(完整版)有关线段的动点问题

合集下载

七年级--线段的动点问题(难点强化)含答案

七年级--线段的动点问题(难点强化)含答案

七年级—线段的动点问题(含答案)一.解答题(共40小题)1.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差,比如B﹣C为﹣4﹣0=﹣4.A﹣B B﹣C D﹣C E﹣D F﹣E10﹣4﹣1x2(1)在数轴上表示出A,D两点;(2)当点A与点F的距离为3时,求x的值;(3)当点M以每秒1个单位长度的速度从点B出发向左运动时,同时点N从点A出发,以每秒3个单位长度的速度向点C运动,到达点C后立即以同样的速度反方向运动,那么出发秒钟时,点D 到点M,点N的距离相等(直接写出答案).2.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B 之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是;点C表示的数是;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.3.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.4.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?5.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由6.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.7.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?请直接写出你的答案.(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.8.如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=cm.②求线段CD的长度.(2)①点B沿点A→D运动时,AB=cm;②点B沿点D→A运动时,AB=cm.(用含t的代数式表示AB的长)(3)在运动过程中,若AB中点为E,则EC的长是否变化,若不变,求出EC的长;若发生变化,请说明理由.9.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.10.已知线段AB=a,MN=b(a,b为常数,且a>2b),线段MN在直线AB上运动(点B、M在点A的右侧.点N在点M的右侧).点P是线段AB的中点,点Q是线段MN的中点.(1)如图1,当点N与点B重合时,求线段PQ的长度(用含a,b的代数式表示);(2)如图2,当线段MN运动到点B、M重合时,求线段AN、PQ之间的数量关系式;(3)当线段MN运动至点Q在点B的右侧时,请你画图探究线段AN、BM、PQ三者之间的数量关系式.11.如图,数轴上点A,B表示的有理数分别为﹣6,3,点P是射线AB上一个动点(不与点A,B重合).M 是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.12.已知点C在线段AB上,且AC=6,BC=4,M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)如果AC=a,BC=b,其他条件不变,你能猜出MN的长度吗?(3)如果我们这样叙述它:“已知点C与线段AB在同一直线上,线段AC=6,BC=4,M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.13.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.14.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由;16.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.17.如图,点B、C是线段AD上的两点,点M和点N分别在线段AB和线段CD上.(1)当AD=8,MN=6,AM=BM,CN=DN时,BC=;(2)若AD=a,MN=b①当AM=2BM,DN=2CN时,求BC的长度(用含a和b的代数式表示)②当AM=nBM,DN=nCN(n是正整数)时,直接写出BC=.(用含a、b、n的代数式表示)18.如图所示.(1)若线段AB=4cm,点C在线段AB上(如图①),点M、N分别是线段AC、BC的中点,求线段MN长.(2)若线段AB=acm,点C在线段AB的延长线上(如图②),点M、N分别是线段AC、BC的中点,你能猜想出MN的长度吗?请写出你的结论,并说明理由.19.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照如图回答下列问题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度到达点B,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度到达点B,那么终点B表示的数是;A、B两点间的距离为.(3)一般地,如果A点表示的数为a,将A点向右移动x个单位长度,再向左移动y个单位长度到达点B,请你求出终点B表示什么数?A、B两点间的距离为多少?20.已知多项式﹣2x2y﹣a+3xy2﹣4y+5次数是4,项数是b,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=,b=,并在数轴上标出A、B两点的位置.(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由.(3)点D以每秒2个单位的速度从A点出发向左运动,同时点E以3个单位每秒的速度从B点出发向右运动,点F以每秒4个单位的速度从O点出发向左运动.若P为DE的中点,DE=16,求PF的长.21.如图,M是定长线段AB上一个定点,点C在线段AM上,点D在线段BM上.点C、点D分别从点M、点B出发,分别以1cm/s、2cm/s的速度沿直线BA左运动,运动方向如箭头所示.(1)若AB=20cm,当点C、D运动了2s时,求AC+MD的长度;(2)若点C、D运动时,总有MD=2AC,若AM=ncm,求AB的长;(3)在(2)的条件下,N是直线AB上一点,且MN+BN=AN,求的值.22.如图,C是线段AB上一点,AB=16cm,BC=6cm.(1)AC=cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s 的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?23.如图,数轴上A,B两点对应的有理数分别为﹣10和20,点P从点O出发,以每秒1个单位长度的速度沿数轴正方向匀速运动,点Q同时从点A出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)分别求当t=2及t=12时,对应的线段PQ的长度;(2)当PQ=5时,求所有符合条件的t的值,并求出此时点Q所对应的数;(3)若点P一直沿数轴的正方向运动,点Q运动到点B时,立即改变运动方向,沿数轴的负方向运动,到达点A时,随即停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=8?若存在,求出所有符合条件的t值,若不存在,请说明理由.24.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,8,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:P A=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由25.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为(2)如果点A表示数﹣4,将A点向右移动68个单位长度,再向左移动156个单位长度,那么终点B 表示的数是,A,B两点间的距离是.(3)一般地,如果A点表示数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.27.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..28.如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为﹣2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为,当t=2秒时,AC的长为.(2)用含有t的代数式表示AC的长为.(3)当t=秒时AC﹣BD=5,当t=秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.29.如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为;(2)当t=3时,点P所表示的数是;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,若OP中点为Q,则QB的长度是否发生变化?若不变,请求出它的值;若变化,请直接用含t的代数式QB的长度.30.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.31.在射线OM上有三点A,B,C,满足OA=15cm,AB=30cm,BC=10cm,点P从点O出发,沿OM 方向以1cm/s的速度匀速运动;点Q从点C出发,沿线段CO匀速向点O运动(点Q运动到点O时停止运动).如果两点同时出发,请你回答下列问题:(1)已知点P和点Q重合时P A=AB,求OP的长度;(2)在(1)题的条件下,求点Q的运动速度.32.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一点,且M为P A的中点,N为PB的中点.请你画出图形,观察MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.33.如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是,点P对应的数是(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.34.如图,射线OM上有三点A、B、C,满足OA=20 cm,AB=60 cm,BC=10 cm,点P从点O出发,沿OM方向以1 cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O 时停止运动),两点同时出发.(1)当点P运动到线段AB上时,分别取OP和AB的中点E、F,=.(2)若点Q运动速度为3 cm/秒,经过秒P、Q两点相距70 cm.35.如图,先在数轴上画出表示点A的相反数的点B,再把点A向右移动10个单位,得到点C.(1)点B表示的数为;点C表示的数为;B、C两点之间的距离为个单位长度;(2)动点P从点B出发,以2个单位/秒的速度向右运动,动点Q从C点出发,以3个单位/秒的速度向左运动,若点P、Q相遇在点D,求点D对应的数.(3)动点P从点B出发,以2个单位/秒的速度向左运动,动点Q从C点出发,以3个单位/秒的速度向左运动,若点Q在点E处追上点P,则求点E对应的数.36.阅读下列材料:点A、点B在数轴上分别表示两个有理数,A、B两点之间的距离表示为AB.(1)当点A在原点时,若点B表示的数为5时,则AB=|5﹣0|=5;若点B表示的数为﹣5时,则AB =|﹣5﹣0|=|﹣5|=5;若点B表示的数为a时,则AB=|a﹣0|=|a|,当a>0,AB=a,当a=0,AB=0,当a<0,AB=﹣a(2)当A、B都不在原点时,A表示的数为a,B表示的数为b,则AB=|a﹣b|,当a﹣b>0时,AB=|a ﹣b|=a﹣b;当a﹣b=0时,AB=|a﹣b|=0;当a﹣b<0时,AB=|a﹣b|=﹣(a﹣b).根据上述材料,回答下列问题:有理数a、b、c在数轴上的位置如图所示:(1)化简|a|=|c|=|a+b|=|a﹣b|=(2)若点C表示的数为x,当|x+1|+|x﹣2|取得的值最小时,x的取值范围?37.大家知道|5|=|5﹣0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=|a﹣b|.根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是;数轴上表示﹣3和15的两点之间的距离是;(2)点A、B在数轴上分别表示数x和﹣1.①用代数式表示A、B两点之间的距离;②如果|AB|=2,求x值.38.如图,有两段线段AB=2(单位长度),CD=1(单位长度)在数轴上运动.点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC=(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,若BC=6(单位长度),求t的值(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,设M为AC中点,N为BD中点,则线段MN的长为.39.如图,点C在线段AB上,AC=12厘米,CB=8厘米,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AB=a厘米,其他条件不变,你能猜想MN的长度吗?用一句简洁的语言表述你发现的规律;(3)若C在线段AB的延长线上,且满足AB=b厘米,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.40.如图,A,B两点在数轴上,点A表示的数为﹣10,OB=4OA,点M以每秒2个单位长度的速度从点A 开始向左运动,点N以每秒3个单位长度的速度从点B开始向左运动(点M和点N同时出发)(1)数轴上点B对应的数是线段AB的中点C对应的数是(2)经过几秒,点M,点N到原点的距离相等(3)当M运动到什么位置时,点M与点N相距20个单位长度?七年级—线段的动点问题参考答案与试题解析一.解答题(共40小题)1.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差,比如B﹣C为﹣4﹣0=﹣4.A﹣B B﹣C D﹣C E﹣D F﹣E10﹣4﹣1x2(1)在数轴上表示出A,D两点;(2)当点A与点F的距离为3时,求x的值;(3)当点M以每秒1个单位长度的速度从点B出发向左运动时,同时点N从点A出发,以每秒3个单位长度的速度向点C运动,到达点C后立即以同样的速度反方向运动,那么出发1或4秒钟时,点D到点M,点N的距离相等(直接写出答案).【解】(1)如图所示,∵点B表示的数为﹣4,点C在原点位置∴A:6,D:﹣1;(2)①当点F在点A左侧时,则点F表示的数为6﹣3=3,点E表示的数为3﹣2=1,∴x=1﹣(﹣1)=2;②当点F在点A右侧时,则点F表示的数为6+3=9,点E表示的数为9﹣2=7,∴x=7﹣(﹣1)=8;(3)设出发x秒后,点D到点M,点N的距离相等,由题意得:﹣1﹣(﹣4﹣x)=6﹣3x﹣(﹣1)或﹣1﹣(﹣4﹣x)=3x﹣6﹣(﹣1)解得:x=1或x=4故答案为:1或4.2.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B 之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是15;点C表示的数是3;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.【解】(1)点B表示的数是﹣3+18=15;点C表示的数是﹣3+18×=3.故答案为:15,3;(2)点P与点Q相遇前,4t+2t=18﹣6,解得t=2;点P与点Q相遇后,4t+2t=18+6,解得t=4;(3)假设存在,当点P在点C左侧时,PC=6﹣4t,QB=2t,∵PC+QB=4,∴6﹣4t+2t=4,解得t=1.此时点P表示的数是1;当点P在点C右侧时,PC=4t﹣6,QB=2t,∵PC+QB=4,∴4t﹣6+2t=4,解得t=.此时点P表示的数是.综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或.3.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.【解】(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综上所述:DP的长为5cm或10cm.(2)①根据题意得:(1+2)t=15,解得:t=5.答:当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.4.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【解】(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.5.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点是这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=4或6或8cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解】(1)如图,当C是线段AB的中点,则AB=2AC,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.6.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;。

(完整版)有关线段的动点问题

(完整版)有关线段的动点问题

有关线段的动点问题1.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.2.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,(1)写出数轴上点B所表示的数;(2)点P所表示的数;(用含t的代数式表示);(3)M是AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN的长.3.如图,P是定长线段AB上一点,C、D两点同时从P、B出发分别以1cm/s和2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上).已知C、D运动到任一时刻时,总有PD=2AC.(1)线段AP与线段AB的数量关系是:;(2)若Q是线段AB上一点,且AQ﹣BQ=PQ,求证:AP=PQ;(3)若C、D运动5秒后,恰好有CD=AB,此时C点停止运动,D点在线段PB上继续运动,M、N分别是CD、PD的中点,问的值是否发生变化?若变化,请说明理由;若不变,请求出的值.4.如图,已知:线段AD=10cm,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,设点B运动时间为t秒(0≤t≤10).(1)当t=6秒时,AB=cm;(2)用含t的代数式表示运动过程中AB的长;(3)在运动过程中,若AB中点为E,BD的中点为F,则EF的长是否发生变化?若不变,求出EF的长;若发生变化,请说明理由.5.如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE(1)若AB=18,BC=21,求DE的长;(2)若AB=a,求DE的长;(用含a的代数式表示)(3)若图中所有线段的长度之和是线段AD长度的7倍,则的值为.6.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO 上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上).(1)若AB=10cm,当点C、D运动了1s,求AC+MD的值;(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知线段AB=12,CD=6,线段CD在直线AB上运动(C、A在B左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①是定值;②是定值,请作出正确的选择,并求出其定值.9.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM 上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.11.已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若2-++-=.m n m n|2|(18)0(1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:①是定值;②是定值,请选择正确的一个并加以证明.12.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.13.已知线段AB=20,点P是直线AB上一动点,M是AP的中点,N是PB的中点.如图1(1)当点P在线段AB上运动时,MN的长度是否改变?(2)当点P在线段AB的延长线上时如图2,MN的长度是否改变?14.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,Ⅳ为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变.选择一个正确的结论,并求出其值.15.如图点P为线段AB的中点,M为PB上任一点,试探究2PM与AM﹣BM之间的大小关系,并简要说明理由?16.如图,位于青年大街AB段上有四个居民小区A,C,D,B,其中AC=CD=DB.现想在AB段上建一家超市,要求各居民区到超市的路程总和最小.请你确定超市的位置,并说明你的理由.17.加油站如何选址:某公共汽车运营线路AB段上有A,B,C,D四个汽车站,如图所示,现在要在AB段上修建一个加油站M,为了使加油站选址合理,要求A,B,C,D四个汽车站到加油站M的路程总和最小,试分析加油站M在何处选址最好?18.在同一个学校上学的小明、小伟、小红三位同学住在A,B,C三个住宅区,如图所示(A,B,C在同一条直线上),且AB=60米,BC=100米,他们打算合租一辆接送车去上学,由于车位紧张,准备在周围只设一个停靠点,为使三位同学步行到停靠点的路程之和最小,你认为停靠点应该设在哪里?并说明理由.。

专题09 线段上动点问题压轴题的四种考法(原卷版)-2024年常考压轴题攻略(7年级上册人教版)

专题09 线段上动点问题压轴题的四种考法(原卷版)-2024年常考压轴题攻略(7年级上册人教版)

专题09线段上动点问题压轴题的的四种考法类型一、线段之间数量关系问题(1)如图①,当点N与点B重合时,求线段PQ的长度(用含(2)如图②,当线段MN运动到点B,M重合时,求线段AN(1)如图2,当B与N重合时,AM=,BC=;a (2)在图2的基础上,将线段AB沿直线MN向左移动(0①若3a=,求AM和BC的长;类型二、定值问题类型三、时间问题【变式训练1】如图,点,A B 在数轴上分别表示有理数,a b ,且,a b 满足2|2|(5)0a b ++-=.(1)点A 表示的数是___________,点B 表示的数是____________.(2)若动点P 从点A 出发以每秒3个单位长度向右运动,动点Q 从点B 出发以每秒1个单位长度向点A 运动,到达A 点即停止运动,P Q 两点同时出发,且Q 点停止运动时,P 也随之停止运动,求经过多少秒时,,P Q 第一次相距3个单位长度?(3)在(2)的条件下整个运动过程中,设运动时间为t 秒,若AP 的中点为,M BQ 的中点为N ,当t 为何值时,3BM AN PB +=?【变式训练2】如图,点A 、点B 是数轴上原点O 两侧的两点,其中点A 在原点O 的左侧,且满足6AB =,2OB OA =.(1)点A 、B 在数轴上对应的数分别为______和______.(2)点A 、B 同时分别以每秒1个单位长度和每秒2个单位长度的速度向左运动.①经过几秒后,3OA OB =;②点A 、B 在运动的同时,点P 以每秒1个单位长度的速度从原点向右运动,经过几秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点?类型四、求值(1)若AB =11cm ,当点C 、D 运动了课后训练(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)-和40,点C是线段(2)(问题解决)如图二,点A和B在数轴上表示的数分别是20点,求点C在数轴上表示的数.(3)(应用拓展)在(2)的条件下,动点P从点A处,以每秒2个单位的速度沿AB速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中一点到达中点时,两个点运动同时停止,当A、P、Q三点中,其中一点恰好是另外两点为端。

(完整版)初一动点问题答案

(完整版)初一动点问题答案

线段与角的动点问题1.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当P运动到线段AB上且P A=2PB时,点Q运动到的位置恰好是线段OC的三等分点,求点Q的运动速度;(2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?【解答】解:(1)P在线段AB上,由P A=2PB及AB=60,可求得P A=40,OP=60,故点P运动时间为60秒.若CQ=OC时,CQ=30,点Q的运动速度为30÷60=(cm/s);若OQ=OC,CQ=60,点Q的运动速度为60÷60=1(cm/s).(2)设运动时间为t秒,则t+3t=90±70,解得t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm.2.如图,直线l上依次有三个点O,A,B,OA=40cm,OB=160cm.(1)若点P从点O出发,沿OA方向以4cm/s的速度匀速运动,点Q从点B出发,沿BO 方向匀速运动,两点同时出发①若点Q运动速度为1cm/s,则经过t秒后P,Q两点之间的距离为|160﹣5t|cm(用含t的式子表示)②若点Q运动到恰好是线段AB的中点位置时,点P恰好满足P A=2PB,求点Q的运动速度.(2)若两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值.【解答】解:(1)①依题意得,PQ=|160﹣5t|;故答案是:|160﹣5t|;②如图1所示:4t﹣40=2(160﹣4t),解得t=30,则点Q的运动速度为:=2(cm/s);如图2所示:4t﹣40=2(4t﹣160),解得t=7,则点Q的运动速度为:=(cm/s);综上所述,点Q的运动速度为2cm/s或cm/s;(2)如图3,两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值.OP=xBQ=y,则MN=(160﹣x)﹣(160﹣y)+x=(x+y),所以,==2.3.如图,射线OM上有三点A、B、C,满足OA=60cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动.(1)当点P运动到AB的中点时,所用的时间为90秒.(2)若另有一动点Q同时从点C出发在线段CO上向点O匀速运动,速度为3cm/秒,求经过多长时间P、Q两点相距30cm?【解答】解:(1)当点P运动到AB的中点时,点P运动的路径为60cm+30cm=90cm,所以点P运动的时间==90(秒);故答案为90;(2)当点P和点Q在相遇前,t+30+3t=60+60+10,解得t=25(秒),当点P和点Q在相遇后,t+3t﹣30=60+60+10,解得t=40(秒),答:经过25秒或40秒时,P、Q两点相距30cm.4.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C 在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是15;点C表示的数是3;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P 表示的数;若不存在,请说明理由.【解答】解:(1)点B表示的数是﹣3+18=15;点C表示的数是﹣3+18×=3.故答案为:15,3;(2)点P与点Q相遇前,4t+2t=18﹣6,解得t=2;点P与点Q相遇后,4t+2t=18+6,解得t=4;(3)假设存在,当点P在点C左侧时,PC=6﹣4t,QB=2t,∵PC+QB=4,∴6﹣4t+2t=4,解得t=1.此时点P表示的数是1;当点P在点C右侧时,PC=4t﹣6,QB=2t,∵PC+QB=4,∴4t﹣6+2t=4,解得t=.此时点P表示的数是.综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或.5.将一副三角板放在同一平面内,使直角顶点重合于点O.(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【解答】解:(1)∠AOD=∠BOC=155°﹣90°=65°,∠DOC=∠BOD﹣∠BOC=90°﹣65°=25°;(2)∠AOD=∠BOC,∠AOB+∠DOC=180°;(3)∠AOB+∠COD+∠AOC+∠BOD=360°,∵∠AOC=∠BOD=90°,∴∠AOB+∠DOC=180°.6.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD 的度数.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.7.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=130°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:此时直线ON是否平分∠AOC?请直接写出结论:直线ON平分(平分或不平分)∠AOC.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为13或49.(直接写出结果)(3)将图1中的三角板绕点O顺时针旋转,请探究:当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【解答】解:(1)平分,理由:延长NO到D,∵∠MON=90°∴∠MOD=90°∴∠MOB+∠NOB=90°,∠MOC+∠COD=90°,∵∠MOB=∠MOC,∴∠NOB=∠COD,∵∠NOB=∠AOD,∴∠COD=∠AOD,∴直线NO平分∠AOC;(2)分两种情况:①如图2,∵∠BOC=130°∴∠AOC=50°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=25°,∴∠BON=25°,∠BOM=65°,即逆时针旋转的角度为65°,由题意得,5t=65°解得t=13(s);②如图3,当NO平分∠AOC时,∠NOA=25°,∴∠AOM=65°,即逆时针旋转的角度为:180°+65°=245°,由题意得,5t=245°,解得t=49(s),综上所述,t=13s或49s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=40°,理由:∵∠AOM=90°﹣∠AON∠NOC=50°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(50°﹣∠AON)=40°.9.已知∠AOC=40°,∠BOD=30°,∠AOC和∠BOD均可绕点O进行旋转,点M,O,N在同一条直线上,OP是∠COD的平分线.(1)如图1,当点A与点M重合,点B与点N重合,且射线OC和射线OD在直线MN的同侧时,求∠BOP的余角的度数;(2)在(1)的基础上,若∠BOD从ON处开始绕点O逆时针方向旋转,转速为5°/s,同时∠AOC从OM处开始绕点O逆时针方向旋转,转速为3°/s,如图2所示,当旋转6s 时,求∠DOP的度数.【解答】解:(1)∵∠AOC=40°,∠BOD=30°,∴∠COD=180°﹣40°﹣30°=110°,∵OP是∠COD的平分线,∴∠DOP=∠COD=55°,∴∠BOP=85°,∴∠BOP的余角的度数为5°;(2)∠DOP的度数为49°,旋转6s时,∠MOA=3×6°=18°,∠NOB=5×6°=30°,∴∠COM=22°,∠DON=60°,∴∠COD=180°﹣∠COM﹣∠DON=98°,∵OP是∠COD的平分线,∴∠DOP=∠COD=49°.10.如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为10或40(直接写出结果);(3)在(2)的条件下,将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.【解答】解:(1)直线ON平分∠AOC.理由如下:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵OM⊥ON,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON,∴∠COD=∠AOD,∴OD平分∠AOC,即直线ON平分∠AOC.(2)∵∠BOC=120°∴∠AOC=60°,∴∠BON=∠COD=30°,即旋转60°时ON平分∠AOC,由题意得,6t=60°或240°,∴t=10或40;(3)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.即∠AOM=∠NOC+30°.11.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=2:1,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按顺时针方向旋转至图2的位置,使得OM落在射线OA上,此时ON旋转的角度为90°;(2)继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得OM在∠BOC 的内部,则∠BON﹣∠COM=30°;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按每秒钟15°的速度旋转,当OM恰为∠BOC的平分线时,此时,三角板绕点O的运动时间为(24n+16)秒,简要说明理由.【解答】解:(1)如图2,依题意知,旋转角是∠MON,且∠MON=90°.故填:90;(2)如图3,∠AOC:∠BOC=2:1,∴∠AOC=120°,∠BOC=60°,∵∠BON=90°﹣∠BOM,∠COM=60°﹣∠BOM,∴∠BON﹣∠COM=90°﹣∠BOM﹣60°+∠BOM=30°,故填:30;(3)16秒.理由如下:如图4.∵点O为直线AB上一点,∠AOC:∠BOC=2:1,∴∠AOC=120°,∠BOC=60°.∵OM恰为∠BOC的平分线,∴∠COM′=30°.∴∠AOM+∠AOC+∠COM′=240°.∵三角板绕点O按每秒钟15°的速度旋转,∴三角板绕点O的运动最短时间为=16(秒).∴三角板绕点O的运动时间为(24n+16)(n是整数)秒.故填:(24n+16).第9页。

(完整版)初二动点问题(含答案)

(完整版)初二动点问题(含答案)

动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想类型:1。

利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4。

分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6。

动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。

当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.的长为 ;的长为 ;4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。

(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BCEFCF于点F,求证:AE=EF.AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点"改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ACBAED图1NMA BCDEMN图2ACBEDNM图36、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值(1)如果点P在线段BC上以3cm/s的速度由B点向CCA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能(2)若点Q以②中的运动速度从点C来的运动速度从点B边运动,求经过多长时间点P与点Q第一次哪条边上相遇?A DFC GEB图1A DFC GEB图3A DFC GEB图2。

初一数学专题四:线段动态问题(含详解答案)

初一数学专题四:线段动态问题(含详解答案)

线段的动态问题为各个学校期末考试的重难点,主要包括动点问题和动线段问题.模块一:线段的动点问题1.主要分析步骤:(1)数形结合,画图;(2)设元,看清楚动点的速度和方向,表示线段长度;(3)根据题中的等量关系列方程,并解方程.2.动点问题求解的几个辅助工具:(1)数轴上两点的距离①两点间的距离=这两点分别所表示的数的差的绝对值;②两点间的距离=右端点表示的数-左端点表示的数.例如:a ,b 两点的距离可表示为b a -,也可表示为||a b -或者||b a -.特别地,||a 可以看成a 和0两点的距离,||b 可以看成b 和0两点的距离,如果||||a b =,那么有a b =或a b =-.(2)点在数轴上运动时,满足左减右加一个点表示的数为a ,若向左运动b 个单位后表示的数为a b -;一个点表示的数为a ,若向右运动b 个单位后所表示的数为a b +.(3)数轴上线段中点公式:如图,线段ab 的中点所表示的数是a b +2.模块二:动线段问题模块一线段的动点问题已知数轴上A 、B 两点对应数分别为-2和4,P 为数轴上一动点,对应数为x.(1)若P 为线段AB 的三等分点,求P 对应的数;(2)数轴上是否存在点P ,使P 点到A 点、B 点距离和为10?若存在,求出x 值,若不存在,请说明理由.(3)若A 、B 点和P 点(P 点在原点)同时向左运动,它们的运动速度分别为1、2、1个单位长度/分,则第几分钟时,P 为线段AB 的中点?第几分钟的时候P 到A 和B 的距离相等?学习是件很有意思的事(1)∵点P 为线段AB 的三等分点,∴AP AB 1=3或BP AB 1=3①当AP AB 1=3时,得到2=2x+,得x =0②当BP AB 1=3时,得到x 4-=2,得x =2∴P 对应的数为0或2.(2)假设存在点P ,则PA =+2x ,PB x =-4,∴||||x x +2+-4=10解得,x =-4或x =6.(3)①设经过t 分钟后,P 为AB 的中点则A 表示的数为t -2-,B 表示的数为t 4-2,P 表示的数为t -,则由题意得,t t t -2-+4-2=-2,得到t =2.②设经过x 分钟后,P 到A 和B 的距离相等.则A 表示的数为x -2-,B 表示的数为x 4-2,P 表示的数为x -,∴PA x x =-2-+=2,PB x x x=4-2+=4-∴||x 4-=2解得x =2或x =6.已知数轴上顺次有A 、B 、C 三点,分别表示数a 、b 、c ,并且满足()2a +|b +|=+1250,b 与c 互为相反数.两只电子小蜗牛甲、乙分别从A ,C 两点同时相向而行,甲的速度为2个单位/秒,乙的速度为3个单位/秒.(1)求A 、B 、C 三点分别表示的数,并在数轴上表示A 、B 、C 三点(2)运动多少秒时,甲、乙到点B 的距离相等?(3)当点B 以每分钟一个单位长度的速度向左运动时,点A 以每分钟5个单位长度向左运动,点C 以每分钟20个单位长度向左运动,问它们同时出发,几分钟后B 点到点A 、点C的距离相等?(1)∵()2a +|b +|=+1250,∴a +12=0,b +5=0,解得a =-12,b =-5.又∵b 与c 互为相反数,∴c =5,∴A 、B 、C 三点分别表示的数是-12,-5,5.表示在数轴上是:学习是件很有意思的事(2)设运动x 秒时,甲、乙到点B 的距离相等.则甲所表示的数为x -12+2,乙所表示的数为x5-3则依题意,得x x 72=10-3-,解得x =3或x 17=5.答:运动3s 或者s 175时,甲、乙到点B 的距离相等.(3)设t 分钟后点B 到点A 和点C 的距离相等.则点A 所表示的数为t -12-5,点B 所表示的数为t -5-,点C 所表示的数为t 5-20.则由题意得,t t t t5-20+5+=-5-+12+5解得:t 3=23或者t 17=15.如图,已知A 、B 、C 是数轴上三点,O 为原点,点C 表示的数为6,BC =4,AB =12.(1)写出数轴上点A 、B 表示的数;(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒6个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴左匀速运动,M 为AP 的中点,点N 在线段CQ 上,且CN CQ 1=3,设运动时间为()t t >0秒.t 为何值时,OM=2BN.(1)C Q 表示的数为6,4BC =,OB ∴=6-4=2,∴B 点表示2.AB =12Q ,AO ∴=12-2=10,A ∴点表示-10;(2)由题意得,点P 表示的数为t -10+6,点Q 表示的数为t 6-3,则点M 表示的数为t t -10-10+6=-10+32,又∵CN CQ 1=3,∴点N 表示的数为t 6-,由题意可得t t -10+3=24-,即t t -10+3=8-2,解得t 18=5或t =2.如图,A 是数轴上表示-30的点,B 是数轴上表示10的点,C 是数轴上表示18的点,点A 、B 、C 在数轴上同时向数轴的正方向运动,点A 运动的速度是6个单位长度每秒,点B 和C 运动的速度是3个单位长度每秒.设三个点运动的时间为t (秒).(1)当t 为何值时,线段AC =6(单位长度)?(2)t ≠5时,设线段OA 的中点为P ,线段OB 的中点为M ,线段OC 的中点为N ,求PM PN 2-=2时t的值.学习是件很有意思的事(1)A 表示的数为t -30+6,B 表示的数为t 10+3,C 表示的数为t18+3||AC t =48-3=6,解得t =18或t =14(2)P 表示的数为t -15+3,M 表示的数为t 35+2,N 表示的数为t 39+2则PM t 3=-202,PN t 3=-242由题意得,PM PN 2-||t t 3=3-40--24=22解得,t 28=3或443.如图5-1,已知数轴上两点A 、B 对应的数分别为-1、3,点P 为数轴上的一动点,其对应的数为x .(1)如果点P 是AB 的中点,则x =________;(2)如图5-2,点P 以1个单位长度/s 的速度从点O 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB OP MN-的值是否发生变化?请说明理由.图5-1图5-2(1)x =1;(2)AB OP MN-的值不发生变化.由题意,O 为原点,设运动时间为t 分钟.则P 表示的数为t ,A 表示的数为t -1-5,B 表示的数为t 20+3,则M 表示的数为t -1-42,N 表示的数为t 20+32.则AB t =25+4,OP t =,MN t =12+2,则AB OP MN-=2为定值.如图,在射线OM 上有三点A 、B 、C ,满足20cm OA =,60cm AB =,10cm BC =(如图所示),点P 从点O 出发,沿OM 方向以1cm/s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发.学习是件很有意思的事(1)当2PA PB =时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的速度;(2)若点Q 运动速度为3cm/秒,经过多长时间P 、Q 两点相距70cm ?(3)当点P 运动到线段AB 上时,取OP 和AB 的中点E ,F ,求OB AP EF -的值.(1)设O 为原点,则A 表示的数为20,B 表示的数为80,C 表示的数为90,设经过的时间t 秒后,PA =2PB.则P 表示的数为t ,PA t =20-,PB t =-80,∴t t 20-=2-80,可得t =60或t =140当t =60秒时,可得Q 的速度为550÷60=6(cm/s )或者130÷60=2(cm/s )当t =140秒时,可得Q 的速度为550÷140=14(cm/s )或者330÷140=14(cm/s )(2)设经过t 秒,P 、Q 两点相距70cm ,则P 表示的数为t ,Q 表示的数为903t -,∴PQ t =90-4=70,解得t =5或t =40∴t =5或t =40时,满足P 、Q 两点相距70cm(3)P 表示的数为t ,E 表示的数为t 2,F 表示的数为50,EF 的长度为()t t 50-20<<802OB =80,AP t =-20,所以OB AP EF-=2.模块二动线段问题如图,数轴上线段2AB =(单位长度),4CD =(单位长度),点A 在数轴上表示的数是-10,点C 在数轴上表示的数是16.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时8BC =(单位长度);(2)当运动到8BC =(单位长度)时,点B 在数轴上表示的数是_________;(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式BD AP PC-=3,若存在,求线段PC 的长;若不存在,请说明理由.(1)A 表示的数为t -10+6,B 表示的数为t -8+6,C表示的数为t16-2,D表示的数为t20-2由BC=8得到t t t-8+6-16+2=8⇒=4或t=2.(2)当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.(3)存在关系式BD AP PC-=3.设运动时间为t秒,设P原来表示的数为x,A表示的数为t6-10,B表示的数为t6-8,C表示的数为t16-2,D表示的数为t20-2,P表示的数为x t+6BD t=28-8,AP x=+10,PC t x=8+-16代入BD APPC-=3,解得x t=15-8或者x t33=-82,所以PC t x=8+-16=1或12.模块一线段的动点问题已知A 、B 分别为数轴上两点,A 点对应的数为-20,B 点对应的数为100.(1)现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;(2)若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数.(1)设运动的时间为t ,∴P 表示的数为t 100-6,Q 表示的数为t -20+4,由题得,t t 100-6=-20+4,可得t =12,此时C 对应的数为28(2)设运动的时间为t ,∴P 表示的数为t 100-6,Q 表示的数为t -20-4,由题得,t t 100-6=-20-4,可得t =60s ,此时D表示的数为-260.如图2-1,点A 、B 分别在数轴原点O 的左右两侧,且OA OB 1+50=3,点B 对应数是90.(1)求A 点对应的数;(2)如图2-2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离;(3)如图2-3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求RQ RO PN 22-28-5.图2-1图2-2图2-3(1)A 对应的数为-120.(2)M 表示的数为2t ,N 表示的数为t -120+7,P 表示的数为t90-8||MN t =-120+5||PM t t s =10-90⇒=14.(3)N 表示的数为t -120-7,M 表示的数为t -2,P 表示的数为t 90+8,Q 表示的数为t 9-60-2,R 表示的数为t 45+4(.)()()RQ RO PN t t t 22-28-5=105+85⨯22-2845+4-5210+15=0.如图3-1,已知数轴上有三点A 、B 、C ,AB AC 1=2,点C 对应的数是200.(1)若300BC =,求点A 对应的数;(2)如图3-2,在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足4MR RN =(不考虑点R 与点Q 相遇之后的情形);(3)如图3-3,在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从是点D 运动到点A 的过程中,32QC AM -的值是否发生变化?若不变,求其值;若变化,请说明理由.图3-1图3-2图3-3(1)∵BC AC 1=300=2∴AC =600∵C 对应的数是200,则A 对应的数为200-600=-400(2)设t 秒时,MR RN =4则P 表示的数为t -400-10,R 表示的数为t -400+2,Q 表示的数为t 200-5,∵M 为PR 的中点,∴M 表示的数为t-400-4∵N 为RQ 的中点,∴N 表示的数为t 3-100-2()MR t t t =-400+2--400-4=6(M 在左,R 在右)()RN t t t 37=-100---400+2=300-22(N 在右,R 在左)MR RN t t t s 7⎛⎫=4⇒6=4⨯300-⇒=60 ⎪2⎝⎭.∴经过s 60时满足MR RN =4(3)设运动时间为t 秒,则P 表示的数为t -800-10,Q 表示的数为t -5.M 为PQ 的中点,则M 表示的数为t t t -800-10-515=-400-22.()QC t t =200--5=200+5,t AM 1515⎛⎫=-400--400-= ⎪22⎝⎭∴()QC AM t 3315-=200+5⨯-=300222为定值.模块二动线段问题如图,P 是定长线段AB 上一点,C 、D 两点同时从P 、B 出发分别以1cm/s 和2cm/s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上).已知C 、D 运动到任一时刻时,总有PD AC =2.(1)线段AP 与线段AB 的数量关系是______________;(2)若Q 是线段AB 上一点,且AQ BQ PQ -=,求证:AP PQ =;(3)若C 、D 运动5秒后,恰好有CD AB 1=2,此时C 点停止运动,D 点在线段PB 上继续运动,M 、N 分别是CD 、PD 的中点,问MN AB 的值是否发生变化?若变化,请说明理由;若不变,请求出MNAB 的值.(1)根据C 、D 的运动速度知:2BD PC =,PD AC =2Q ,∴()BD PD PC AC +=2+,即2PB AP =,∴点P 在线段AB 上的13处,即AB AP =3.故答案为:AB AP =3;(2)证明:如图1,由题意得AQ BQ >,AQ AP PQ ∴=+,又AQ BQ PQ -=Q ,AQ BQ PQ ∴=+,AP BQ ∴=.由(1)得,AP AB 1=3,PQ AB AP BQ AB 1∴=--=3.(3)运动5秒时,cm PC =5,cm BD =10.由(1)可知AP AB 1=3设AP x =,则AC AP PC x =-=-5,PB x =2,PD PB BD x =-=2-10.CD AB 1=2Q ,()x x x x 1∴+2-10=⨯3⇒=102则D 仍为动点,设A 为原点AB AP =3=30Q ∴B 表示的数为30,设运动了t 秒(t >5)则D 表示的数为t 30-2,因为M 为CD 的中点,所以M 表示的数为t 5+30-22因为N 为PD 的中点,所以N 表示的数为t 10+30-22t t MN 10+30-25+30-25=-=222MN AB 512∴==3012为定值.。

完整版)初一上数学线段动点问题

完整版)初一上数学线段动点问题

完整版)初一上数学线段动点问题数学的动点问题1.已知数轴上两点A、B对应的数分别为-1和3,点P为数轴上一动点,其对应的数为x。

1) 若点P到点A、点B的距离相等,求点P对应的数。

解:由于P到A和P到B的距离相等,因此P点在A和B的中垂线上,所以P对应的数为1.2) 数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,求出x的值。

若不存在,请说明理由。

解:存在。

点P到点A、点B的距离之和为5的点P在A和B的连线上,且距离A点1.5个单位长度,距离B点3.5个单位长度,所以x的值为-1.5或3.5.3) 当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?解:设P点向左运动t分钟,此时P点的坐标为-x,由于P点到A、B的距离相等,因此有方程|x+1|=|x-3|,解得x=-1.所以P点在数轴上的坐标为-1,此时P点到A、B的距离分别为2和4,距离B点的距离是距离A点的距离的两倍,因此P 点在B点的左侧,P点到B点的距离在不断减小,P点到A点的距离在不断增大。

设t分钟后P点到A、B的距离相等,此时P点的坐标为-x-t,解得t=2/23.2.数轴上点A对应的数是-1,B对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位长度的速度爬行至C点,再立即返回到A点,共用了4秒。

1) 求点C对应的数。

解:小虫甲从B到C再返回A的过程中,共经过的距离为4秒×4个单位长度=16个单位长度,因此C点对应的数为3.2) 若小虫甲返回到A点后作如下运动:第1次向右爬行2个单位长度,第2次向左爬行4个单位长度,第3次向右爬行6个单位长度,第4次向左爬行8个单位长度,…依次规律爬下去,求它第10次所停在点所对应的数。

解:小虫甲第1次向右爬行2个单位长度,到达点D,D点对应的数为3,第2次向左爬行4个单位长度回到点B,第3次向右爬行6个单位长度到达点E,E点对应的数为9,第4次向左爬行8个单位长度回到点A,第5次向右爬行10个单位长度到达点F,F点对应的数为21,以此类推,第10次停在点G,G点对应的数为-11.3) 若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位长度的速度爬行,这时另一只小虫乙从点C出发沿着数轴的负方向以每秒7个单位长度的速度爬行,设小虫甲爬行后对应的点为E,小虫乙爬行后对应的点为F。

(完整word版)有关线段的动点问题(word文档良心出品)

(完整word版)有关线段的动点问题(word文档良心出品)

有关线段的动点问题1.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.2.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,(1)写出数轴上点B所表示的数;(2)点P所表示的数;(用含t的代数式表示);(3)M是AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN的长.3.如图,P是定长线段AB上一点,C、D两点同时从P、B出发分别以1cm/s和2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上).已知C、D运动到任一时刻时,总有PD=2AC.(1)线段AP与线段AB的数量关系是:;(2)若Q是线段AB上一点,且AQ﹣BQ=PQ,求证:AP=PQ;(3)若C、D运动5秒后,恰好有CD=AB,此时C点停止运动,D点在线段PB上继续运动,M、N分别是CD、PD的中点,问的值是否发生变化?若变化,请说明理由;若不变,请求出的值.4.如图,已知:线段AD=10cm,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,设点B运动时间为t秒(0≤t≤10).(1)当t=6秒时,AB=cm;(2)用含t的代数式表示运动过程中AB的长;(3)在运动过程中,若AB中点为E,BD的中点为F,则EF的长是否发生变化?若不变,求出EF的长;若发生变化,请说明理由.5.如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE(1)若AB=18,BC=21,求DE的长;(2)若AB=a,求DE的长;(用含a的代数式表示)(3)若图中所有线段的长度之和是线段AD长度的7倍,则的值为.6.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO 上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上).(1)若AB=10cm,当点C、D运动了1s,求AC+MD的值;(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知线段AB=12,CD=6,线段CD在直线AB上运动(C、A在B左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①是定值;②是定值,请作出正确的选择,并求出其定值.9.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM 上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.11.已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若2-++-=.m n m n|2|(18)0(1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:①是定值;②是定值,请选择正确的一个并加以证明.12.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.13.已知线段AB=20,点P是直线AB上一动点,M是AP的中点,N是PB的中点.如图1(1)当点P在线段AB上运动时,MN的长度是否改变?(2)当点P在线段AB的延长线上时如图2,MN的长度是否改变?14.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,Ⅳ为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变.选择一个正确的结论,并求出其值.15.如图点P为线段AB的中点,M为PB上任一点,试探究2PM与AM﹣BM之间的大小关系,并简要说明理由?16.如图,位于青年大街AB段上有四个居民小区A,C,D,B,其中AC=CD=DB.现想在AB段上建一家超市,要求各居民区到超市的路程总和最小.请你确定超市的位置,并说明你的理由.17.加油站如何选址:某公共汽车运营线路AB段上有A,B,C,D四个汽车站,如图所示,现在要在AB段上修建一个加油站M,为了使加油站选址合理,要求A,B,C,D四个汽车站到加油站M的路程总和最小,试分析加油站M在何处选址最好?18.在同一个学校上学的小明、小伟、小红三位同学住在A,B,C三个住宅区,如图所示(A,B,C在同一条直线上),且AB=60米,BC=100米,他们打算合租一辆接送车去上学,由于车位紧张,准备在周围只设一个停靠点,为使三位同学步行到停靠点的路程之和最小,你认为停靠点应该设在哪里?并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(完整版)有关线段的
动点问题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
有关线段的动点问题
1.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.
(1)求线段AB的长;
(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.
2.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
(1)写出数轴上点B所表示的数;
(2)点P所表示的数;(用含t的代数式表示);
(3)M是AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化若变化,说明理由;若不变,请你画出图形,并求出线段MN的长.
3.如图,P是定长线段AB上一点,C、D两点同时从P、B出发分别以1cm/s和2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上).已知C、D运动到任一时刻时,总有PD=2AC.
(1)线段AP与线段AB的数量关系是:;
(2)若Q是线段AB上一点,且AQ﹣BQ=PQ,求证:AP=PQ;
(3)若C、D运动5秒后,恰好有CD=AB,此时C点停止运动,D点在线段PB上继续运动,M、N分别是CD、PD的中点,问的值是否发生变化若变化,请说明理由;若不变,请求出的值.
4.如图,已知:线段AD=10cm,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,设点B运动时间为t秒(0≤t≤10).
(1)当t=6秒时,AB= cm;
(2)用含t的代数式表示运动过程中AB的长;
(3)在运动过程中,若AB中点为E,BD的中点为F,则EF的长是否发生变化若不变,求出EF的长;若发生变化,请说明理由.
5.如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE
(1)若AB=18,BC=21,求DE的长;
(2)若AB=a,求DE的长;(用含a的代数式表示)
(3)若图中所有线段的长度之和是线段AD长度的7倍,则的值为.
6.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.
(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.
(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的
值.
7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s 的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上).(1)若AB=10cm,当点C、D运动了1s,求AC+MD的值;
(2)若点C、D运动时,总有MD=3AC,直接填空:AM= AB;
(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.
8.已知线段AB=12,CD=6,线段CD在直线AB上运动(C、A在B左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;
(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:
①是定值;②是定值,请作出正确的选择,并求出其定值.
9.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.
(1)问运动多少时BC=8(单位长度)
(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是;
(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.
10.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、
3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM 上)
(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.
(2)若点C、D运动时,总有MD=3AC,直接填空:AM= AB.
(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.
11.已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若
2
-++-=.
m n m n
|2|(18)0
(1)求线段AB、CD的长;
(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;
(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:①是定值;②是定值,请选择正确的一个并加以证明.
12.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,
AB=14.
(1)若点P在线段AB上,且AP=8,求线段MN的长度;
(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:
①的值不变;②的值不变,请选择一个正确的结论并求其值.
13.已知线段AB=20,点P是直线AB上一动点,M是AP的中点,N是PB的中点.如图1(1)当点P在线段AB上运动时,MN的长度是否改变
(2)当点P在线段AB的延长线上时如图2,MN的长度是否改变
14.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP 的中点.
(1)出发多少秒后,PB=2AM
(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.
(3)当P在AB延长线上运动时,Ⅳ为BP的中点,下列两个结论:①MN长度不变;
②MA+PN的值不变.选择一个正确的结论,并求出其值.
15.如图点P为线段AB的中点,M为PB上任一点,试探究2PM与AM﹣BM之间的大小关系,并简要说明理由
16.如图,位于青年大街AB段上有四个居民小区A,C,D,B,其中AC=CD=DB.现想在AB 段上建一家超市,要求各居民区到超市的路程总和最小.请你确定超市的位置,并说明你的理由.
17.加油站如何选址:某公共汽车运营线路AB段上有A,B,C,D四个汽车站,如图所示,现在要在AB段上修建一个加油站M,为了使加油站选址合理,要求A,B,C,D四个汽车站到加油站M的路程总和最小,试分析加油站M在何处选址最好
18.在同一个学校上学的小明、小伟、小红三位同学住在A,B,C三个住宅区,如图所示(A,B,C在同一条直线上),且AB=60米,BC=100米,他们打算合租一辆接送车去上学,由于车位紧张,准备在周围只设一个停靠点,为使三位同学步行到停靠点的路程之和最小,你认为停靠点应该设在哪里并说明理由.。

相关文档
最新文档