2013-2014学年八年级下学期期中考 试数学试卷

合集下载

2013-2014学年度第一学期初二期中考试数学试卷(含答案)

2013-2014学年度第一学期初二期中考试数学试卷(含答案)

2013-2014学年度第一学期初二期中考试数学试卷一、选择题:(每题3分,共15分)1.如图所示,图中不是轴对称图形的是 ( ).2.如图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠A=50°,∠B=30°, 则∠AOD 的度数为 ( ). A .50° B .30°C .80°D .100°3.点M (3,5)关于X 轴对称的点的坐标为 ( ) A 、(-3,-5) B 、(-3,5) C 、(3,-5) D 、(5,-3)4.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上(如图),可以证明,得ED =AB ,因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是( )A 、“边角边”B 、“角边角”C 、“边边边”D 、“斜边、直角边”5.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为 ( )(A )50° (B )51° (C )61° (D )71°第5题二、填空题:(每题4分,共20分)6.等腰三角形的底角是70°,则它的顶角是___________. 7.正方形有 条对称轴,正五边形有 条对称轴.8.如图,在△ABC 中,BC=5,BC 边上的垂直平分线 DE 交BC 、AB 分别于点D 、E ,△AEC 的周长是11 则△ABC 的周长等于 。

O DCBA第2题ACED B第8题9.如图,等边△ABC 的边长为2 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长..为 cm .10.在直角坐标系中,已知A (-3,3),在x 轴上确定一点P ,使△AOP 为等腰三角形,符合条件的点P 共有_________个。

2023-2024学年河北省保定市竞秀区八年级下学期期中数学试卷及参考答案

2023-2024学年河北省保定市竞秀区八年级下学期期中数学试卷及参考答案

2023-2024学年河北省保定市竞秀区第二学期期中试卷初二数学卷I (选择题,共38分)一、选择题(本大题有16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下图形既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个2.下列说法正确的是( ) A .0x =是不等式21x −<的解 B .不等式37x <的整数解只有1,2x x == C .不等式25x <的解集是2x =D .3x ≥是不等式39x ≥的解3.如图,在Rt ABC △中,90,30,2ACB A AB ∠=∠==,则AC =( )A .1B .3CD .44.对于①()()2236x x x x −+=+−,②()()3422x x x x x −=−+,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 5.用反证法证明命题:“等腰三角形的两个底角相等”的逆命题时,第一步( )A .假设三角形的两个底角不相等B .假设三角形的两个角不相等C .假设该三角形不是等腰三角形D .假设该三角形是等腰三角形6.下列命题为真命题的有( )(1)若a b >,则22a b −<− (2)若32a b −<−,则a b >(3)若a b <,则a b < (4)若22a b >,则a b >A .1个B .2个C .3个D .4个7.不等式组212,32x x x x −≥−⎧⎨>−⎩的解集在数轴上表示为( )A .B .C .D .8.如图,若ABC △的周长为17,且6,AB AB =边的垂直平分线DE 分别交,AB AC 于,D E ,则对BCE △的周长描述正确的是( )A .周长为17B .周长为11C .周长为11或17D .周长不可求9.如图,,5,AOB OA AD OB α∠==⊥于D ,且2AD =;将射线OB 绕点O 逆时针旋转2α角,至OB '位置,点P 为射线OB '上一点,则AP 的值不可能是( )A .1.5B .2C .5D .1610.为参加某机构组织的数学创新比赛,学校先进行了选拔.试卷共25道题,答对1道得4分,答错或不答者扣1分,得90分及以上者将获得参赛资格,要取得参赛资格至少答对( ) A .20道B .21道C .22道D :23道11.如图,在同一直角坐标系中,函数12y x a =+和22y x =−+的图象交于点(),3A m .则不等式12y y <的解集为( )A .1x =−B .1x >−C .1x <−D .1x ≤−12.关于x 的不等式组5x x m>⎧⎨<⎩无解,那么m 的取值范围为( )A .5m =B .5m >C .5m <D .5m ≤13.如图,将周长为9的ABC △沿BC 方向平移2个单位长度得到DEF △.则四边形ABFD 的周长为( )A .9B .11C .12D .1314.如图,在ABC △中,90,C AC BC ∠==,点D 为ABC △内一点,将DBC △绕点C 逆时针旋转到EAC △的位置.则AE 与BD 的位置关系( )A .AE BD ⊥B .AE 与BD 相交且交成的锐角为45C .//AE BDD .无法确定15.点()1,5P x x −−不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限16.等腰三角形一边上的高与一腰所夹的锐角是50,则该等腰三角形顶角是( ) (1)甲的结果是100;(2)乙的结果是40;(3)丙的结果是140. A .甲、乙的结果合起来才对 B .乙、丙的结果合起来才对 C .甲、乙、丙的结果合起来才对D .甲、乙、丙的结果合起来也不对卷II (非选择题,共82分)二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.点O 是边长分别为9,41,40的三角形的内角平分线的交点,则点O 到该三角形一边的距离是______. 18.(1)若1x =时,360x mx +−=,则m =______;(2)多项式2,6x k x +−分解因式后有()3x −因式,则k =______.19.如图,在Rt ABC △中,90,30,4C B AB ∠=∠==,将ABC △绕点C 逆时针旋转()090a a <<角,得到,A B C A B ''''△与BC 交于点D .(1)α=______度时,点A '落在AB 边上;(2)当A '在AB 边上时,B DC '△的面积=______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.解下列不等式(组)(本题共8分) (1)32123x x−−−≤ (2)321(1)937(2)x x x x +≤−⎧⎨−≥−+⎩.21.(本题共10分) (1)将下列多项式因式分解 ①()()4242xx x −+−,②()2222()2();x y x yx y −+−++(2)已知:230x y −−=,求代数式221222x xy y ⋅−+的值. 22.(本小题10分)如图是一个99⨯的网格图,网格中最小的正方形的边长为1个单位长度,网格中有一ABC △,顶点,,A B C 均在格点上,请你在网格中建立平面直角坐标系xOy ,点O 为坐标系的原点,且使点,A B 的坐标分别为()()3,3,4,1A B −−.(1)画出平面直角坐标系,并写出点C 的坐标______;(2)作出ABC △向上平移1个单位长度,再向右平移5个单位长度后的111A B C △;然后作111A B C △关于点O 中心对称的222A B C △,并写出点12,A C 的坐标; (3)直接写出122C B C △的面积.23.(本小题10分)如图,直线1:2l y x b =+,真线2:5l y kx =+过点()3,2A 与y 䌷交于点B . (1)求k 的值;(2)若1l 与线段AB 有公共点,试确定b 的取值范围;(3)若1l 、与线段AB 的效点为整数点(即点的横、纵坐标均为整数的点),直接写出b 的值.24.(本小题8分)如图,过射线EF 外一点D ,作DE EF ⊥,点A 为射线EF 上一点,在AF 上截取AC DE =,作MC EC ⊥,点,D M 位于EF 的同侧,连接AD ,以A 为圆心,以AD 的长为半径画弧,交MC 于B . 求证:(1)DAE ABC △≌△; (2)AD AB ⊥.25.(本小题12分)去年我市某县发生多轮降雨、造成多地发生较重洪涝灾害.某爱心机构将向该县捐赠的物资打包成件,据统计可知:帐篷和食品共480件,帐篷比食品多240件. (1)求打包成件的帐篷和食品各多少件?(2)现可以租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷60件和食品15件,乙种货车最多可装帐篷和食品各30件.安排甲、乙两种货车时有哪几种方案? (3)在第(2)问的条件下,如果甲种货车每辆需付运输费3000元,乙种货车每辆需付运输费2700元,应选择哪种方案可使运输费最少?最少运输费是多少元? 26.(本小题14分)在四边形OMNB 中,90,2M N OM ∠=∠==,作边OB 的垂直平分线AE ,分别交,OB MN 于点,E A ,连接,OA BA ,恰好,1AB OA AM ⊥=,再将OAB △绕点O 逆时针旋转90至OCD △位置,以O 为平面直角坐标系的原点,以OM 所在直线为x 轴,如图建立平面直角坐标系. (1)点B 的坐标是______,点D 的坐标是______; (2)问点D 是否在直线BC 上?并说明理由; (3)求AOD △的面积.2023-2024学年河北省保定市竞秀区第二学期期中试卷八年级数学试题答案一、选择题(本大题有16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 2 3 4 5 6 7 8 B ACDCBBB9 10 11 12 13 14 15 16 ADCDDACC二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17. 4 18.(1) 5 ;(2) -7 19.(1) 60 (2)332三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.解下列不等式(组)(本题8分)(1)32123x x−−−≤; 解: 3(x -3) -2(2-x)≤63x -9-4+2x ≤6 …………………………………………2分 5x ≤6+13 5x ≤19 195x ≤……………………………………………………4分 (2)321(1)937(2)x x x x ⎩+≤−≥−+⎧⎨−解:解不等式①,得 4x ≥.解不等式②,得 1x ≤. ………………………………2分∴原不等式组无解 ……………………………………………………4分 注:本题不借助数轴得出正确结论者,不扣分 21.(本题共10分) (1)将下列多项式因式分解①4(2)4(2)x x x −+−,解:原式=4(2)4(2)x x x −−− ………………………………1分 =4(2)(4)x x −− ………………………………2分4 5-11 2 3 0 -2=22(2)(2)(2)x x x −+− ………………………………………………3分 ② 2222()2()()x y x y x y −+−++;解:原式= 22()2()()()x y x y x y x y −+−+++………………………………1分 =2()x y x y −++ ………………………………2分 =2(2)x=24x ………………………………………………3分 (2)已知:230x y −−=,求代数式221222x xy y −+的值.解:∵230x y −−=,∴23x y −=. ………………………………………………1分 ∵221222x xy y −+221(44)2x xy y =−+ 21(2)2x y =− ………………………………………………3分 当23x y −=时,原式=21(2)2x y −=2132⨯=92 ………………………………4分注:其它正确解答,相应得分 22.(本小题10分) (1)画出平面直角坐标系,平面直角坐标系如图所示………………2分 并写出点C 的坐标 (-1,0) ;………………3分 (2)111A B C ∆即为所求 ……………5分222A B C ∆即为所求 ……………7分 1(24)A , ……………8分 2(41)C −−, ……………9分(3)△C 1B 2C 2的面积为7 ……………10分 23.(本小题10分)解:(1)∵点A (3,2)直线l 2:5y kx =+上 ∴235k =+.解得:1k =−. ……………2分xy ABC图8 A 1B 1C 1 A 2B 2C 21 2 3 4 5 1 2 34 -1 -2 -3 -4 -1-2 -3-4 -5O y AOBl 1xl 2 图9(2)∵1k =−,∴l 2的表达式为:5y x =−+ ………………………………3分 当x=0时,y =5∴B (0,5) ………………………………4分 当l 1过点B(0,5)时,5=2×0+b ,解得:b=5 ………………………………5分 当l 1过点A (3,2)时,2=3×2+b ,解得:b=-4………………………………6分 ∵l 1与线段AB 有公共点∴-4≤b ≤5 ……………………………………………………8分 (3)b=5或2或-1或-4 ……………………………………………………10分 注:本题答对2个得1分,答对4个得2分,答对1个不得分,答对3个得1分 24.(本小题8分)证明:(1)∵DE ⊥EF ,MC ⊥EC ,∴∠E=∠ACM=90°. 由画弧过程可知:AB=AD 在Rt △DAE 和Rt △ABC 中 AD ABDE AC=⎧⎨=⎩, ∴Rt △DAE ≌Rt △ABC (HL ).…………4分(2)∵△DAE ≌△ABC , ∴∠DAE=∠ABC . ∵∠ACB=90°, ∴∠ABC+∠BAC=90°. 又∵∠DAE=∠ABC , ∴∠DAE +∠BAC=90°.∴∠DAB =180°-(∠DAE +∠BAC )=90°.∴AD ⊥AB . ……………………………………………………8分 25.(本小题12分)解:(1)设打包成件的帐篷有x 件,食品有y 件. 根据题意,得480240x y x y +=⎧⎨−=⎩. 解,得 360120x y =⎧⎨=⎩.∴打包成件的帐篷有360件,食品有120件. ………………………………3分 (2)设安排甲货车a 辆,则安排乙货车(8-a )辆.根据题意,得6030(8)3601530(8)120a a a a +−≥⎧⎨+−≥⎩. 解,得 48a ≤≤. ∵a 为整数,图10M A EDCBF∴a=4,5,6,7,8. 则8-a=4,3,2,1,0.∴共有5种租车方案:方案一:租用甲货车4辆,乙货车4辆;方案二:租用甲货车5辆,乙货车3辆;方案三:租用甲货车6辆,乙货车2辆;方案四:租用甲货车7辆,乙货车1辆;方案五:租用甲货车8辆,乙货车0辆. …………8分 (3)设运输费是W 元.则W=3 000a+2 700(8-a)=300a+21 600; 即W=300a+21 600. ∵300>0,∴由一次函数性质可知,W 随a 增大而增大. ∴当a=4时,W 取最小值.此时,8-a=4,W=300×4+21 600=22 800(元).∴应租用甲货车4辆,乙货车4辆可使运输费最少,最少运输费是22 800元.…12分 26.(本题12分)(1)点B 的坐标是(1,3),点D 的坐标是 (-3,1);……………4分 (2)解:点D 在直线BC 上. ……………5分 理由:连接BC由旋转性质可知:OB=OD ,∠AOC=90°,∠AOB=∠COD ,∠BAO=∠DCO . ∵AB ⊥OA , ∴∠BAO=90°.∴∠AOB+∠OBA=90°,∠DCO=90°. 又AE 垂直平分OB , ∴AO=AB . ∴∠AOB=∠OBA=180902︒−︒=45°. ∵∠AOC=90°,∴∠BOC=∠AOC -∠AOB=45°. ∴∠AOB=∠BOC . 又∠AOB=∠COD , ∴∠COD=∠BOC . 在△BOC 和△DOC 中,BO DO BOC COD CO CO =⎧⎪∠=∠⎨⎪=⎩,∴△BOC ≌△DOC (SAS ). ∴∠BOC=∠OCD=90°.∴∠BCD=∠BOC+∠OCD=180°.∴点D 在直线BC 上. ……………11分 (3)解:连接AD 交y 轴于点F .xFNMyA CO BDE图11∵OM=2,AM=1,∴A(2,1).由(1)知D(-3,1),∴AD⊥y轴.AD=2-(-3)=5.∴11551222AODS AD OF∆=⋅=⨯⨯=.……………14分。

三明四中2012-2013学年期中考八年级数学试卷(答案)

三明四中2012-2013学年期中考八年级数学试卷(答案)

三明四中2012-2013学年第二学期期中考试八年级数学模拟试卷姓名 班级 座号 成绩 一、选择题(每题3分,共30分) 1、下列不等式一定成立的是( B )A 、5a >4aB 、x +2<x +3C 、-a >-2aD 、aa24>2、如图,天平右盘中每个砝码的重量都是1g ,右图中显示出某药品A 重量的范围是( C )A 、大于2gB 、小于3gC 、大于2g 且小于3gD 、大于2g 或小于3g 3. 如果把分式ba ab +中的a 、b 都扩大2倍,那么分式的值一定( A )A 、是原来的2倍B 、是原来的4倍C 、是原来的21 D 、不变4、下列从左到右的变形,是因式分解的是( D )A 、()()9332-=-+a a aB 、()5152-+=-+x x x xC 、⎪⎭⎫ ⎝⎛+=+x x x x 112 D 、()22244+=++x x x 5、化简222a ba ab -+的结果为 ( B )A 、 b a -B 、a b a - C 、 a ba+ D 、 b - 6、、下列多项式能分解因式的是( D )A .y x -2B .12+xC .22y xy x ++D .442++x x7、完成某项工程,甲单独做需a 天,乙独做需b 天,甲乙两人合作完成这项工程的天数是 ( A )A 、ba ab + B 、ab ba + C 、2ba + D 、b a +18.若关于x 的方程1112-+=-+x m x x 产生增根,则m 是( D ) A 、-1 B 、-2 C 、1 D 、29. 把一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( B )A 、3B 、4C 、5D 、6 10. 如果不等式组 ⎩⎨⎧>-<+mx x x 145 的解集是x>2,则m 的取值范围是( C )A 、m ≥2B 、m=2C 、m ≤2D 、m <2 二、填空题(每空3分,共18分)11、不等式2x -1<3的非负整数解是 0,1 ;12、分解因式: =+-122a a _____(a-1)2__________.13、当a___≠-1__ 时,分式112+-a a 有意义;14、若3=xy ,则=-+yx yx -2 ;15、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 x< -1 .16、(2009年厦门市)已知2ab =.若3-≤b ≤1-,则a 的取值范围 是____-2≤a ≤-2/3________.(若b= -3时a= -2/3,当b= -1时a= -2 , ∴_-2≤a ≤-2/3__)三、计算题(共24分)17、解下列不等式或不等式组,并把它们的解集分别表示在数轴上:(每题4分,共8分) (1)312-x x ≥ (2)⎩⎨⎧-<+>145321x x x x +x ≥-2 无解18、分解因式(每题4分,共8分)(1)、3222y xy y x +- (2)、()()x y y y x x ---=x(x-y)2= (x-y)(x+y)19、先化简,再求值(4分) 解方程:(共4分)211122x x x -⎛⎫÷- ⎪++⎝⎭, 其中x =13;125652=-+-x x x =1-x x=-1 =2/3四、解答题(20、21各6分,22、23各8分,共28分)20、某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的45倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?(6分) (1)(600/1.25x ) +30 =600/x 解得:x=4(2)(x-4)*150+(x-5)*120≥420 x ≥621、计算下列各式:(6分) (1)2211-= 3/4 ;(2)=--)311)(211(221/2*3/2*2/3*4/3=1/2*4/3=2/3 ; (3)=---)411)(311)(211(222 5/8 ;你能根据所学知识找到计算上面算式的简便方法吗?请你利用你找到的简便方法计算下式:)411)(311)(211(222---…)1011)(911(22--…)11(2n-=1/2*3/2*2/3*4/3*……..(n-1)/n*(n+1)/n =1/2*(n+1)/n =(n+1)/2n22、某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C .设购买甲种原料x 千克. (1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y 元,求y 与x 的函数关系式,并说明购买甲种原料多少千克时,总费用最少?(8分)【答案】解:(1)由题意可知,需购买甲种原料x 千克,则购买乙种原料为(20-x ),根据题意,可得20480)20(400600⨯≥-+x x .解得8≥x .所以至少需要甲种原料8千克.(2)由表中可知,购买甲种原料所需的费用为9x ,购买乙种原料所需的费用为5(20-x ),则1004)20(59+=-+=x x x y (208≤≤x ).故可得y 为关于x 的一次函数,且随着x 的增大而增大,故可知当x =8时,y 最小,最小值为132,即x =8时,所需费用最少,最小费用为132元.23、【问题】先阅读下列文字,再解答下列问题:(8分)初中数学课本中有这样一段叙述:“要比较a 与b 的大小,可先求出a 与b 的差,再看这个差是正数、负数还是零。

江苏省如皋市2013-2014学年八年级上期中考试数学试卷及答案

江苏省如皋市2013-2014学年八年级上期中考试数学试卷及答案

江苏省如皋市2013-2014学年度第一学期期中考试八年级数学试卷一、选择题(本大题共10小题,每小题2分,共20分) 1.下列交通标志图案是轴对称图形的是A B C D2.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是A .AB =AC B. BD =CD C. ∠B =∠C D . ∠BDA =∠CDA 3.等腰三角形的两条边长分别为3、6,那么它的周长为A. 15B. 12C. 12或15D. 不能确定 4.下列计算正确的是A. 532x x x =+ B. 632x x x =⋅ C. 532)(x x = D. 235x x x =÷第2题图 第7题图 第8题图5.下面的多项式中,能因式分解的是A.n m +2B. 12+-m mC. n m -2D.122+-m m 6.已知a b +=3,ab =2,则22a b +的值为A .8B .7C .6D .57.如图,在长方形纸片ABCD 中,AB =2,BC =1,点E 、F 分别在AB 、CD 上,将纸片沿EF 折叠,使点A 、D 分别落在点A 1、D 1处,则阴影部分图形的周长为 A .3 B .4 C .5 D .6 8.如图,△ABC 中,∠A=30°,AB =AC ,以B 为圆心,BC 长为半径画弧,分别交AC 、AB 于D 、E 两点,连接BD 和DE .则∠BDE 的度数为 A .45 B. 52.5 C. 67.5 D. 75 9.如图,在△ABC 中,∠B =36°,∠C =72°,AD 平分∠BAC 交BC 于点D 。

下列结论中错误的是A .图中共有三个等腰三角形; B. 点D 在AB 的垂直平分线上;C .AC +CD =AB D. BD =2CD1第9题图 第10题图10.如图,BD 是△ABC 的外角∠ABP 的角平分线,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,则BE 的长为A. 2B. 1.5C. 1D. 0.5二、填空题(本大题共8小题,每小题3分,共24分.) 11.计算(-2)0= .12.点P (1,-2)关于x 轴对称的点的坐标为 . 13.因式分解:x 2+5x +6= .14.已知a +b =3,a -b =4,则a 2-b 2值为________.15.在△ABC 中,AB =AC ,AD 是BC 边上的中线,E 是AD 上的一点,若点E 到AB 的距离为2,则点E 到AC 的距离为 .第16题图 第17题图 第18题图16.如图,在△ABC 中,AB =2,BC =3.6,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 .17.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有 种.18.如图,已知∠AOB =15°,点M 在边OB 上,且OM =4,点N 和点P 分别是OM 和OA 上的一个动点,则PM +PN 的最小值为 .三、解答题(本大题共8小题,共56分。

2013-2014学年度阳新县实验中学八年级下期中考试数学试卷【新课标人教版】

2013-2014学年度阳新县实验中学八年级下期中考试数学试卷【新课标人教版】

绝密★启用前2013-2014学年度阳新实中期中考试八(下)数学试卷满分:120分;考试时间:120分钟;命题人:邓峰注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(每小题3分,共30分)1.下列二次根式是最简二次根式的是( ) A.21B.2.0C. 3D. 8 2.下列命题中是真命题的是( )A .两边相等的平行四边形是菱形B .一组对边平行一组对边相等的四边形是平行四边形C .两条对角线相等的平行四边形是矩形D .对角线互相垂直且相等的四边形是正方形 3.把 ) A . B .. . 4.已知a 、b 、c 是三角形的三边长,如果满足(a -9)2c 15-=0,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形5.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 6.菱形的周长为16,且有一个内角为60°,则此菱形的面积为( ) A. 43B. 83C. 103 D. 1237.如图1,在矩形ABCD 中,对角线BD AC 、相交于点60,=∠AOB O 5=AB ,则AD 的长是( ) A .25B .35C .5D .108.如图2,在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ) .A 、15°B 、17°C 、16°D 、32°9.如图3,菱形ABCD 的边长为4cm,∠ABC=600,且M 为BC 的中点,P 是对角线BD 上的一动点,则PM+PC 的最小值为( ).A .4 cmB cmC .D .10.如图4所示,在正方形ABCD 的对角线上取点E ,使得∠BAE=︒15,连结AE ,CE .延长CE 到F ,连结BF ,使得BF = BC .若AB=1,则下列结论:①AE=CE ; ②F 到BC 的距离为22;③BE+EC=EF ;④8241+=∆A E D S ;⑤123=∆EBF S .其中正确的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.当x 满足 时,xx+1在实数范围内有意义. 12.如图5,数轴上A B ,两点表示的数分别为1-,点B 到A 的距离与点C 到A 的距离相等,则点C 所表示的数为___________A B C N DM D A D CPB MA FAEBDC图2 图3 图4图5第3页共8页◎第4页共8页13.如图6所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D、E、F分别是AB、BC、CA的中点,则△DEF的面积是 cm2.14.如图7,平行四边形ABCD中,A(3,2),B(5,-3)则点C的坐标为15.如图8,△ABC中,AB=10cm,AC=8cm,点E为是BC的中点,若AD平分∠BAC,C D⊥AD,线段DE的长为____________.16.按如图9方式作正方形和等腰直角三角形.若第一个正方形的边长AB=1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,…,则第n个正方形与第n个等腰直角三角形的面积和S n=.三、计算与化简题(第17题每小题5分,第18题6分,共16分)17.计算:⑴⎛÷⎝2+3a18.(本题6分)实数a、b、c在数轴上的位置如图所示,化简:四、解答题(共57分)19.(本题7分)已知,3232,3232+-=-+=yx求值:22232yxyx+-.20.(本题8分)如图10所示的一块地,已知mAD4=,mCD3=, AD⊥DC,mAB13=,mBC12=,求这块地的面积.21.(本题8分)如图11,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足AADECBAF EDBC图6图8图9图102a c b++-х分别为E ,F .(1)求证:△ABE ≌△CDF ;(2)若AC 与BD 交于点O ,求证:AO=CO .22.(本题6令人赏心悦目,它给我们以协调,匀称的美感.现将小明同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图12所示): 第一步:作一个正方形ABCD ;第二步:分别取AD ,BC 的中点M ,N ,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ; 第四步:过E 作EF ⊥AD ,交AD 的延长线于F 。

2013-2014学年辽宁省丹东市第七中学八年级下学期期中考试数学试卷(解析版)

2013-2014学年辽宁省丹东市第七中学八年级下学期期中考试数学试卷(解析版)

………装……___________姓名:___………装……绝密★启用前2013-2014学年辽宁省丹东市第七中学八年级下学期期中考试数学试卷(解析版)题号 一 二 三 得分注意事项:1.本试卷共XX 页,三个大题,满分139分,考试时间为1分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、单选题(共45分)评卷人 得分1.以下各组数为三角形的三条边长,其中能作成直角三角形的是 ( )(5分) A. 2,3,4 B. 4,5,6 C. 1,,D. 2, , 42.把x2-y2-2y -1分解因式结果正确的是( )。

(5分) A. (x +y +1)(x -y -1) B. (x +y -1)(x -y -1) C. (x +y -1)(x +y +1) D. (x -y +1)(x +y +1)试卷第2页,总11页外…………○…………装……订…………○…………线…………○……※※请※※不※※要※※内※※答※※题※※内…………○…………装……订…………○…………线…………○……3.一次函数的图象如图所示,当-3<<3时,的取值范围是( )(5分)A. >4B. 0<<2C. 0<<4D. 2<<44.下列各式中能用平方差公式分解的是( )(5分) A. x2+4y2 B. -x2-4y2 C. x2-2y2+1 D. x2-4y25.使代数式的值不小于代数式的值,则应为( )(5分)A. >17B. ≥17C. <17D. ≥276.下列变形,是因式分解的是( )(5分) A. x(x-1)=x2-x B. x2-x+1 = x(x-1)+1 C. x2-x =" x(x-1)"……线…………○……线…………○ D. 2a(b+c)=2ab+2ac7.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB,过O 作DE∥BC,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为 ( ) (5分)A. 5B. 6C. 7D. 88.已知x >y ,下列不等式一定成立的是( )(5分) A. ax >ay B. 3x <3y C. -2x <-2y D. a2x >a2y9.如果不等式(m -2)x>2-m 的解集是x<-1, 则有( )(5分) A. m>2 B. m<2 C. m=2 D. m≠2二、填空题(共45分)评卷人 得分10.在⊿ABC 中,BC 的垂直平分线与AB 边所在的直线相交所得的锐角等于60°,则∠B 的度数为_____(5分)试卷第4页,总11页…外……………………………订…………○…………线…………○……※※在※※装※线※※内※※答※※题※※…内……………………………订…………○…………线…………○……11.已知方程组的解满足x +y <0,则m 的取值范围为_____(5分)12.已知关于的不等式组的整数解共有3个,则的取值范围_____________(5分) 13.已知点A(2- ,+1)在第四象限,则的取值范围是______(5分)14.若是一个完全平方式,则k=______(5分)15..如果不等式组的解集是 , 那么的值为______(5分)16.下列图形:①线段;②等边三角形;③平行四边形;④等腰梯形;⑤长方形;⑥圆。

广西壮族自治区百色市2023-2024学年八年级下学期期中数学试题

广西壮族自治区百色市2023-2024学年八年级下学期期中数学试题一、单选题1.下列二次根式中,是最简二次根式的是( )A B C D2 )A .7±B .7C .7-D .143.若方程()211a x x -+=是关于x 的一元二次方程,则a 的取值范围是( )A .1a ≠B .0a ≠C .0a ≥且1a ≠D .1a >4 )A .10B .C .D .5.一元二次方程()210x +=的根为( )A .121x x ==-B .121x x ==C .11x =,21x =-D .120x x == 6.下列计算正确的是( )A 13=±BC .2=D 2÷= 7.用配方法解方程2610x x --=时,配方结果正确的是( )A .()239x -=B .()2310x -=C .()238x +=D .()238x -=8.已知实数x ,y 20y -=,则x y +的值为( )A .3B .3-C .7D .7-9.习近平总书记高度重视粮食问题,他强调:“中国人的饭碗任何时候都要牢牢端在自己手上.我们的饭碗应该主要装中国粮,”他提醒我们:“保障国家粮食安全是一个永恒的课题,任何时候这根弦都不能松.”因此,某农科实验基地,大力开展种子实验,让农民能得到高产、易发芽的种子.该农科实验基地两年前有100种种子,经过两年不断的努力,现在有144种种子,若培育的种子平均每年的增长率为x ,则根据题意列出的符合题意的方程是( )A .()14412100x -=B .()10012144x +=C .()21441100x -=D .()21001144x += 10.一元二次方程2350x x +-=的两根为1x ,2x ,则12x x +的值为( )A .3B .3-C .5D .5-11.如图,数轴上A 、B 两点所表示的数是-C 是线段AB 的中点,则点C 所表示的数是( )A .-B .C .D .-12.若关于x 的方程()23210m x x -++=有实数根,则m 的取值范围是( )A .4m <B .4m ≥C .4m ≤且3m ≠D .4m ≤二、填空题13x 的取值范围是.14(填“>”“<”或“=”) 15.关于x 的一元二次方程231x x =+,化为一般形式是.16.若关于x 的一元二次方程220x ax ++=的一个根为1-,则=a .17.若2a =247a a -+的值为.18.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-,则小球从抛出到落地所用的时间是 s .三、解答题1920.已知关于x 的一元二次方程220x mx +-=.请判断方程根的情况.21.解方程:(1)217x x +=;(2)2450x x +-=.22的长方形空地.解答下面的问题:(1)求该空地的周长(结果化为最简二次根式);(2)现要在该空地上种植草坪进行绿化,若种植草坪的造价为20元/2m,求绿化该空地所需的总费用.23.小涵与小彤两位同学解方程()()2-=-的过程如下:x x x366(1)小涵和小彤的解法都不正确,小涵第一次出错在第_____步,小彤第一次出错在第_____步;(2)请你给出正确的解法,并结合你的经验提出一条解题注意事项.24.已知2b=a=2(1)求22-的值;a b(2)25.【综合与实践】摆钟的“滴答”声提醒着我们时光易逝,我们要珍惜当下,抓住每一秒,努力前行.某学习兴趣小组通过观察实验室的摆钟发现:摆钟的摆球的摆动快慢与秒针的走动,摆钟的“滴答”声,摆长都有关系.于是他们通过查阅资料知道:摆钟的摆球来回摆动一次的时间叫做一个T=T表示周期(单位:s),l表示摆线长(单位:m),周期.它的计算公式是:29.8m g =/2s ,π是圆周率.(π取3.14,摆线长精确到0.01米,周期精确到0.01s ,参考数据:1.73≈2.24)【思考填空】(1)通过上面的计算公式我们知道了:摆球的快慢只与摆线的长短有关,摆线越长,周期越______(填“长”或“短”),摆得越______;(填“快”或“慢”)【实践与计算】(2)若一个摆钟的摆线长为0.49m ,它每摆动一个周期发出一次“滴答”声,学习兴趣小组的2名同学数该摆钟1分钟发出“滴答”声的次数,其余成员计算摆钟1分钟发出“滴答”声次数,再对照是否一致.请你也计算该摆钟1分钟发出多少次“滴答”声;(3)对于一个确定的摆钟,其内部的机械结构决定了它每来回摆动一次记录的时间是一定的,如一个准确的摆钟的摆球的摆动周期为1s ,它每摆动一个周期发出一次“滴答”声,秒针就会走1格,显示的时间1s ,求该摆钟的摆线长.26.【阅读材料】一般地,我们把按一定顺序排列的一列数称为数列.如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,它通常用字母d 表示,我们可以用公式()12n n S na d -=+⨯来计算等差数列的和,公式中的n 表示数的个数,a 表示第一个数的值.例如:3,5,7,9,11,13,15,17,19,21.就是一个等差数列,公差2d =,10n =,3a =,所以()10101357911131517192110321202-+++++++++=⨯+⨯=. 用上面的知识解决下列问题【完成任务】(1)等差数列:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43.则=a _____,d =_____,S =_____;【能力提升】(2)有一等差数列的和为450,用式子表示为:2610141822450p ++++++⋅⋅⋅+=,求这个数列中数的个数n ;【延伸拓展】(3)某县决定对坡荒地进行退耕还林.从2011年起在坡荒地上植树造林,以后每年植树后坡荒地的实际面积按一定规律减少,下表为2011、2012、2013、2014四年的坡荒地面积的统计数据.问到哪一年,可以将全县所有坡荒地全部种上树木.。

人教版江苏省泰州市泰兴市八年级下学期期中数学试卷【解析版】

江苏省泰州市泰兴市洋思中学八年级(下)期中数学试卷一、选择题(每题3分,共18分)1.菱形具有而矩形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.以下问题,不适合用普查的是( )A.了解全班同学每周体育锻炼的时间B.为了了解“嫦娥二号”卫星零部件的状况C.学校招聘教师,对应聘人员面试D.为了解小强的血型进行抽血化验3.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )A.B.C.D.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值( )A.不变B.扩大为原来的5倍C.扩大为原来的10倍[来源:学科网]D.缩小为原来的5.在平行四边形ABCD中,AC=4cm,BD=6cm,对角线AC,BD相交于点O,则AB的取值范围是( )A.2cm<AB<10cmB.1cm<AB<5cmC.4cm<AB<6cm[来源:]D.2cm<AB<5cm6.如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A 向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有( )次平行于AB.A.1B.2C.3D.4二、填空题(每题3分,共30分)7.分式有意义的条件是__________.8.一组数据1,2,3,1,2中,“2”出现的频率是__________.9.某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是__________,样本是__________.10.已知菱形的两条对角线长分别为3cm,4cm,则它的面积是__________cm2.11.化简:=__________.12.一个口袋中装有4个白色球,1个红色球,5个黄色球,搅匀后随机从袋中摸出1个球是黑色球的概率是__________.13.如果△ABC的三条中位线分别为3cm,4cm,5cm,那么△ABC的面积为__________cm2.[来源:学科网]14.如图把一个矩形的纸片对折两次(折痕互相垂直且交点为O),然后剪下一个角,为了得到一个锐角为50°的菱形,剪口与折痕所成角α的度数为__________.15.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=__________.16.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:(1)△EPF是等腰直角三角形;(2)S四边形AEPF=S△ABC;(3)2EF≥BC;(4)BE2+CF2=EF2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有__________(填序号)三、解答题:(共102分)17.计算(1)+(2).18.已知=3,求分式的值.(提示:分式的分子与分母同除以a,b).[来源:学科网]19.先化简,再求值:÷(﹣x﹣2),请选一个你喜欢的数代入求值.20.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.[来源:学+科+网]21.某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)该县共调查了__________名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若该县2013年初三毕业生共有5×103人,请估计该县今年的初三毕业生中读普通高中的学生人数.22.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:摸球的次数s 150 200 500 900 1000 1200摸到白球的频数n 51 64 156 275 303 361 摸到白球的频率0.34 0.32 0.312 0.306 0303 0.301(1)请估计:当次数s很大时,摸到白球的频率将会接近__________;假如你去摸一次,你摸到红球的概率是__________(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.23.如图的正方形格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1.若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为__________.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,﹣2),则旋转中心坐标为__________.24.如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,且EG、FH交于点O.(1)求证:四边形EFGH是菱形;(2)若AC=4,求EG2+FH2的值.25.如图,平面直角坐标系中,矩形OABC的两条邻边分别在x轴、y轴上,对角线AC=4,边OA=4.(1)求C点的坐标;(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求直线DE的函数关系式;(3)若点M是y轴上一点,点N是坐标平面内一点,问能否找到合适的点M和点N使以点M、A、D、N为顶点的四边形是菱形?如果能找到,请直接写出点M的坐标;如果找不到,请说明原因.26.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E从D向C,点F从C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置和数量关系,并说明理由;(2)如图②和图③,当E,F分别移动到边DC,CB的延长线及反向延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“成立”或“不成立”,不需证明)(3)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,因此CP的大小也在变化.如果AD=2,试求出线段CP的最小值.[来源:]2014-2015学年江苏省泰州市泰兴市洋思中学八年级(下)期中数学试卷一、选择题(每题3分,共18分)1.菱形具有而矩形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补考点:矩形的性质;菱形的性质.专题:推理填空题.分析:根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.解答:解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.点评:此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.2.以下问题,不适合用普查的是( )A.了解全班同学每周体育锻炼的时间B.为了了解“嫦娥二号”卫星零部件的状况C.学校招聘教师,对应聘人员面试D.为了解小强的血型进行抽血化验考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、人数较多,不适合普查,故本选项正确.B、必须普查,故本选项错误;C、必须普查,故本选项错误;D、必须普查,故本选项错误;故选A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )A.B.[来源:学.科.网]C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故选项错误;B、不是轴对称图形,不是中心对称图形.故选项错误;C、不是轴对称图形,也不是中心对称图形.故选项错误;D、是轴对称图形,也是中心对称图形.故选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值( )A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为零的数或整式,分式的值不变,可得答案.解答:解:把中的x与y都扩大为原来的10倍,那么这个代数式的值不变.故选:A.点评:本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或整式,分式的值不变.5.在平行四边形ABCD中,AC=4cm,BD=6cm,对角线AC,BD相交于点O,则AB的取值范围是( )A.2cm<AB<10cmB.1cm<AB<5cmC.4cm<AB<6cmD.2cm<AB<5cm考点:平行四边形的性质;三角形三边关系.分析:由在平行四边形ABCD中,AC=4cm,BD=6cm,根据平四边形的性质,可求得OA 与OB的长,再由三角形的三边关系,求得答案.解答:解:∵在平行四边形ABCD中,AC=4cm,BD=6cm,∴OA=AC=2cm,OB=BD=3cm,∴边AB的长的取范围是:1cm<AB<5cm.故选B.点评:此题考查了平行四边形的性质以及三角形的三边关系.注意平行四边形的对角线互相平分.6.如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A 向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有( )次平行于AB.A.1B.2C.3D.4考点:一元一次方程的应用.专题:几何动点问题;压轴题.分析:易得两点运动的时间为12s,PQ∥AB,那么四边形ABQP是平行四边形,则AP=BQ,列式可求得一次平行,算出Q在BC上往返运动的次数可得平行的次数.解答:解:∵矩形ABCD,AD=12cm,∴AD=BC=12cm,∵PQ∥AB,AP∥BQ,∴四边形ABQP是平行四边形,∴AP=BQ,∴Q走完BC一次就可以得到一次平行,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,∴线段PQ有4次平行于AB,故选D.点评:解决本题的关键是理解平行的次数就是Q在BC上往返运动的次数.二、填空题(每题3分,共30分)7.分式有意义的条件是x≠1.考点:分式有意义的条件.专题:存在型.分析:根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵分式有意义,∴x﹣1≠0,即x≠1.故答案为:x≠1.点评:本题考查的是分式有意义的条件,即分式的分母不等于零.8.一组数据1,2,3,1,2中,“2”出现的频率是0.4.考点:频数与频率.分析:根据频率=,求解即可.解答:解:“2”出现的频数是2,数据总数为5,则,“2”出现的频率=2÷5=0.4.故答案为:0.4.点评:本题考查了频数与频率的知识,注意掌握频率=.9.某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是某中学初二学生的视力情况的全体,样本是25名学生的视力情况.考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,样本是总体中所抽取的一部分个体.我们在区分总体、样本这两个概念时,首先找出考查的对象.从而找出总体.再根据被收集数据的这一部分对象找出样本.解答:解:本题考察的对象是某中学初二学生的视力情况,故总体是某中学初二学生的视力情况的全体,样本是25名学生的视力情况.点评:解题要分清具体问题中的总体与样本,关键是明确考查的对象.总体与样本的考查对象是相同的,所不同的是范围的大小.10.已知菱形的两条对角线长分别为3cm,4cm,则它的面积是6cm2.考点:菱形的性质.分析:根据菱形的面积等于两对角线乘积的一半求得其面积即可.解答:解:由已知得,菱形的面积为3×4÷2=6cm2.故答案为6cm2.点评:此题主要考查菱形的性质,难度一般,注意掌握菱形面积等于两条对角线的积的一半.11.化简:=1.考点:分式的加减法.专题:计算题.分析:先将第二项变形,使之分母与第一项分母相同,然后再进行计算.解答:解:原式=.故答案为1.点评:本题考查了分式的加减运算,要注意将结果化为最简分式.12.一个口袋中装有4个白色球,1个红色球,5个黄色球,搅匀后随机从袋中摸出1个球是黑色球的概率是0.考点:概率公式.分析:由一个口袋中装有4个白色球,1个红色球,5个黄色球,直接利用概率公式求解即可求得答案.解答:解:∵一个口袋中装有4个白色球,1个红色球,5个黄色球,∴搅匀后随机从袋中摸出1个球是黑色球的概率是:0.故答案为:0.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.13.如果△ABC的三条中位线分别为3cm,4cm,5cm,那么△ABC的面积为24cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:先根据三角形中位线定理分别求出△ABC的各边的长,再利用勾股定理的逆定理推导出△ABC是直角三角形,然后代入三角形面积公式即可直接得出答案.解答:解:∵△ABC的三条中位线长分别为3cm,4cm,5cm,∴△ABC的各边分别是6cm,8cm,10cm,∵62+82=102,∴△ABC是直角三角形,∴S△ABC=×6×8=24cm2.故答案为:24.点评:此题主要考查学生对勾股定理的逆定理和三角形中位线定理的理解和掌握,此题的突破点是利用勾股定理的逆定理推导出△ABC是直角三角形,此题难度不大,属于基础题.14.如图把一个矩形的纸片对折两次(折痕互相垂直且交点为O),然后剪下一个角,为了得到一个锐角为50°的菱形,剪口与折痕所成角α的度数为25°或50°.考点:剪纸问题.分析:根据菱形对角线平分每一组对角可得两种情况:①若∠ABC=50°,②若∠BAD=50°分别计算.解答:解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,①若∠ABC=50°,∴∠ABD=25°,∴α=25°,②若∠BAD=50°,则∠ABC=100°,∴∠ABD=50°,∴剪口与折痕所成的角a的度数应为25°或50°.故答案为:25°或50°.点评:此题主要考查了剪纸问题,关键是掌握菱形对角线平分每一组对角.15.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=5.考点:轴对称-最短路线问题;菱形的性质.专题:压轴题.分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.解答:解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.点评:本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.16.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:(1)△EPF是等腰直角三角形;(2)S四边形AEPF=S△ABC;(3)2EF≥BC;(4)BE2+CF2=EF2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有(1)(2)(3)(4)(填序号)考点:全等三角形的判定与性质;等腰直角三角形.分析:通过证明△AFP≌△BEP就可以得出AF=BE,EP=PF,得出AE=CF,得出△EPF是等腰直角三角形,由S四边形AEPF=S△APE+S△APF.就可以得出S四边形AEPF=S△CPF+S△APF,就可以得出结论,由AF=BE,AE=CF得出EF2=BE2+CF2;求得当EP⊥AB时,EP取最小值,此时EP=AB,则EF最小值=AB=BC,进一步得出结论.解答:解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠PAF=45°,BP=AP,∵∠APE+∠BPE=90°,∠APE+∠APF=90°,∴∠BPE=∠APF.在△BPE和△APF中,,∴△AFP≌△BEP(ASA),∴BE=AF,PE=PF,故(1)△EPF是等腰直角三角形正确;∵EPF=90°,在Rt△EPF中,由勾股定理,得EF2=PE2+PF2,∴EF2=BE2+CF2.故(4)正确;∵S四边形AEPF=S△APE+S△APF.∴S四边形AEPF=S△CPF+S△APF=S△FAE=S△ABC.故(2)正确.由(1)知,△EPF是等腰直角三角形,则EF=EP.当EP⊥AB时,EP取最小值,此时EP=AB,则EF最小值=AB=BC,则2EF≥BC.故(3)正确;故答案为:(1)(2)(3)(4).点评:本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,中位线的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.三、解答题:(共102分)17.计算(1)+(2).考点:分式的混合运算.专题:计算题.分析:(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式约分即可得到结果.解答:解:(1)原式===;(2)原式==﹣.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.[来源:学.科.网Z.X.X.K]18.已知=3,求分式的值.(提示:分式的分子与分母同除以a,b).考点:分式的基本性质.专题:计算题.分析:根据分式的基本性质,分式的分子分母都除以ab,分式的值不变,再把换成3计算即可.解答:解:分式的分子分母都除以ab,得==,∵=3,∴=﹣3,所以原式==.点评:本题利用分式的基本性质,分子分母都除以ab,巧妙运用已知条件是解本题的关键,也是解本题的突破口.19.先化简,再求值:÷(﹣x﹣2),请选一个你喜欢的数代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.解答:解:原式=÷=•=﹣,当x=1时,原式=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.解答:证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,[来源:学_科_网]在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.点评:此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.21.某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)该县共调查了100名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若该县2013年初三毕业生共有5×103人,请估计该县今年的初三毕业生中读普通高中的学生人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用类别A的人数除以类别A所占的百分比即可求出总数,(2)用总数乘以类别为B的人数所占的百分比,用类别为C的人数除以总数,再画图即可,(3)用该县2013年初三毕业生总数乘以读普通高中的学生所占的百分比即可.解答:解;(1)该县共调查了40÷40%=100名初中毕业生;故答案为:100;(2)类别为B的人数是100×30%=30(人),类别为C的人数所占的百分比是×100%=25%,画图如下;(3)若该县2013年初三毕业生共有5×103人,则该县今年的初三毕业生中读普通高中的学生人数是5×103×40%=2000(人),答;该县今年的初三毕业生中读普通高中的学生人数是2000人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:摸球的次数s 150 200 500 900 1000 1200摸到白球的频数n 51 64 156 275 303 361 摸到白球的频率0.34 0.32 0.312 0.306 0303 0.301(1)请估计:当次数s很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是0.7(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.考点:利用频率估计概率.专题:应用题.分析:(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可;(3)言之有理即可.解答:解:(1)0.3,1﹣0.3=0.7;(2)估算口袋中红球有x只,由题意得0.7=,解之得x=70,∴估计口袋中红球有70只;(3)用概率可以估计未知物体的数目.(或者试验次数很大时事件发生的频率作为概率的近似值)(只要能从概率方面说的合理即可)点评:考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.23.如图的正方形格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1.若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为(a+1,﹣b).(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,﹣2),则旋转中心坐标为(0,2).考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于x轴对称并向右平移1个单位后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据轴对称和平移的性质的性质写出点P的对应点的坐标;(2)根据网格结构找出点A、B、C关于原点O成中心对称的点A2、B2、C2的位置,然后顺次连接即可;(3)根据网格结构找出点A3、B3、C3的位置,再根据旋转的性质找出旋转中心并写出坐标.解答:解:(1)△A1B1C1如图所示;P(a+1,﹣b);(2)△A2B2C2如图所示;(3)旋转中心(0,2).故答案为:(a+1,﹣b);(0,2).点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,且EG、FH交于点O.(1)求证:四边形EFGH是菱形;(2)若AC=4,求EG2+FH2的值.考点:中点四边形.分析:(1)根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形;(2)根据菱形的性质得到EG⊥HF,且EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得到OE2+OH2=EH2=4,再根据等式的性质,在等式的两边同时乘以4,根据4=22,把等式进行变形,并把EG=2OE,FH=2OH代入变形后的等式中,即可求出EG2+FH2的值.解答:(1)证明:∵E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,又∵AC=BD,∴EH=FG=EF=HG,∴四边形EFGH是菱形;(2)解:由(1)知,四边形EFGH是菱形,则EG⊥FH,EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=4,等式两边同时乘以4得:4OE2+4OH2=4×4=16,∴(2OE)2+(2OH)2=16,即EG2+FH2=16.点评:此题主要考查了三角形中位线定理和菱形的判定方法,题目比较典型,又有综合性,难度不大.25.如图,平面直角坐标系中,矩形OABC的两条邻边分别在x轴、y轴上,对角线AC=4,边OA=4.(1)求C点的坐标;(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求直线DE的函数关系式;(3)若点M是y轴上一点,点N是坐标平面内一点,问能否找到合适的点M和点N使以点M、A、D、N为顶点的四边形是菱形?如果能找到,请直接写出点M的坐标;如果找不到,请说明原因.考点:一次函数综合题.分析:(1)由四边形AOCB为矩形,得到∠AOC为直角,在直角三角形AOC中,利用勾股定理求出OC的长,即可确定出C的坐标;(2)根据矩形OABC沿直线DE对折使点C落在点A处,所以DE、AC互相垂直平分,得到AD=CD=AE=CE,设OD=x,则AD=CD=8﹣x,利用勾股定理在Rt△AOD中:AD2=OA2+OD2,即(8﹣x)2=x2+16,解得:x=3,从而确定D(3,0),E(5,4),利用待定系数法求直线DE的解析式,即可解答;(3)设M(0,m),根据勾股定理可得AD==5,分两种情况考虑:①当AD是菱形的一条边是,②当AD是菱形的对角线时,求出点M的坐标即可.解答:解:(1)∵AC=4,边OA=4.∴OC==8,∴C(8,0).(2)如图1所示,连接AD,CE,。

辽宁省凌海市石山初级中学2013-2014学年下学期初中八年级期中考试数学试卷

辽宁省凌海市石山初级中学2013-2014学年下学期初中八年级期中考试数学试卷 有答案满分:100分,考试时间:90分钟一.选择题(每小题2,分共16分) 1.若a >b ,则下列式子正确的是 ( ) A. —4a >—4bB.b a 2121C. a -4>b -4D. 4-a >4-b2.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个 B .3个 C.2个 D.1个3.已知函数y =(m +2)x -2,要使函数值y 随x 的增大而增大,则m 的取值范围是( )A.m ≥-2B.m >-2C.m ≤-2D.m <-24.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A . △ABC 的三条中线的交点B . △ABC 三条角平分线的交点 C . △ABC 三条高所在直线的交点D . △ABC 三边的中垂线的交点5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).A 、a <0B 、a >-1C 、a <-1D 、a <16.下列从左到右的变形:(1)15x 2y =3x ·5xy ; ( 2)(a +b )(a -b )=a 2-b 2; (3)a 2-2a +1=(a -1)2; ( 4)x 2+3x +1=x (x +3+x1) 其中是因式分解的个数是 ( )A.0个B.1个C.2个D.3个7. 如图∠BOP=∠AOP=15°,PC ∥OB ,PD ⊥PB 于D ,PC=2,则PD 的长度为( )A .4B .3C .2D .18.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=600,则∠EFD 的度数为( )A 、150B 、100C 、200D 、250二、填空题(每小题2分,共16分)9、a 的3倍与b 的2倍的差不大于5,用不等式表示为 . 10、不等式2)2(2-≤-x x 的非负整数解的个数为 .11、等腰三角形的一边长为4cm ,另一边长为9cm ,则它的周长为__________。

2013-2014学年八年级(下)期中数学试卷参考答案与试题解析

2013-2014学年八年级(下)期中数学试卷参考答案与试题解析一、精心选一选.(每小题给出的4个选项中只有一个符合题意,请将答案填入答案卡)1.(3分)代数式中,分式有()解:分式有,+b2.(3分)使分式有意义的x的值是()B.;B.(=+,此选项错误;=﹣4.(3分)(2010•桂林)若反比例函数的图象经过点(﹣3,2),则k的值为()5.(3分)(2010•宁德)反比例函数y=(x>0)的图象如图所示,随着x值的增大,y值(),当6.(3分)已知反比例函数,下列结论不正确的是()的图象上,故本选项正确;y=y=BC===.,,2 ))9.(3分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()AB===10AE=BE=×10.(3分)(2005•长沙)已知长方形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为图中B.,y=二、细心填一填(本大题共5个小题,共15分.请将正确答案填写在相应的位置)11.(3分)(2013•吉安模拟)化简的结果是a+b.12.(3分)(2010•温州)当x=5时,分式的值等于2.解:由题意得13.(3分)(2010•长沙)已知反比例函数的图象如图,则m的取值范围是m<1.,当14.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=12,则S3=16.15.(3分)观察给定的分式…猜想并探究规律,那么第7个分式是,第n个分式是(﹣1)n﹣1.•个分式为三、专心解一解.(本大题共10个小题,共55分..请认真读题,冷静思考.解答题应写出文字说明、理由过程或演算步骤.)16.(6分)(2012•湛江模拟)计算:+2﹣1.=3+﹣17.(5分)计算:(3x2yz﹣1)2•(2x﹣1y﹣2)3(结果写成含正整数指数幂的形式).18.(6分)先化简再求值:(﹣)÷+2x,其中x=﹣2.•+2x19.(4分)三角形的三边长分别为3,4,5,求这个三角形的面积.×20.(5分)已知一个反比例函数的图象经过点(2,﹣6).(1)求这个函数的解析式;(2)当y=﹣4时,求自变量x的值.y=,;21.(5分)我国是一个水资源贫乏的国家,节约用水,人人有责.为提高水资源的利用率,某住宅小区安装了循环用水装置,现在每天比原来少用水10吨.经测算,原来400吨水的使用时间现在只需240吨水就可以了,求这个小区现在每天用水多少吨?=,22.(6分)已知:如图,AB=3,AC=4,AB⊥AC,BD=12,CD=13.(1)求BC的长度;(2)线段BC与线段BD的位置关系是什么?说明理由.BC=23.(6分)如图,长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,求AE的长.24.(5分)在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.AB BCAB CD=25.(7分)如图,已知反比例函数的图象经过点C(﹣3,8),一次函数的图象过点C且与x轴、y轴分别交于点A、B,若OA=3,且AB=BC.(1)求反比例函数的解析式;(2)求AC和OB的长.)根据题意,反比例函数的图象经过点(∴反比例函数的解析式(.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014学年八年级下学期期中考试数学试卷
一、精心选一选(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填入答题表中,每小题3分,共27分) 1、在(3)5,,,2a b x x x a b x a b π-+++-,9 x +y
10 中,是分式的有( ) A 、1个 B 、2个 C 、3个 D 、4个
2、下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )
A 、a=1.5,b=2, c=3
B 、a=7, b=24, c=25
C 、a=6, b=8, c=10
D 、a=3, b=4, c=5
3、分式
x
x 1-的值为0,则x 的值为( ) A 、1-=x B 、0=x C 、1=x D 、0≠x
4、计算⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-⋅2438234
2y x y x y x 的结果是( ) A 、x 3- B 、x 3 C 、x 12- D 、x 12
5、若分式方程4
24-+=-x a x x 有增根,则a 的值为( ) A 、4 B 、2 C 、1 D 、0
6、 下列命题的逆命题不成立...
的是( ) A 、同旁内角互补,两直线平行; B 、对顶角相等;
C 、全等三角形的对应边相等;
D 、 直角三角形两直角边的平方和等于斜边的平方.
7、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
8、已知x 、y 为正数,且│x-4│+(y-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )
A 、5
B 、25
C 、7
D 、15
9、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数1y x
=
的图象上,则下列结论中正确的是( )
A 、123y y y >>
B 、213y y y >>
C 、312y y y >>
D 、321y y y >>
二.填空题(每小题3分,共39分)
10、计算: 16-= 。

11、用科学记数法表示: 0.00002006= 。

12、当x 时,分式
x -13有意义。

13、如果函数2-=k kx
y 是反比例函数,那么k = ; 14、计算:a
b b b a a -+-= . 15、当x 为 时,分式2
122++-x x 的值为正数。

16、如果点(2,3)和(-3,a )都在反比例函数x
k y =的图象上,则a = 。

17、在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=_______。

18、如下图,已知OA =OB ,那么数轴上点A 所表示的数是____________。

19、已知311=-x y ,则分式y
xy x y xy x ---+2232的值为 。

20、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
……
第n 个图案中有白色地面砖_____________块;
21、如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。

22、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

三、解答题 (共67分))
21、计算:(每题4分,共16分)
(1)4
22-a a +a -21 . (2))()()(32
22
a b a b b a -÷-⋅-.
(4
)先化简再求值:2211(
),121x x x x x x x +-÷+--+其中。

22.(本题5分)解方程:223-x +x
-11 =3.
23、(6分)A 、B 两种机器人都被用来搬运化工材料,A 型机器人比B 型机器人每小时多搬运
30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?
24、(6分)如图,在Rt △ABC 中,∠BAC=90o ,点D 在AC 边上,且△ABD 是等边三角形,若AB=2,求△ABC 的周长。

(结果保留根号)
2009011(1)()3
--+-+(3)
25、(6分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A 、
李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km .
(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置P ;
(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最
节省的铺设水管的费用为多少元?
26、(9分)如图, 已知反比例函数y =x k
的图象与一次函数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点。

(1)求这两个函数的解析式;
(2)求△MON 的面积;
(3) 根椐函数图象直接写出一次函数的值大于反比例函数的值的x 的取值范围。

27、(本题6分)如图,等腰梯形ABCD 放置在平面直角坐标系中,已知A (-2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C 。

(1)求点C 的坐标和反比例函数的解析式;
(2)将等腰梯形ABCD 向上平移2个单位,问点B 是否落在双曲线上?
A 河边。

相关文档
最新文档