1微分方程模型建立
微分方程(组)模型

③
(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例
微分方程模型方法

物理现象模型
总结词
物理现象模型是利用微分方程来描述物理现象的动态变化过程,如力学、电磁学、光学 等。
详细描述
物理现象模型可以帮助科学家深入理解物理现象的本质和规律,预测新现象和新技术的 发展。例如,通过建立微分方程来描述电磁波的传播过程,可以研究电磁波的传播规律
和特性。
05 微分方程模型的发展趋势 与挑战
人口动态模型
总结词
人口动态模型是利用微分方程来描述人 口数量随时间变化的规律,预测未来人 口规模和结构。
VS
详细描述
人口动态模型可以用来研究人口增长、出 生率、死亡率、迁移率等指标的变化趋势 ,为政策制定者提供依据,以制定合理的 计划生育政策。例如,Logistic模型是一 种常用的人口动态模型,通过建立微分方 程来描述人口数量的增长规律。
THANKS FOR WATCHING
感谢您的观看
数学软件
选择适合的数学软件,如MATLAB、 Python等,以便进行模型建立和求解。
建立微分方程模型
模型类型
根据问题类型和目标,选择合适的微分方程模型类型,如常微分方程、偏微分方 程等。
参数估计
根据收集到的数据和信息,估计模型中的参数,使模型能够更好地描述实际问题 。
03 微分方程模型的求解方法
确定研究范围
根据问题与目标,确定研究的范围和 边界条件,为建立模型提供基础。
收集数据与信息
数据来源
根据研究问题,确定合适的数据来源,如实验数据、观测数据、历史数据等。
数据处理
对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值剔除等,以 确保数据质量。
选择合适的数学工具
数学基础
根据问题类型和目标,选择合适的数 学基础,如线性代数、微积分、常微 分方程等。
微分方程(模型)

dx 2 或 x 0.03 dt 100 t 这是一阶线性非齐次方程,且有初值条件 x(0) 10,;利用8.3节的公式(5),可得此 C 方程的通解:x (t ) 0.01(100 t ) (100 t ) 2 有初值条件可得C 9 10 4,所以容器内含盐 量x随时间t的变化规律为 9 10 4 x 0.01(100 t ) 2 (100 t )
微分方程模型
重庆邮电大学
数理学院
引言
微分方程模型
当我们描述实际对象的某些特性随时间(空 间)而演变的过程、分析它的变化规律、预测它 的未来形态、研究它的控制手段时。通常要建立 对象的动态模型。
在研究某些实际问题时,经常无法直接得 到各变量之间的联系,问题的特性往往会给出关 于变化率的一些关系。利用这些关系,我们可以 建立相应的微分方程模型。在自然界以及工程技 术领域中,微分方程模型是大量存在的。它甚至 可以渗透到人口问题以及商业预测等领域中去, 其影响是广泛的。
四. 悬链线方程问题
将一均匀柔软的绳索两端固定,使之仅受重力的作 用而下垂,求该绳索在平衡状态下的曲线方程(铁塔 之间悬挂的高压电缆的形状就是这样的曲线)。 解 以绳索所在的平面为xoy 平面,设绳索最低点 为y轴上的P点,如图8-1所示。考察绳索上从点p到 l 另一点Q(x,y)的一段弧 PQ ,该段弧长为 ,绳索线密 度为 l ,则这段绳索所受重力为gl 。由于绳索是软 的,
y x 2 2.
微分方程的几个应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一. 嫌疑犯问题
微分方程的基本理论

数学建模方法
2020年10月18日星期日10时41分24
12/32
1.3、微分方程模型的求解
>>在常微分方程(组)中影响结果的变量只有一个 ,而偏微分方程研究的是有多个变量影响结果时的 规律。求解微分方程的方法大致有两类:一类是通 过对微分方程两端积分得到显式表示的完全解,进 而通过解的表达式分析模型结果;另一类方法是数 值解法,这种解法通常需要计算软件的协助,解的 结果通常使用图形的方式表示,或者可以求出某些 关键点的函数值。本章将利用上述方法讨论具体的 微分方程的建模问题。
20/32
2.1、治污中溶液浓度的变化 4) 推广应用 >>江河湖海污染的治理以及矿井和化工厂的通风问 题都可以仿照溶液浓度问题建立相应的微分方程模 型。
数学建模方法
2020年10月18日星期日10时41分24
21/32
2.2、侦破中死亡时间的推测
1)背景介绍
>>死亡时间指死后经历时间或死后间隔时间,是指发 现、检查尸体时距死亡发生时的时间间隔。注重尸表 检查、判定,具有实际价值。死亡时间推断是指推测 死亡至尸体解剖时经历或间隔时间。早在三百多年前, 意大利医生已经明确指出:死亡时间推断是法医学鉴 定中首先要解决的问题。 >>死亡时间推断意义:⑴推断死亡时间对确定发案时 间,认定和排除嫌疑人有无作案时间,划定侦察范围 乃至案件的最终侦破均具有重要作用;⑵死亡时间推 断在某些财产继承、保险理赔案件中也有一定的作用。
数学建模方法
2020年10月18日星期日10时41分24
8/32
1.2、微分方程模型建立
2)列方程的常见方法 ①利用导数的概念直接列方程
>>在数学、力学、物理、化学、经济等学科中许多 自然现象所满足的规律已为人们所熟悉,并直接由 微分方程所描述。如牛顿第二定律、热传导定律、 放射性物质的放射性规律等,如生产函数、财富的 积累等。我们常利用这些规律对某些实际问题列出 微分方程。
微分方程方法建模

微分方程方法建模微分方程方法是数学中一种重要的建模方法,通过将实际问题抽象为微分方程,再进行求解,可以得到问题的解析解或数值解。
微分方程方法建模的过程通常包括问题的建立、方程的确定、初值条件的确定、求解方程、结果的分析和验证等步骤。
首先,问题的建立是微分方程方法建模的首要步骤。
在问题建立过程中,我们需要仔细分析问题,确定出其中的关键因素和变量,并找出它们之间的关系。
例如,可以考虑一个简单的生长模型,假设一个细菌种群的数量随时间的变化。
在这个问题中,关键因素是细菌的增长速率和死亡速率,变量是时间和细菌数量。
我们可以用微分方程来描述这个模型,令N(t)表示时间t时刻的细菌种群数量,则细菌种群数量随时间的变化满足微分方程dN/dt = rN - cN,其中r是细菌增长速率,c是细菌死亡速率。
确定微分方程是建立模型的核心工作。
通常情况下,微分方程可以由物理定律或经验公式导出,也可以根据问题的特点进行假设推导。
在确定微分方程的过程中,需要考虑到问题的实际情况,确定问题的边界条件和约束条件。
例如,在考虑一个容器中的流体流动问题时,可以利用质量守恒和动量守恒定律导出流体的运动方程,然后根据容器的几何形状和边界条件确定相应的边界条件。
确定微分方程后,还需要确定初值条件。
初值条件是微分方程问题的额外信息,通过初值条件我们可以确定方程的特定解。
初值条件可以是方程在一些特定时刻的解,也可以是方程在一些特定点的解。
例如,在考虑细菌生长模型时,我们可以通过实验测得初始时刻的细菌数量N0,则细菌生长模型的初值条件为N(0)=N0。
求解微分方程是微分方程方法建模的核心内容。
微分方程的求解可以分为解析解和数值解两种方法。
解析解是指能够用解析表达式表示出的方程解,它们可以通过分离变量、常数变易和变量替换等方法求解。
数值解则是通过数值计算方法得到的逼近解,常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。
在实际建模中,求解微分方程时往往会根据问题的复杂程度和需求选择合适的求解方法。
1初识微分方程建模

三、举例
例3 将室内一支读数为60°的温度计放到室外,10min后 温度计的读数为70°,又过了10min,读数为76°,利用牛顿 冷却定律计算室外温度。 牛顿冷却定律:将温度为T的物体放入处于常温m的介质中 T的变化速率正比与T与周围介质的温度差。 解:由牛顿冷却定律可知:dT/dt与T-m成比例 即 方程的解为: 结合给定的三个条件 计算出A,K,m
y = 0.0624 y0
时的t
将y代入上式解得t=22400yr
三、举例
习题 结合例5,计算C14的半衰期是多少? (数量衰减到一半的时间) 解 由例5可知
y0 / 2 = y0 e − t / 8000
ln 0.5 = −t / 8000, t ≈ 5600 yr
三、举例
例6 一只装满水的圆柱型桶,底面半径为10ft,高为20ft 底部有一个直径为1ft的孔,问桶流空要多少时间? 对孔的流速加一个假设:假设时刻t的流速依赖与此刻桶内 水的高度h(t),显然装满水时要比快流空时要快,进一步的假设 无能量损失,那么当少量水流出时,顶部减少的势能须等于 等量的水流出小孔时的动能。即 mgh=1/2mv2, 则可得: v=(2gh)1/2 这是物理中的托利拆里定律,模型这样假设看起来过于简单 但至少速度依赖与高度看来是合理的,接下来进行数学上的分析 解:随着水从小孔流出,桶内水的体积不断的减少, 设A为桶的水平面积,B为孔的水平面积。 则在任意时间间隔dt内,-Adh=Bds,ds为孔dt时间内水流的距离 问题是t=?时h=0。所以要求出h(t)。此时可通过上面的方程求出
四、习题
7、污染物质的含量为2g/L的水以500L/min的速度流过处理 箱。在箱内每分钟处理掉2%的污染物,且水被彻底摇匀。 处理箱可容纳10000L的水,在处理场开张时,箱内装满 纯净水,求流出的水中污染物浓度的函数? 解 设p(t)=箱内污染物的数量 dp/dt=流入-流出=(2g/L)(500L/min) -(p(t)g/10000L)(500L/min) -0.02p(t)g/min 解得dp/dt=1000-0.07p及p=(10000/7)(1-ce-0.07t) 由t=0时,p=0,得c=1
微分方程的经典模型

模型分析
问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重 (记为W)关于时间t的函数。如果我们把体重W看作是时间t的连续可微函数, 我们就能找到一个含有的
dW 微分方程。 dt
模型假设
W0 ; 1.W ( t ) 表示 t 时刻某人的体重,并设一天开始时人的体重为 2. W ( t ) 关于 t 连续而且充分光滑;
模型建立
游击作战模型的形式:
,
(t) f (x, y) x (t) g(x, y) y x(0) x , y(0) y 0 0
, 由假设2、3,甲乙双方的战斗减员率分别为
f(x ,y ) c x y
g (x ,y )dxy
结合以上两表达式,并代入 c、d 的值,可得游击作战的数学模型
或被歼灭)的一方为败。因此,如果 K K0 ,则乙的兵力减少到
甲方兵力降为“零”,从而乙方获胜。同理可知, K0
K0 胜。而当
a
时
时,甲方获
时,双方战平。
2 2 bx ay 0 甲方获胜的充要条件为 0 0
代入a 、b 的表达式,进一步可得甲方获胜的充要条件为
2 2 r p x r p y x x 0 y y 0
模型建立 根据假设得到一般的战争模型
x ( t) f( x ,y ) x u ( t) y ( t) g ( x ,y ) y v ( t) x ( 0 )x , y ( 0 )y 0 0
正规作战模型
模型假设
1.不考虑增援,并忽略非战斗减员;
得:
其解为:
i(t) i0e
k0t
模型分析与解释
这个结果与传染病初期比较吻合,但它表明病人人数将按指数规律 无限增加,显然与实际不符
3.1微分方程模型-微分方程的几个简单实例

微分方程模型浙江大学数学建模实践基地§3.1 微分方程的几个简单实例在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题,本节将通过一些最简单的实例来说明微分方程建模的一般方法。
在连续变量问题的研究中,微分方程是十分常用的数学工具之一。
例1(理想单摆运动)建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。
从图3-1中不难看出,小球所受的合力为mgsin θ,根据牛顿第二定律可得:sin ml mg θθ=- 从而得出两阶微分方程:0sin 0(0)0,(0)g l θθθθθ+==⎪=⎧⎪⎨⎩ (3.1)这是理想单摆应满足的运动方程(3.1)是一个两阶非线性方程,不易求解。
当θ很小时,sin θ≈θ,此时,可考察(3.1)的近似线性方程:00(0)0,(0)g l θθθθθ+==⎧=⎪⎨⎪⎩ (3.2)由此即可得出2g T l π=(3.2)的解为: θ(t )=θ0cosωtg l ω=其中当时,θ(t )=04T t =42g T l π=故有M Q P mgθl 图3-1(3.1)的近似方程例2我方巡逻艇发现敌方潜水艇。
与此同时敌方潜水艇也发现了我方巡逻艇,并迅速下潜逃逸。
设两艇间距离为60哩,潜水艇最大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜水艇。
这一问题属于对策问题,较为复杂。
讨论以下简单情形:敌潜艇发现自己目标已暴露后,立即下潜,并沿着直线方向全速逃逸,逃逸方向我方不知。
设巡逻艇在A 处发现位于B 处的潜水艇,取极坐标,以B 为极点,BA 为极轴,设巡逻艇追赶路径在此极坐标下的方程为r =r (θ),见图3-2。
B AA1dr ds dθθ图3-2由题意,,故ds =2dr 2ds dr dt dt =图3-2可看出,222()()()ds dr rd θ=+故有:2223()()dr r d θ=即:3rdr d θ=(3.3)解为:3r Ae θ=(3.4)先使自己到极点的距离等于潜艇到极点的距离然后按(3.4)对数螺线航行,即可追上潜艇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本思想: 通过分析研究对象的有关变量在 一个很短时间内的变化情况.
例5.1.3 一个高为2米的球体容器里盛了一半 的水,水从它的底部小孔流出,小孔的横截面
积为1平方厘米. 试求放空容器所需要的时间.
对孔口的流速做两条假设 : 1.t 时刻的流速v 依赖于 此刻容器内水的高度h(t). 2 .整个放水过程无能 量损失。 2米
3 5 (700000 1000h 2 3h 2 )
0≤h≤100
令 h=0,求得完全排空需要约2小时58分.
四.分析法 基本思想:根据对现实对象特性的认识, 分析其因果关系, 找出反映内部机理的规律. 例5.1.4(独家广告模型)广告是调整商品销 售的强有力的手段, 广告与销售量之间有什 么内在联系?如何评价不同时期的广告效果?
分析 广告的效果, 可做如下的条件假设: *1. 商品的销售速度会因广告而增大, 当商品 在市场上趋于饱和时,销售速度将趋于一个极 限值;
*2. 商品销售率(销售加速度)随商品销售 速度的增高而降低; *3. 选择如下广告策略,t时刻的广告费用为:
建模 记 S(t) — t 时刻商品的销售速度; M — 销售饱和水平,即销售速度的上限;
其中参数k >0,m=18. 求得一般解为
ln(T-m)=-k t+c,
或
T m ce
kt
, t 0,
1 16 代入条件,求得c=42 , , 最后得 k ln 3 21 1 16 ln t T(t)=18+42 e 3 21 , t ≥0.
1 16 结果 :T(10)=18+42 3 ln 21 10 =25.870, e
分析:假设房间足够大,放入温度较低或较 高的物体时,室内温度基本不受影响,即室温 分布均衡,保持为m,采用牛顿冷却定律是一个 相当好的近似.
建立模型:设物体在冷却过程中的温度为 T(t),t≥0,
“T的变化速率正比于T与周围介质的温度差”
翻译为
dT 与T m成正比 dt
数学语言
建立微分方程
dT k (T m ), dt T (0) 60.
机理分析是根据对现实对象特性的认识, 分析其因果关系, 找出反映内部机理的规律.
机理分析方法立足于揭示事物内在规律
对的 现认 实识 对来 象源 *与问题相关的物理、化学、经济 等方面的知识. *通过对数据和现象的分析对事 物内在规律做出的猜想(模型假设).
模型特点:有明确的物理或现实意义
实际问题需寻求某个变量y 随另一变量 t 的 变化规律 :y=y(t). 建立关于未知变量、 未知变量的导数以及 自变量的方程
该物体温度降至300c 需要8.17分钟.
二. 利用平衡与增长式
许多研究对象在数量上常常表现出某种不变 的特性,如封闭区域内的能量、货币量等. 利用变量间的平衡与增长特性,可分析和建 立有关变量间的相互关系. 续例2.3 人口增长模型 对某地区时刻 t 的人口总数P(t),除考虑个 体的出生、死亡,再进一步考虑迁入与迁出 的影响.
2
记
令Δt
r 1002 (100 h)2 200h h2
0, 得
dV=-πr2 dh,
( 2)
比较(1)、(2)两式得微分方程如下:
2 0.62 2 ghdt ( 200h h )dh, h 100 . t 0
积分后整理得
t
4.65 2 g
改写模型
dS A( t ) p ( M S ( t )) S ( t ) dt M
dS A( t ) p ( M S ( t )) S ( t ) dt M
假设1*
市场“余 额”
假设2*
销售速度因广告作用增大, 同时 又受市场余额的限制.
直接求 很困难
建立变量能满足 的微分方程
哪一类问题
?
在工程实际问题中 “改变”、“变化”、“增加”、“减少”等关 键词提示我们注意什么量在变化. 关键词“速率”, “增长” ,“衰变” ,“边际 的” , 常涉及到导数. 运用已知物理定律 常 机理分 用建 析法 利用平衡与增长式 微立 分方 运用微元法 方法 程 应用分析法
dV 0.62 2 ghdt
水位降低 体积变化
(1)
h(t)
r1 r2
h+Δh
在[t,t+Δt ]内,水面高度 h(t) 降至h+Δh (Δh<0), 容器中水的体积的改变量为
V V ( h) V ( h h)
h[3(r r ) o(h)]
2 1 2 2
r h o(h)
A, A( t ) 0,
0 t ; t .
λ(>0)— 衰减因子,广告作用随时间的 推移而自然衰减的速度.
直接建立微分方程
dS S (t ) pA( t )(1 ) S ( t ) dt M
称 p 为响应系数,表征A(t) 对 S(t) 的影响力.
模型分析:是否与前三条假设相符?
一、运用已知物理定律
建立微分方程模型时
应用已知物理定律, 可事半功倍 例5.1.1 一个较热的物体置于室温为180c的 房间内,该物体最初的温度是600c,3分钟以后 降到500c .想知道它的温度降到300c 需要多少时 间?10分钟以后它的温度是多少?
牛顿冷却(加热)定律:将温度为T的物体 放入处于常温 m 的介质中时,T的变化速率 正比于T与周围介质的温度差.
分析: 放空容器
?
容器内水的体积为零
容器内水的高度为零 模型建立:由水力学知:水从孔口流出的 流量Q为通过“孔口横截面的水的体积V对时 间t 的变化率”,即
dV Q 0.62 S 2 gh dt
S—孔口横截面积(单位:平方厘米)
h(t) —水面高度(单位:厘米) t—时间(单位:秒) 当S=1平方厘米,有
2)Y方军队的一个士兵在单位时间内杀死X 方军队 a 名士兵;
3)X 方军队的一个士兵在单位时间内杀死Y 方军队 b 名士兵; {Δt 时间内X军队减少的士兵数 } = {Δt 时间内Y军队消灭对方的士兵数} 即有
同理 令Δt
Δx =-ayΔt, Δy =-bxΔt,
0, 得到微分方程组:
平衡式
dx ay, (a 0) dt dy bx , (b 0) dt
在很短的时间段Δt 内,关于P(t)变化的一个 最简单的模型是: {Δt时间内的人口增长量}= {Δt内出生人口数}-{Δt内死亡人口数}
+ {Δt内迁入人口数}-{Δt内迁出人口数} 更般 一化 基本模型
{Δt时间内的净改变量} ={Δt时间内输入量}-{Δt时间内输出量}
不同的输入、输出情况对应不同的差分或 微分方程. 输入量 含系统外部输入及系统内部产生的量; 输出量 含流出系统及在系统内部消亡的量. 此类建模方法的关键是
分析并正确描述基本模型的右端, 使平衡式成立 例5.1.2 战斗模型 两方军队交战, 希望为 这场战斗建立一个数学模型,应用这个模型 达到如下目的:
1. 预测哪一方将获胜?
2. 估计获胜的一方最后剩下多少士兵? 3. 计算失败的一方开始时必须投入多少 士兵才能赢得这场战斗?
模型建立: 设 x(t) — t 时刻X方存活的士兵数; y(t) — t 时刻Y方存活的士兵数; 假设: 1)双方所有士兵不是战死就是活着参加 战斗, x(t)与y(t)都是连续变量.