常见的微分方程模型
常见微分方程模型

设N(t)为t时刻的人口,则在[t,t+△t]时间内人口的增长 量为: N(t+△t)-N(t) ≈rN(t). △t 设t=t0时的人口为N0,则可以建立模型:
dN (t ) rN (t ) dt N (t 0 ) N 0
该初值问题的解为:
N (t ) N0er (t t 0)
称之为Logistic模型
上述模型的解为:
Nm N (t ) 1 ( N m / N 0 1)e r (t t 0)
模型分析: (1)仍然用1790年至1980年的美国人口进行分析, 发现人口误差非常小。当然随着时间的增加,误差会 大些,这是因为Nm随着科技的提高会不一样。 (2)人也属于生物,故上述两种模型也适用于类似环 境下单一物种生存的其他生物模型,如数目增长,池 塘鱼的增长等。 (3)欲建立更精确的模型,应根据成员的年龄分组及 把成员性别分开。
可算出白铅中铅的衰变率 y0 ,再于当时的矿物 比较,以鉴别真伪。 矿石中铀的最大含量可能 2~3%,若白铅中铅210 每分钟衰变超过3 万个原子,则矿石中含铀量超 过 4%。
测定结果与分析
画名 Emmaus的信徒们 洗足 钋210衰变原子数 镭226衰变原子数
8.5 12.6
0.82 0.26
间的年代:
真正的年代=
c
14
年 1.4 900
3、 范. 梅格伦(Van Meegren) 伪造名画案
第二次世界大战比利时解放后,荷兰保安机关开始搜
捕纳粹分子的合作者,发现一名三流画家H.A.Vanmeegren 曾将17世纪荷兰著名画家Jan.Vermeer的一批名贵油画盗卖 给德寇,于1945年5月29日通敌罪逮捕了此人。 Vanmeegren被捕后宣称他从未出卖过荷兰的利益,所
微分方程(组)模型

③
(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例
二阶微分方程及其模型

x 4 y (1 ) . 2
3 4
3 4 1 4
3 4
二、二阶线性微分方程
一阶线性微分方程 二阶线性微分方程
dy P( x) y f ( x) dx
d y dy P ( x ) Q( x ) y f ( x ) 2 dx dx
1
)dx.
dp 1 x 解:令y p, p xe(一解线性方程) dx x
C1 2 y [ xe xC1 ]dx ( x 1)e x C2 . 2
x
[ xe e
x
1 dx x
dx C 1 ]dx xe x xC 1 ,
(3) y f ( y, y) (方程右端不显含 x)
,
y1 x Qm e
k ( 2) m
( j ) x
,
y x e [Qm e
k
x
jx
Qm e
jx
]
x e [ R ( x ) cosx R ( x ) sinx ],
k
x
(1) m
(1) ( 2) 其中 Rm ( x ), Rm ( x )是m次多项式,m maxl , n
( 2)
的一个特解 , Y 是与(2) 对应的齐次方程 (1) 的通 解, 那么 y Y y * 是二阶非齐次线性微分方程(2) 的通解.
2. 二阶常系数齐次线性方程解法
y py qy 0
rx
-----特征方程
设 y e , 将其代入上方程, 得 ( r pr q )e 0
例3 求方程 y y x cos 2 x 的通解. 解 对应齐方通解 Y C1 cos x C2 sin x ,
微分方程预测模型实例

微分方程预测模型实例引言微分方程是数学中的重要概念,用于描述自然界中的各种变化和现象。
它在物理学、工程学、经济学等领域都有广泛应用。
在本文中,我们将介绍微分方程预测模型的概念和实例,以帮助读者更好地理解和应用这一方法。
什么是微分方程预测模型?微分方程预测模型是一种利用已知条件和规律,通过建立微分方程来预测未来变化的方法。
它基于数学原理和统计学方法,通过对已有数据进行拟合和分析,得出一个能够描述系统行为的微分方程,并利用该方程进行未来的预测。
微分方程预测模型的应用微分方程预测模型广泛应用于各个领域,下面我们以经典案例为例介绍其中两个:1. 成长模型成长模型是一类常见的微分方程预测模型。
它通常用于描述人口、生物群体等在时间上的增长情况。
以人口增长为例,我们可以假设人口增长率与当前人口数量成正比,即:dPdt=kP其中,P表示人口数量,k为比例常数。
这是一个一阶线性常微分方程,可以通过求解得到人口数量随时间的变化情况。
通过拟合已有的人口数据,我们可以得到合适的k值,并利用该方程进行未来人口数量的预测。
2. 热传导模型热传导模型是另一个常见的微分方程预测模型。
它通常用于描述物体内部温度随时间和空间的变化情况。
以一维热传导为例,我们可以假设物体内部温度变化率与温度梯度成正比,即:∂T ∂t =α∂2T∂x2其中,T表示温度,α为热扩散系数。
这是一个二阶偏微分方程,可以通过求解得到物体内部温度随时间和空间的变化情况。
通过拟合已有的温度数据和边界条件,我们可以得到合适的α值,并利用该方程进行未来温度分布的预测。
微分方程预测模型实例下面我们以一维热传导模型为例,介绍微分方程预测模型的具体实现步骤。
步骤一:收集数据首先,我们需要收集已有的温度数据。
假设我们有一个金属棒,长度为L,初始时刻t=0时,金属棒上各点的温度分布已知。
步骤二:建立微分方程根据热传导模型的假设,我们可以建立如下的一维热传导方程:∂T ∂t =α∂2T∂x2其中,T(x,t)表示金属棒上某点处的温度,α为热扩散系数。
微分方程的经典模型

模型分析
问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重 (记为W)关于时间t的函数。如果我们把体重W看作是时间t的连续可微函数, 我们就能找到一个含有的
dW 微分方程。 dt
模型假设
W0 ; 1.W ( t ) 表示 t 时刻某人的体重,并设一天开始时人的体重为 2. W ( t ) 关于 t 连续而且充分光滑;
模型建立
游击作战模型的形式:
,
(t) f (x, y) x (t) g(x, y) y x(0) x , y(0) y 0 0
, 由假设2、3,甲乙双方的战斗减员率分别为
f(x ,y ) c x y
g (x ,y )dxy
结合以上两表达式,并代入 c、d 的值,可得游击作战的数学模型
或被歼灭)的一方为败。因此,如果 K K0 ,则乙的兵力减少到
甲方兵力降为“零”,从而乙方获胜。同理可知, K0
K0 胜。而当
a
时
时,甲方获
时,双方战平。
2 2 bx ay 0 甲方获胜的充要条件为 0 0
代入a 、b 的表达式,进一步可得甲方获胜的充要条件为
2 2 r p x r p y x x 0 y y 0
模型建立 根据假设得到一般的战争模型
x ( t) f( x ,y ) x u ( t) y ( t) g ( x ,y ) y v ( t) x ( 0 )x , y ( 0 )y 0 0
正规作战模型
模型假设
1.不考虑增援,并忽略非战斗减员;
得:
其解为:
i(t) i0e
k0t
模型分析与解释
这个结果与传染病初期比较吻合,但它表明病人人数将按指数规律 无限增加,显然与实际不符
一阶常微分方程-高阶常微分方程-方程组-差分方程-偏微分方程模型

计可以通过
dN / dt r sN , s r
N
进行线性拟合。其中
Nm
dN / dt N / t
。而
模型的检验也可以通过这两个参数的估计
量与一个实际的人口数量之间进行比较加
以检验。
(5) 阻滞增长模型不仅能够大体上描述人 口及许多物种的变化规律,而且在社会经
济领域中有广泛的应用,如耐用消费品的 销售量也可以用此模型来描述。
新技术推广模型
一项新技术如何在有关企业中推广,是 人们最为关心的问题,也就是说,一旦一家企 业采用了一项新技术,那么行业中的其他企 业将以怎样的速度采用该技术?哪些因素 将影响到技术的推广?下面我们在适当的 条件下讨论此问题。
记p(t)为t 时刻采用该技术的企业数。并
设 p(t)连续可微。假设未采用该技术者之所 以决定采用该技术,是因为其已知有的企 业采用了该技术并具有成效。即是以“眼 见为实”作为决策依据的,亦即“示范效应” 在起作用。
增长率递增的现象),但是随着人口数的 增加,人口的年增长率将呈现逐年递减的 现象。再考虑到环境适应程度的制约,想 象人口的增长不可能超过某个度。
(2)对于其中常数增长率r 的估计可以使用 拟合或者参数估计的方法得到。
(3)在实际情况下,可以使用离散的近似 表达式 N (t) N0 (1 r)t 作为人口的预测表 达式。
在式 (1) 中,设
A A0ert ( A0 , r 0)
即自发支出有一个常数增长率r ,则式 (2) 的
解为
Y (t)
(
A0
r)
e t
Y0
(
A0
r)
e
t
由此可见:
(1)当
r
常见的微分方程模型

常见的微分方程模型微分方程是数学的一个重要分支,广泛应用于自然科学和工程领域。
它描述了物理现象、社会问题和自然现象的变化规律,能够帮助我们理解和预测各种现象的发展趋势。
下面将介绍一些常见的微分方程模型。
1. 一阶线性微分方程一阶线性微分方程是最简单且常见的微分方程之一。
它可以描述许多实际问题,比如放射性衰变、人口模型等。
一阶线性微分方程的一般形式可以写为dy/dt = f(t) * y + g(t),其中f(t)和g(t)是已知函数,y是未知函数。
2. 指数衰减模型指数衰减模型是描述某种变化过程的常见微分方程。
它可以用来描述放射性物质的衰变、人口增长的趋势等。
指数衰减模型的一般形式是dy/dt = -ky,其中k是常数。
这个方程表示y的变化速率与y本身成比例,且反向。
3. 扩散方程扩散方程是描述物质或能量传递过程的微分方程。
它可以用来研究热传导、扩散现象等。
扩散方程的一般形式是∂u/∂t = D ∇²u,其中u是未知函数,D是扩散系数,∇²是Laplace算子。
这个方程表示u 的变化率与u的二阶导数成正比。
4. 多体问题多体问题是描述多个物体之间相互作用的微分方程模型。
它可以用来研究天体运动、分子碰撞等问题。
多体问题的方程通常包括牛顿第二定律和对应的初始条件,如F = ma和相关的速度、位置初值条件。
5. 随机微分方程随机微分方程是考虑了随机因素的微分方程模型。
它可以用来研究金融市场的波动、生态系统的不确定性等。
随机微分方程的方程形式通常会引入一个随机项,如dy/dt = f(t, y) dt + g(t, y) dW,其中dW是布朗运动,表示随机项。
以上介绍的是一些常见的微分方程模型,它们在理论和实际应用中都具有重要的地位。
通过研究这些模型,我们可以深入理解各种现象背后的数学规律,并且为实际问题提供解决方案。
微分方程模型不仅有助于推动数学的发展,还在科学研究、工程设计和技术创新等领域中发挥着重要作用。
人口增长的微分方程模型

人口增长的微分方程模型通常基于Malthusian或Logistic增长模型。
以下是这两种常见的人口增长模型:
1. **Malthusian模型**:
Malthusian模型是人口增长的最简单模型之一,它基于以下假设:
- 人口的增长率与当前人口数量成正比。
- 增长率是恒定的,不受其他因素的影响。
用数学符号表示,Malthusian模型可以写成如下的微分方程:
\(\frac{dP}{dt} = rP\)
其中,\(P\) 表示人口数量,\(t\) 表示时间,\(r\) 表示增长率。
这个方程的解是指数函数,人口数量会随时间指数增长。
2. **Logistic模型**:
Logistic模型更贴近实际情况,考虑了人口增长的有限性。
它基于以下假设:- 人口的增长率与当前人口数量成正比,但随着人口接近一个上限,增长率会减小。
- 人口增长率的减小是受到资源限制或竞争的影响。
Logistic模型的微分方程如下:
\(\frac{dP}{dt} = rP(1 - \frac{P}{K})\)
其中,\(P\) 表示人口数量,\(t\) 表示时间,\(r\) 表示初始增长率,\(K\) 表示人口的上限或最大承载能力。
这个方程的解是S形曲线,人口数量会在接近\(K\) 时趋于稳定。
需要注意的是,实际的人口增长受到多种复杂因素的影响,包括出生率、死亡率、移民等。
因此,上述模型是简化的描述,用于理论分析和初步估算。
实际人口增长的模拟需要更复杂的模型和更多的参数考虑。
此外,这些模型还可以扩展,以包括更多的因素,如年龄结构、性别比例和社会因素等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的微分方程模型
引言
微分方程是数学中的一个重要分支,用于描述自然界中的各种现象和规律。
微分方程模型是一类特定形式的微分方程,常用于解决实际问题。
本文将介绍几个常见的微分方程模型,并讨论它们在不同领域中的应用。
1. 简单增长模型
简单增长模型描述了一个系统中某个物质或某个群体数量随时间变化的规律。
它可以用以下形式表示:
dN
dt
=rN
其中,N表示物质或群体的数量,t表示时间,r表示增长率。
这个模型可以应用于人口增长、细菌繁殖等问题。
例如,在人口学中,我们可以使用简单增长模型来预测未来人口数量的变化趋势。
2. 指数衰减模型
指数衰减模型描述了一个系统中某个物质或某个群体数量随时间指数衰减的规律。
它可以用以下形式表示:
dN
dt
=−rN
其中,N表示物质或群体的数量,t表示时间,r表示衰减率。
这个模型可以应用于放射性元素的衰变、药物的消失等问题。
例如,在医学中,我们可以使用指数衰减模型来预测药物在人体内的浓度随时间的变化。
3. 指数增长模型
指数增长模型描述了一个系统中某个物质或某个群体数量随时间指数增长的规律。
它可以用以下形式表示:
dN dt =rN(1−
N
K
)
其中,N表示物质或群体的数量,t表示时间,r表示增长率,K表示系统的容量。
这个模型可以应用于生态学中研究种群数量随时间变化的问题。
例如,在生态学中,我们可以使用指数增长模型来研究某种生物在特定环境下的种群动态。
4. 鱼类生长模型
鱼类生长模型描述了鱼类体重随时间变化的规律。
它可以用以下形式表示:
dW dt =rW(1−
W
K
)
其中,W表示鱼类的体重,t表示时间,r表示生长速率,K表示饱和重量。
这个模型可以应用于渔业学中研究鱼类养殖和捕捞的问题。
例如,在渔业学中,我们可以使用鱼类生长模型来预测鱼类的生长轨迹和最优捕捞量。
5. 热传导方程
热传导方程描述了物体内部温度随时间和空间变化的规律。
它可以用以下形式表示:
∂u ∂t =α
∂2u
∂x2
其中,u(x,t)表示物体在位置x处、时间t时的温度,α表示热扩散系数。
这个模型可以应用于研究物体的热传导过程。
例如,在工程领域中,我们可以使用热传导方程来设计散热器、预测材料的温度分布等。
结论
微分方程模型是解决实际问题的重要工具之一。
本文介绍了几个常见的微分方程模型,并讨论了它们在不同领域中的应用。
通过对这些模型的研究和应用,我们可以更好地理解和预测自然界中各种现象和规律。
注:本文所涉及到的微分方程模型只是众多可能性中的一部分,实际应用中可能还存在其他更复杂的模型。
对于具体问题的建模和求解,需要根据实际情况选择适当的模型和方法。