形的内角和定理.
【情感、态度与价值观】
1.通过带领学生探究三角形的角的数量关系,引起学生的好奇心,激发学生的求知欲.
2.发展学生的合情推理能力,使学生养成独立思考的习惯.
对于直角三角形,还有哪些要素呢?
活动探究二:思考以下问题。(小组讨论,2min)
1三角形若按角来分类,分为哪几类?
2三角形内角和是多少度?
三角形按角分为
同学们,自己制作一个三角形,将这个三角形折叠或者三个角拼在一起,你发现了什么?
从折角和拼角的过程你能想出证明的办法吗?(3种证法)
证法1:过A作EF∥BA,
学情分析
整体数学基础不好,尤其是数学中基本数量关系的理解和掌握较差,分析问题能力较弱,两极分化较严重,虽经七年级的数学学习,基本形成数学思维模式,具备一定的应用数学知识解决实际问题的能力,但在知识灵活应用上还是很欠缺,同时作答也比较粗心。从上学期期末数学测试成绩可以看出,与兄弟学校优秀班级相比,还存在的很大的差距。
动手折叠三角形,锻炼学生的动手能力
巩固练习学生独立完成,学生讲评,其他学生相互补充。
通过例题的学习进一步巩固活动1探究的规律,加深对知识点的理解和掌握.
课堂小结
1.三角形按角分类
2.三角形的内角和等于180度
学生畅谈总结自己的收获
让学生对所学知识进行回顾、梳理,既巩固了本节课的有关知识,有培养了学生的良好学习习惯.
沪科版本数学八年级上册3.1.2三角形中的边角关系
教学设计
课题
3.1.2三角形中的边角关系
单元
第三章第1节第2课时
学科
数学
年级
八年级上
教材分析
本章主要学习三角形中的边角关系,以及命题与证明等几何知识。本章是在学生对几何结论具有一定认识的基础上进行概念和结论的学习,比较系统的对证明的思维方法和表达形式展开研究。本节课呈现出三角形边角关系,对三角形的分类,以及内角和的证明。
所以∠ADB=∠CDB=90°.
在ABC中,
∠A+∠ABD+∠ADB=180°,(三角形的三个内角和等于180°)
∠ABD=54°,∠ADB=90°.(已知)
∠A=180°-54°-90°=36°
在ABC中,
∠C=180°-∠A-(∠ABD +∠DBC)
=180°-36°-(54°+18°) =72°
变式1
下列说法正确的有( )
1等腰三角形是等边三角形;
2三角形按边分可分为等腰三角形、等边三角形和不等边三角形;
3等腰三角形至少有两边相等;
4三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.
A. 1,2B. 1,3,4C. 3,4D. 1,2,4
变式2
若三角形中的一条边是另一条边的2倍,且有一个角为30°,则这个三角形是( )
∴∠B=∠2
(两直线平行,内错角相等)
∠C=∠1
(两直线平行,内错角相等)
又∵∠2+∠1+∠BAC=180°(平角的定义)
∴∠B+∠C+∠BAC=180°(等量代换)
证法2:延长BC到D,过C作CE∥BA,
∴∠A=∠1
(两直线平行,内错角相等)
∠B=∠2
(两直线平行,同位角相等)
又∵∠1+∠2+∠ACB=180°