微分方程模型1基础知识共73页文档
微分方程模型介绍

微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。
求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。
建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。
2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。
()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。
这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。
微分方程(组)模型

③
(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例
第三章-微分方程模型

微分方程模型1.1微分方程模型简介对于现实世界的变化,人们关注的往往是变量之间的变化率,或者变化速度、加速度以及所处的位置随时间的发展规律,之中的规律一般可以写成一个(偏)微分方程或方程组。
所以实际问题中,有大批的问题可以用微分方程来建立数学模型,涉及的领域包括物理学、化学、天文学、生物学、力学、政治、经济、军事、人口、资源等等。
微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。
把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步:1•、根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系;2•、找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等);3•、运用这些规律列出方程和定解条件。
2.1微分方程模型运用实例例1:发射卫星为什么用三级火箭采用运载火箭把人造卫星发射到高空轨道上运行,为什么不能用一级火箭而必须用多级火箭系统?下面通过建立运载火箭有关的数学模型来回答上述问题。
火箭是一个复杂的系统,为了使问题简单明了,我们只从动力系统和整体结构上分析,并且假设引擎是足够强大的。
首先解决第一个问题:为什么不能用一级火箭发射人造卫星,下面用三个数学模型回答这个问题:(1 )卫星进入600km高空轨道时,火箭必须的最低速度。
首先将问题理想化,假设:(i)卫星轨道是以地球中心为圆心的某个平面上的圆周,卫星在此轨道上以地球引力作为向心力绕地球作平面匀速圆周运动;(ii )地球是固定于空间中的一个均匀球体,其质量集中于球心;iii)其它星球对卫星的引力忽略不计。
建模与求解:设地球半径为R,质量为M ;卫星轨道半径为r,卫星质量为m。
根据假设(")和(iii),卫星只受到地球的引力,由牛顿万有引力定律可知其引力大小为GMmF—(1)r其中G为引力常数。
为消去常数G,把卫星放在地球表面,则由(1)式得GMm 亠m2 mg 2 或GM 二R g R再代入(1)式,得根据假设(i ),若卫星围绕地球作匀速圆周运动的速度为 因为卫星所受的地球引力就是它作匀速运动的向心力,故有(R ^ mv 2mg — I =——r由此便推得卫星距地面为 (r 一 R )km ,必须的最低速度的数学模型为 (3)取 R= 6400km ,r -R= 600km ,代入上式,得v 7.6km/s即要把卫星送入离地面 600km 高的轨道,火箭的末速度最低应为7.6km/s 。
数学建模-微分方程模型.pptx

数学建模- 微分方程模型
xx 同济大学数学科学学院
谢谢你的阅读
1
一、什么是微分方程?
最最简单的例子
2019年11月8
谢谢你的阅读
2
引例 一曲线通过点(1,2),且在该曲线任一点
M( x ,y )处的切线的斜率为2x,求该曲线的方程。
解 若设曲线方程为 y f (x),(1)
2019年11月8
谢谢你的阅读
51
阻滞增长模型 (Logistic模型)
人口增长到一定数量后,增长率下降的原因:
资源、环境等因素对人口增长的阻滞作用
且阻滞作用随人口数量增加而变大
r是x的减函数
假定: r(x) r sx (r, s 0) r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
2019年11月8
x0
谢谢你的阅读
t
x(t)~S形曲线, x增加先快后慢
53
模型的参数估计
用指数增长模型或阻滞增长模型作人口预报, 必须先估计模型参数 r 或 r, xm
• 利用统计数据用最小二乘法作拟合
例:美国人口数据(单位~百万)
1790 1800 1810 1820 1830 …… 1950 1960 1970 1980 3.9 5.3 7.2 9.6 12.9 …… 150.7 179.3 204.0 226.5
CO2的通入量 2000 dt 0.03, CO2的排出量 2000 dt x(t),
2019年11月8
谢谢你的阅读
29
CO2的改变量 CO2的通入量 CO2的排出量
12000dx 2000 dt 0.03 2000 dt x(t),
《微分方程模型》PPT课件

房室具有以下特征:它由考察对象均匀分布而成, (注:考察对象一般并非均匀分布,这里采用了一种简 化方法一集中参数法);房室中考察对象的数量或浓度 (密度)的变化率与外部环境有关,这种关系被称为 “交换”且交换满足着总量守衡。在本节中,我们将用 房室系统的方法来研究药物在体内的分布。在下一节中, 我们将用多房室系统的方法来研究另一问题。两者都很 环境 简单,意图在于介绍建模方法。
器倾翻,图中X点处注入湖中。在采取紧急
措施后,于11:35事故得到控制,但数量不详
B
的化学物质Z已泻入湖中,初步估计Z的量在5~20m3之间。 建立一个模型,通过它来估计湖水污染程度随时间的变化
并估计:
(1)湖水何时到达污染高峰;
(2)何时污染程度可降至安全水平(<0.05%)
湖泊污染问题分析
设湖水在t时的污染程度为C(t), X
0t 3 3t 4 t4
现回答上述问题
(1)t 6 代入对应方程,求得
W (6) 57.48247kg
(2)要满足体重不增,即dW (b 16W ) /10000 0
dt
所以b 16W 1657.1256 914 (cal)
因此每天总卡路里摄取量是1200+914=2114cal
因污染源被截断,故微分方程变为 2000 dC 6C
dt
: 它的特解为
630
C(t) C(30)e 2000
当达到安全水平,即C(t)=0.0005时,可求出 此时的t=T,即
T 30 (2000 / 6) ln(0.0005 / C(30))
解得
T 30 (2000 / 6) ln(0.9564Z)
引例一
微分方程和差分方程模型

3.2 差分方程模型
对于k阶差分方程 对于 阶差分方程 F( n; xn, xn+1, … , xn+k ) = 0 (3-6) 若有x 若有 n = x (n), 满足 F(n; x(n), x(n + 1) , … , x(n + k )) = 0,
k
则称xn = x (n)是差分方程 是差分方程(3-6)的解, 包含个任意常 则称 是差分方程 的 数的解称为(3-6)的通解 x0, x1, … , xk-1为已知时称 数的解称为 的通解, 为(3-6)的初始条件 通解中的任意常数都由初始条 的初始条件,通解中的任意常数都由初始条 件确定后的解称为(3-6)的特解 件确定后的解称为 的特解. 已知, 若x0, x1, … , xk 1已知 则形如 xn+k = g(n; xn, xn+1, … , xn+k-1 ) 的差分方程的解可以在计算机上实现. 的差分方程的解可以在计算机上实现
建立坐标系 y o—处在台上的设计视点
a—第一排观众与设计视 点的水平距离 b—第一排观众的眼睛到x 轴的垂 直距离 d—相邻两排的排距
b o 问题
δ
a d d
—视线升高标准
x
x—表示任一排与设计视 点的水平距离
求任一排x与设计视点o的竖直距离函数 y = y (x ) 使此曲线满足视线的无遮挡要求。
如果 tlim x(t) = x0 , tlim y(t) = y0 , →+∞ →+∞ 则称平衡点P 稳定的 则称平衡点 0是稳定的. 下面给出判别平衡点P 是否稳定的判别 下面给出判别平衡点 0是否稳定的判别 准则. 准则 设 ∂f (P ) ∂f (P ) 0 0 ∂f (P ) ∂g(P ) ∂x ∂y 0 0 p = − + , q = ∂g(P ) ∂g(P ) 0 0 ∂y ∂x ∂x ∂y 则当p> 且 > 时 平衡点P 是稳定的; 则当 >0且q>0时, 平衡点 0是稳定的; 当p<0或q<0时, 平衡点 0是不稳定的 < 或 < 时 平衡点P 是不稳定的.
微分方程全部知识点

微分方程全部知识点微分方程是数学中一个重要的分支,用于描述变量之间的关系以及其之间的变化规律。
其在物理、工程、经济等领域都有广泛的应用。
下面将介绍微分方程的全部知识点。
一、基本概念和分类:1. 微分方程的定义和形式。
2. 微分方程的阶数和线性性。
3. 独立变量和因变量的概念。
4. 常微分方程和偏微分方程的区别。
二、常微分方程:1. 一阶常微分方程的解法:可分离变量、齐次方程、一阶线性方程、一阶伯努利方程、可化为可分离变量的方程。
2. 高阶常微分方程的解法:常系数线性齐次方程、常系数线性非齐次方程、二阶常系数齐次方程的特征方程、二阶线性非齐次方程的特解法。
3. 微分方程的解的存在唯一性定理。
4. 常微分方程的初值问题和边值问题。
三、偏微分方程:1. 常见的偏微分方程类型:椭圆型、抛物型、双曲型方程。
2. 二阶线性偏微分方程的分类和通解求法。
3. 常用偏微分方程的具体应用:热传导方程、波动方程、扩散方程等。
四、数值解法:1. 欧拉法和改进的欧拉法。
2. 龙格-库塔法。
3. 有限差分法和有限元法。
五、应用领域:微分方程在物理学、工程学、生物学、经济学等领域有广泛的应用。
例如:1. 牛顿运动定律中的微分方程。
2. 电路中的微分方程。
3. 生物种群数量变化的微分方程。
4. 经济增长模型中的微分方程。
总结:微分方程是数学中一个重要的分支,主要包括基本概念和分类、常微分方程、偏微分方程、数值解法以及应用领域等知识点。
掌握微分方程的解法和应用,对于理解自然和社会现象的规律具有重要作用。
微分方程模型

图示
y 敌艇 R=(0,at)
D(x,y)
x (c,0)
几何关系
dy tg y at
dx
x
即 x dy y at dx
如何消去时间t?
1、求导:
2、速度与路程的关系: b ds
dt
dt
3、分解 dx 得:
(这里有负号是因为s随x的减小而增大) 4、将第2、3步代入第1步,可得模型
注入浓度为c1的同样溶液,假定溶液立即被搅 匀,并以v2的流量流出这种混合后的溶液,试 建立容器中浓度与时间关系的数学模型。
模型的建立
参数设定:设容器中溶液溶质的质量为x(t),原 来的初始质量为x0,t=0时溶液的体 积为v0。
在△t的时间间隔内,容器内溶质的改变量:
其中c1:输入溶液浓度, c2:t时刻溶液浓度
2gy
(2)弧微分公式: ds 1 (y/ )2 dx
(3)下降的时间: dt ds ds 1 ( y/ )2 dx
v 2gy
2gy
模型:
2、追线问题
我缉私舰雷达发现,距c海里处有一艘走私 船正以匀速度a沿直线行驶,缉私舰立即以最大 的速度b追赶,若用雷达进行跟踪,保持船的瞬 时速度方向始终指向走私船,试求缉私舰追逐 路线和追上的时间。
令t 0,得 dp rp(N p), r 0, dt
p(0) 1
解
p(t)
N
为
1 (N 1)erNt
当t无穷大时,p(t)的趋向及范围? 还有当?时变化率最大?
如果考虑广告的效应呢?
考虑单位时间内使用该技术的企业数增量 时应把示范效应和广告效应一起考虑。而 广告只对没采用该技术的企业起作用。假 设其引起的增量与(N-p)成正比