2015年四川省雅安市中考数学试卷解析版

合集下载

四川省雅安中学2015届九年级12月月考数学试题

四川省雅安中学2015届九年级12月月考数学试题

一、选择题(每小题3分,共36分)每小题的四个选项中,仅有一个正确答案,请将正确答案的代号填涂在机读卡上。

⒈ 雅安市雨城区冬季某天早上气温是3℃,到午夜下降了4℃,那么午夜的气温是( ) A .7℃ B .1℃ C .-4℃ D .-1℃2.6月5日是世界环境日,其主题是“海洋存亡 匹夫有责”,目前全球海洋总面积约为36105.9万平方公里. 用科学记数法(保留三个有效数字)表示为( ) A .3.61×108平方公里 B .3.60×108平方公里 C .361×106平方公里D .36100万平公里3.在整式23y -,bc ,2x +,225ab ,0,y -,2621x x -+中,是单项式的个数是( )A .3B .4C .5D .64.下列事件中,必然事件是( )A .打开电视机,正在播放体育比赛B .明天是星期一C .掷一枚均匀的硬币,正面朝上D .在北半球,太阳会从东方升起 5.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)( B .)1()1()1)(1(-=---+m m m m m C .x x x x x 3)4)(4(3162+-+=+- D .)12(55102-=-x x x x6.如图,水平放置的圆柱形物体,中间有一细棒,则此几何体的左视图是( )A.B .C .D .7. 下列命题,真命题( )A .有两边相等的平行四边形是菱形B .有一个角是直角的四边形是矩形C .四个角相等的菱形是正方形D .平分弦的直径垂直于这条弦8.已知两圆的半径分别为一元二次方程27120x x -+=的二根,圆心距为2、则两圆位置关系为( )正面图N M N A B C D A B CD A BC D C D B A A .外离 B .外切 C .相交 D .内切9.如图,AB 是⊙O 的直径,C 是⊙O 上一点,若 AC ∶BC=4∶3,AB=10cm ,OD ⊥BC 于D , 则BD 的长为( ) A .23cm B .3cmC .5cmD .6cm10.将一张正方形纸片按下图所示的方式三次折叠,折叠后再按图中所示沿MN 裁剪,则可得( )A .多个等腰直角三角形B .一个等腰直角三角形和一个正方形C .四个相同的正方形D .两个相同的正方形11.如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA =8,OA =6,则tan ∠APO 的值为( )A .43B .53C .54D .3412.二次函数2y ax bx c =++的部分对应值如下表:下面关于二次函数及其图象说法不正确的是( )A .对称轴为x =1B .y 的最大值是-9C . 2x =对应的函数值y =-8D .抛物线截x 轴所得的线段长是6二、填空题(每小题3分,共15分)请将答案直接写在相应题的横线上。

四川省雅安市中考数学试卷(含答案)

四川省雅安市中考数学试卷(含答案)

四川省雅安市中考数学试卷参考答案与试题解析一、单项选择题(共12小题,每小题3分,共36分)1.(3分)(2014•雅安)π0的值是()A.πB.0C.1D.3.14考点:零指数幂.分析:根据零指数幂的运算法则计算即可.解答:解:π0=1,故选:C.点评:本题主要考查了零指数幂的运算.任何非0数的0次幂等于1.2.(3分)(2014•雅安)在下列四个立体图形中,俯视图为正方形的是()A.B.C.D.考点:简单几何体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:A、俯视图是一个圆,故本选项错误;B 、俯视图是带圆心的圆,故本选项错误;C、俯视图是一个圆,故本选项错误;D、俯视图是一个正方形,故本选项正确;故选:D.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.从上面看得到的图形是俯视图.3.(3分)(2014•雅安)某市约有4500000人,该数用科学记数法表示为()A.0.45×107B.4.5×106C.4.5×105D.45×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4500000有7位,所以可以确定n=7﹣1=6.解答:解:4 500 000=4.5×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2014•雅安)数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A.1B.3C.1.5 D.2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2014•雅安)下列计算中正确的是()A.+=B.=3C.a6=(a3)2D.b﹣2=﹣b2考点:幂的乘方与积的乘方;有理数的加法;立方根;负整数指数幂.分析:根据分数的加法,可判断A;根据开方运算,可判断B;根据幂的乘方底数不变指数相乘,可判断C;根据负整指数幂,可判断D.解答:解:A、先通分,再加减,故A错误;B、负数的立方根是负数,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、b﹣2=,故D错误;故选:C.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘.6.(3分)(2014•雅安)若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3B.0C.1D.2考点:代数式求值.专题:整体思想.分析:把(m+n)看作一个整体并代入所求代数式进行计算即可得解.解答:解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选A.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(3分)(2014•雅安)不等式组的最小整数解是()A.1B.2C.3D.4考点:一元一次不等式组的整数解.分析:分别解两个不等式,然后求出不等式组的解集,最后找出最小整数解.解答:解:,解①得:x≥1,解②得:x>2,则不等式的解集为x>2,故不等式的最小整数解为3.故选C.点评:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(3分)(2014•雅安)如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD 绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°考点:旋转的性质.分析:因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,据此可得答案.解答:解:∵四边形ABCD为正方形,∴∠COD=∠DOA=90°,OC=OD=OA,∴△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,故选:C.点评:本题考查了旋转的性质,旋转要找出旋转中心、旋转方向、旋转角.9.(3分)(2014•雅安)a、b、c是△ABC的∠A、∠B、∠C的对边,且a:b:c=1::,则cosB的值为()A.B.C.D.考点:勾股定理的逆定理;锐角三角函数的定义.分析:先由勾股定理的逆定理判定△ABC是直角三角形,再利用余弦函数的定义即可求解.解答:解:∵a:b:c=1::,∴b=a,c=a,∴a2+b2=a2+(a)2=3a2=c2,∴△ABC是直角三角形,∠C=90°,∴cosB===.故选B.点评:本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,同时考查了余弦函数的定义:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.10.(3分)(2014•雅安)在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P 点关于x轴的对称点为P2(a、b),则=()A.﹣2 B.2C.4D.﹣4考点:关于原点对称的点的坐标;立方根;关于x轴、y轴对称的点的坐标.分析:利用关于原点对称点的坐标性质得出P点坐标,进而利用关于x轴对称点的坐标性质得出P2坐标,进而得出答案.解答:解:∵P点关于原点的对称点为P1(﹣3,﹣),∴P(3,),∵P点关于x轴的对称点为P2(a,b),∴P2(3,﹣),∴==﹣2.故选:A.点评:此题主要考查了关于原点对称点的性质以及关于x轴对称点的性质,得出P点坐标是解题关键.11.(3分)(2014•雅安)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE 的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A.3:4 B.4:3 C.7:9 D.9:7考点:平行四边形的性质;相似三角形的判定与性质.分析:利用平行四边形的性质得出△FAE∽△FBC,进而利用相似三角形的性质得出=,进而得出答案.解答:解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE:S四边形ABCE=9:7.故选:D.点评:此题主要考查了平行四边形的性质和相似三角形的判定与性质,得出=是解题关键.12.(3分)(2014•雅安)如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5B.4C.3D.2考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,判断出四边形OMEN 是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON,根据正方形的性质可得OC=OD,然后利用“角角边”证明△COM和△DON全等,根据全等三角形对应边相等可得OM=ON,然后判断出四边形OMEN是正方形,设正方形ABCD的边长为2a,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=CD,再利用勾股定理列式求出CE,根据正方形的性质求出OC=OD=a,然后利用四边形OCED 的面积列出方程求出a2,再根据正方形的面积公式列式计算即可得解.解答:解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD是正方形,∴OC=OD,在△COM和△DON中,,∴△COM≌△DON(AAS),∴OM=ON,∴四边形OMEN是正方形,设正方形ABCD的边长为2a,则OC=OD=×2a=a,∵∠CED=90°,∠DCE=30°,∴DE=CD=a,由勾股定理得,CE===a,∴四边形OCED的面积=a•a+•(a)•(a)=×()2,解得a2=1,所以,正方形ABCD的面积=(2a)2=4a2=4×1=4.故选B.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题(共5小题,每小题3分,共15分)13.(3分)(2014•雅安)函数y=的自变量x的取值范围为x≥﹣1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)(2014•雅安)已知:一组数1,3,5,7,9,…,按此规律,则第n个数是2n ﹣1.考点:规律型:数字的变化类.分析:观察1,3,5,7,9,…,所给的数,得出这组数是从1开始连续的奇数,由此表示出答案即可.解答:解:1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,9=2×5﹣1,…,则第n个数是2n﹣1.故答案为:2n﹣1.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题.15.(3分)(2014•雅安)若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”数,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为.考点:概率公式.分析:首先将所有由2,3,4这三个数字组成的无重复数字列举出来,然后利用概率公式求解即可.解答:解:由2,3,4这三个数字组成的无重复数字为234,243,324,342,432,423六个,而“V”数有2个,故从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为=,故答案为:.点评:本题考查的是用列举法求概率的知识.注意概率=所求情况数与总情况数之比.16.(3分)(2014•雅安)在平面直角坐标系中,O为坐标原点,则直线y=x+与以O点为圆心,1为半径的圆的位置关系为相切.考点:直线与圆的位置关系;坐标与图形性质.分析:首先求得直线与坐标轴的交点坐标,然后求得原点到直线的距离,利用圆心到直线的距离和圆的半径的大小关系求解.解答:解:令y=x+=0,解得:x=﹣,令x=0,解得:y=,所以直线y=x+与x轴交于点(﹣,0),与y轴交于点(0,),设圆心到直线y=x+的距离为r,则r==1,∵半径为1,∴d=r,∴直线y=x+与以O点为圆心,1为半径的圆的位置关系为相切,故答案为:相切.点评:本题考查了直线与圆的位置关系及坐标与图形的性质,属于基础题,比较简单.17.(3分)(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m=0.考点:根与系数的关系;根的判别式.分析:根据方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,得出x1+x2与x1x2的值,再根据x12+x22=3,即可求出m的值.解答:解:∵方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2﹣1,∵x12+x22=(x1+x2)2﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=3,解得:x1=0,x2=2(不合题意,舍去),∴m=0;故答案为:0.点评:本题考查了根与系数的关系及根的判别式,难度适中,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.三、解答题(共69分,解答时要求写出必要的文字说明、演算步骤或推理过程)18.(12分)(2014•雅安)(1)|﹣|+(﹣1)2014﹣2cos45°+.(2)先化简,再求值:÷(﹣),其中x=+1,y=﹣1.考点:分式的化简求值;实数的运算;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义化简,第三项利用特殊角的三角函数值计算,最后一项利用平方根定义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x与y的值代入计算即可求出值.解答:解:(1)原式=+1﹣2×+4=5;(2)原式=÷=•=,当x=+1,y=﹣1时,xy=1,x+y=2,则原式==.点评:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.19.(8分)(2014•雅安)某老师对本班所有学生的数学考试成绩(成绩为整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:分组49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5频数 2 a 20 16 8频率0.04 0.08 0.40 0.32 b(1)求a,b的值;(2)补全频数分布直方图;(3)老师准备从成绩不低于80分的学生中选1人介绍学习经验,那么被选中的学生其成绩不低于90分的概率是多少?考点:频数(率)分布直方图;频数(率)分布表;概率公式.分析:(1)根据第一组的频数和频率求出总人数,再用总人数乘以59.5~69.5的频率,求出a的值,再用8除以总人数求出b的值;(2)根据(1)求出的a的值可补全频数分布直方图;(3)根据图表所给出的数据得出成绩不低于80分的学生中选1人有24种结果,其成绩不低于90分的学生有8种结果,再根据概率公式即可得出答案.解答:解:(1)学生总数是:=50(人),a=50×0.08=4(人),b==0.16;(2)根据(1)得出的a的值,补图如下:(3)从成绩不低于80分的学生中选1人有24种结果,其中成绩不低于90分的学生有8种结果,故所求概率为=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(2014•雅安)某地要在规定的时间内安置一批居民,若每个月安置12户居民,则在规定时间内只能安置90%的居民户;若每个月安置16户居民,则可提前一个月完成安置任务,问要安置多少户居民?规定时间为多少个月?(列方程(组)求解)考点:二元一次方程组的应用.分析:设安置x户居民,规定时间为y个月.等量关系为:,若每个月安置12户居民,则在规定时间内只能安置90%的居民户;若每个月安置16户居民,则可提前一个月完成安置任务.解答:解:设安置x户居民,规定时间为y个月.则:,所以12y=0.9×16(y﹣1),所以y=6,则x=16(y﹣1)=80.即原方程组的解为:.答:需要安置80户居民,规定时间为6个月.点评:本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.21.(9分)(2014•雅安)如图:在▱ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E.(1)求证:△ABC≌△DCE;(2)若AC=BC,求证:四边形ACED为菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答:证明:(1)∵四边形ABCD为平行四边形,∴AB平行且等于CD,∠B=∠DAC,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC与△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评:本题考查了菱形的判定等知识,解题的关键是熟练掌握菱形的判定定理,难度不大.22.(10分)(2014•雅安)如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;(2)试根据图象写出不等式≥kx的解集;(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.考点:反比例函数与一次函数的交点问题.分析:(1)把点A的坐标代入y=求出m的值,再运用A的坐标求出k,两函数解析式联立得出B点的坐标.(2)把k的值代入不等式,讨论当a>0和当a<0时分别求出不等式的解.(3)讨论当C在第一象限时,△OAC不可能为等边三角形,当C在第三象限时,根据|OA|=|OC|,求出点C的坐标,再看AC的值看是否构成等边三角形.解答:解:(1)把A(m,﹣2)代入y=,得﹣2=,解得m=﹣1,∴A(﹣1,﹣2)代入y=kx,∴﹣2=k×(﹣1),解得,k=2,∴y=2x,又由2x=,得x=1或x=﹣1(舍去),∴B(1,2),(2)∵k=2,∴≥kx为≥2x,①当x>0时,2x2≤2,解得0<x≤1,②当x<0时,2x2≥2,解得x≤﹣1;(3)①当点C在第一象限时,△OAC不可能为等边三角形,②如图,当C在第三象限时,要使△OAC为等边三角形,则|OA|=|OC|,设C(t,)(t<0),∵A(﹣1,﹣2)∴OA=∴t2+=5,则t4﹣5t2+4=0,∴t2=1,t=﹣1,此时C与A重合,舍去,t2=4,t=﹣2,C(﹣2,﹣1),而此时|AC|=,|AC|≠|AO|,∴不存在符合条件的点C.点评:本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出点C的坐标,看是否构成等边三角形.23.(10分)(2014•雅安)如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求sin∠F.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OB,根据圆周角定理证得∠CBD=90°,然后根据等边对等角以及等量代换,证得∠OBF=90°即可证得;(2)首先利用垂径定理求得BE的长,然后根据△OBE∽△OBF,利用相似三角形的性质求得OF的长,则sinF即可求解.解答:(1)证明:连接OB.∵CD是直径,∴∠CBD=90°,又∵OB=OD,∴∠OBD=∠D,又∠CBF=∠D,∴∠CBF=∠OBD,∴∠OBF=90°,即OB⊥BF,∴FB是圆的切线;(2)解:∵CD是圆的直径,CD⊥AB,∴BE=AB=4,设圆的半径是R,在直角△OEB中,根据勾股定理得:R2=(R﹣2)2+42,解得:R=5,∵∠BOE=∠FOB,∠BEO=∠OBF,∴△OBE∽△OBF,∴OB2=OE•OF,∴OF==,则在直角△OBF中,sinF===.点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.(12分)(2014•雅安)如图,直线y=﹣3x﹣3与x轴、y轴分别相交于点A、C,经过点C且对称轴为x=1的抛物线y=ax2+bx+c与x轴相交于A、B两点.(1)试求点A、C的坐标;(2)求抛物线的解析式;(3)若点M在线段AB上以每秒1个单位长度的速度由点B向点A运动,同时,点N在线段OC上以相同的速度由点O向点C运动(当其中一点到达终点时,另一点也随之停止运动),又PN∥x轴,交AC于P,问在运动过程中,线段PM的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.考点:二次函数综合题.分析:(1)根据直线解析式y=﹣3x﹣3,将y=0代入求出x的值,得到直线与x轴交点A 的坐标,将x=0代入求出y的值,得到直线与y轴交点C的坐标;(2)根据抛物线y=ax2+bx+c的对称轴为x=1,且过点A(﹣1,0)、C(0,﹣3),列出方程组,解方程组即可求出抛物线的解析式;(3)由对称性得点B(3,0),设点M运动的时间为t秒(0≤t≤3),则M(3﹣t,0),N(0,﹣t),P(x P,﹣t),先证明△CPN∽△CAO,根据相似三角形对应边成比例列出比例式=,求出x P=﹣1.再过点P作PD⊥x轴于点D,则D(﹣1,0),在△PDM中利用勾股定理得出PM2=MD2+PD2=(﹣+4)2+(﹣t)2=(25t2﹣96t+144),利用二次函数的性质可知当t=时,PM2最小值为,即在运动过程中,线段PM 的长度存在最小值.解答:解:(1)∵y=﹣3x﹣3,∴当y=0时,﹣3x﹣3=0,解得x=﹣1,∴A(﹣1,0);∵当x=0时,y=﹣3,∴C(0,﹣3);(2)∵抛物线y=ax2+bx+c的对称轴为x=1,过点A(﹣1,0)、C(0,﹣3),∴,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(3)由对称性得点B(3,0),设点M运动的时间为t秒(0≤t≤3),则M(3﹣t,0),N(0,﹣t),P(x P,﹣t).∵PN∥OA,∴△CPN∽△CAO,∴=,即=,∴x P=﹣1.过点P作PD⊥x轴于点D,则D(﹣1,0),∴MD=(3﹣t)﹣(﹣1)=﹣+4,∴PM2=MD2+PD2=(﹣+4)2+(﹣t)2=(25t2﹣96t+144),又∵﹣=<3,∴当t=时,PM2最小值为,故在运动过程中,线段PM的长度存在最小值.点评:本题是二次函数的综合题型,其中涉及到的知识点有一次函数图象上点的坐标特征,运用待定系数法求二次函数的解析式,相似三角形的判定与性质,勾股定理,二次函数的性质,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。

2015年四川省雅安中学中考一模数学试卷(解析版)

2015年四川省雅安中学中考一模数学试卷(解析版)

2015年四川省雅安中学中考数学一模试卷一.选择题(本大题共15小题,每小题2分,共30分)在每小题给出的四个选项中,有且只有一个选项是正确的,请将正确选项的代号填涂在机读卡.1.(2分)﹣3的相反数的倒数的算术平方根是()A.B.±C.D.﹣2.(2分)将260 000用科学记数法表示应为()A.0.2×106B.26×104C.2.6×106D.2.6×105 3.(2分)某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10%B.19%C.9.5%D.20%4.(2分)从一副扑克牌中随机抽出一张牌,得到梅花或者K的概率是()A.B.C.D.5.(2分)为了估计湖中有多少条鱼.先从湖中捕捉50条鱼作记号,然后放回湖里,经过段时间,等带记号的鱼完全混于鱼群中之后再捕捞,第二次捕鱼共20条,有10条做了记号,则估计湖里有鱼()A.400条B.500条C.800条D.100条6.(2分)某农场的粮食总产量为1500吨,设该农场人数为x人,平均每人占有粮食数为y吨,则y与x之间的函数图象大致是()A.B.C.D.7.(2分)圆心距为6的两圆相外切,则以这两个圆的半径为根的一元二次方程是()A.x2﹣6x+10=0B.x2﹣6x+1=0C.x2﹣5x+6=0D.x2+6x+9=0 8.(2分)已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:B.2:3:4C.1::2D.1:2:3 9.(2分)已知O是△ABC的内心,∠A=50°,则∠BOC=()A.100°B.115°C.130°D.125°10.(2分)一个圆锥的底面半径为,母线长为6,则此圆锥的侧面展开图的圆心角是()A.180°B.150°C.120°D.90°11.(2分)抛物线y=﹣2x2﹣4x﹣5经过平移得到y=﹣2x2,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位12.(2分)二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是()A.a<0B.abc>0C.a+b+c>0D.b2﹣4ac>0 13.(2分)人往路灯下行走的影子变化情况是()A.长⇒短⇒长B.短⇒长⇒短C.长⇒长⇒短D.短⇒短⇒长14.(2分)有一组数据如下:3,6,5,2,3,4,3,6.那么这组数据的中位数是()A.3或4B.4C.3D.3.515.(2分)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A.B.C.D.二.填空题(本大题共7个小题,每小题3分,共21分)16.(3分)函数y=中,自变量x的取值范围是.17.(3分)在Rt△ABC中,∠C=90°,AB=5,BC=4,求内切圆半径.18.(3分)已知AB,AC是半径为R的圆O中两条弦,AB=R,AC=R,则∠BAC的度数为.19.(3分)已知一个二次函数具有性质(1)图象不经过三、四象限;(2)点(2,1)在函数的图象上;(3)当x>0时,函数值y随自变量x的增大而增大.试写出一个满足以上性质的二次函数解析式:.20.(3分)若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是.21.(3分)如图,已知,扇形AOB的圆心角为60°,半径为6,C、D分别是的三等分点,则阴影部分的面积等于.22.(3分)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来.三.解答题(共69分)23.(5分)计算:.24.(5分)先化简,再求值:,其中m=﹣2.25.(5分)解不等式组,并把它的解集在数轴上表示出来.26.(8分)如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.(1)求证:△ABE≌△DFE;(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.27.(8分)如图,甲、乙两栋高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)28.(8分)A,B两地相距18公里,甲工程队要在A,B两地间铺设一条输送天然气管道,乙工程队要在A,B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?29.(8分)学习了统计知识后,班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图1中,将表示“乘车”的部分补充完整.30.(10分)如图,△ABC内接于⊙O,过点A的直线交⊙O于点P,交BC的延长线于点D,AB2=AP•AD.(1)求证:AB=AC;(2)如果∠ABC=60°,⊙O的半径为1,且P为的中点,求AD的长.31.(12分)已知:如图,抛物线y=﹣x2+bx+c与x轴,y轴分别相交于点A(﹣1,0),B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.2015年四川省雅安中学中考数学一模试卷参考答案与试题解析一.选择题(本大题共15小题,每小题2分,共30分)在每小题给出的四个选项中,有且只有一个选项是正确的,请将正确选项的代号填涂在机读卡.1.(2分)﹣3的相反数的倒数的算术平方根是()A.B.±C.D.﹣【解答】解:∵3的相反数是3,3的倒数是,而的算术平方根是=,∴﹣3的相反数的倒数的算术平方根是.故选:C.2.(2分)将260 000用科学记数法表示应为()A.0.2×106B.26×104C.2.6×106D.2.6×105【解答】解:260 000=2.6×105.故选D.3.(2分)某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10%B.19%C.9.5%D.20%【解答】解:设平均每次降价x,根据题意得(1﹣x)2=81%,解得x=0.1或1.9x=1.9不符合题意,舍去平均每次降价10%.故选:A.4.(2分)从一副扑克牌中随机抽出一张牌,得到梅花或者K的概率是()A.B.C.D.【解答】解:P(得到梅花或者K)=.故选:B.5.(2分)为了估计湖中有多少条鱼.先从湖中捕捉50条鱼作记号,然后放回湖里,经过段时间,等带记号的鱼完全混于鱼群中之后再捕捞,第二次捕鱼共20条,有10条做了记号,则估计湖里有鱼()A.400条B.500条C.800条D.100条【解答】解:设湖中有x条鱼,则20:10=x:50,解得x=1 00(条).故选:D.6.(2分)某农场的粮食总产量为1500吨,设该农场人数为x人,平均每人占有粮食数为y吨,则y与x之间的函数图象大致是()A.B.C.D.【解答】解:∵xy=1500∴y=(x>0,y>0)故选:B.7.(2分)圆心距为6的两圆相外切,则以这两个圆的半径为根的一元二次方程是()A.x2﹣6x+10=0B.x2﹣6x+1=0C.x2﹣5x+6=0D.x2+6x+9=0【解答】解:A选项∵△=b2﹣4ac=36﹣40=﹣4<0,∴此方程无解.B选项∵△=b2﹣4ac=36﹣4=32>0,∴此方程有解.又x1+x2==6.C,D选项的两根之和都不是6,故选:B.8.(2分)已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:B.2:3:4C.1::2D.1:2:3【解答】解:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:3,所以内切圆半径,外接圆半径和高的比是1:2:3.故选D.9.(2分)已知O是△ABC的内心,∠A=50°,则∠BOC=()A.100°B.115°C.130°D.125°【解答】解:如图,∵O是△ABC的内心,∠A=50°,∴∠OBC+∠OCB=(180°﹣∠A)=(180°﹣50°)=65°,∴∠BOC=180°﹣65°=115°.故选:B.10.(2分)一个圆锥的底面半径为,母线长为6,则此圆锥的侧面展开图的圆心角是()A.180°B.150°C.120°D.90°【解答】解:2π×=,解得n=150°.故选:B.11.(2分)抛物线y=﹣2x2﹣4x﹣5经过平移得到y=﹣2x2,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位【解答】解:y=﹣2x2﹣4x﹣5=﹣2(x+1)2﹣3,则该抛物线的顶点为(﹣1,﹣3),根据顶点由(﹣1,﹣3)平移到(0,0),得到向右平移1个单位,再向上平移3个单位.故选:D.12.(2分)二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是()A.a<0B.abc>0C.a+b+c>0D.b2﹣4ac>0【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴在y轴左边,﹣<0,∴b<0,abc>0,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=1时,y<0,∴a+b+c<0.故选:C.13.(2分)人往路灯下行走的影子变化情况是()A.长⇒短⇒长B.短⇒长⇒短C.长⇒长⇒短D.短⇒短⇒长【解答】解:因为人往路灯下行走的这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选A.14.(2分)有一组数据如下:3,6,5,2,3,4,3,6.那么这组数据的中位数是()A.3或4B.4C.3D.3.5【解答】解:题目中数据共有8个,故中位数是按从小到大排列后第4,第5两个数的平均数.故这组数据的中位数是×(3+4)=3.5.故选:D.15.(2分)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A.B.C.D.【解答】解:由图知蓄水池上宽下窄,深度h和放水时间t的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A正确.B斜率一样,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D 排除.故选A.二.填空题(本大题共7个小题,每小题3分,共21分)16.(3分)函数y=中,自变量x的取值范围是x≥﹣1且x≠2.【解答】解:根据题意得:解得:x≥﹣1且x≠217.(3分)在Rt△ABC中,∠C=90°,AB=5,BC=4,求内切圆半径1.【解答】解:∵∠C=90°,AB=5,BC=4,∴AC=3,∴内切圆半径是(3+4﹣5)÷2=1.18.(3分)已知AB,AC是半径为R的圆O中两条弦,AB=R,AC=R,则∠BAC的度数为75°或15°.【解答】解:如图(1)(2),根据题意cos∠OAE==,则∠OAE=30°;cos∠OAD==,∠OAD=45°,由图(1)∠BAC的度数为30°+45°=75°;由图(2)∠BAC的度数为45°﹣30°=15°.所以填75°或15°.19.(3分)已知一个二次函数具有性质(1)图象不经过三、四象限;(2)点(2,1)在函数的图象上;(3)当x>0时,函数值y随自变量x的增大而增大.试写出一个满足以上性质的二次函数解析式:y=x2答案不唯一.【解答】解:依题意设解析式是y=ax2把(2,1)代入就得到a=故解析式是y=x2.20.(3分)若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0没有实数根,∴△=b2﹣4ac<0,即22﹣4×1×(﹣k)<0,解这个不等式得:k<﹣1.故答案为:k<﹣1.21.(3分)如图,已知,扇形AOB的圆心角为60°,半径为6,C、D分别是的三等分点,则阴影部分的面积等于2π.【解答】解:S==6π扇形OABS阴影=S扇形OAB=×6π=2π.故答案为:2π.22.(3分)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来(n ≥1).【解答】解:∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为:=(n+1)(n≥1).三.解答题(共69分)23.(5分)计算:.【解答】解:原式=1﹣4××1+2﹣1+3=3.24.(5分)先化简,再求值:,其中m=﹣2.【解答】解:原式==(2分)=;(4分)当m=﹣2时,原式=.(5分)25.(5分)解不等式组,并把它的解集在数轴上表示出来.【解答】解:解不等式2x﹣5≤3(x﹣1)得x≥﹣2,解不等式>4x得x<1,∴不等式组的解集为﹣2≤x<1,在数轴上表示为:.26.(8分)如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.(1)求证:△ABE≌△DFE;(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CF.∴∠1=∠2,∠3=∠4∵E是AD的中点,∴AE=DE.∴△ABE≌△DFE.(2)解:四边形ABDF是平行四边形.∵△ABE≌△DFE,∴AB=DF又∵AB∥DF∴四边形ABDF是平行四边形.27.(8分)如图,甲、乙两栋高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)【解答】解:作CE⊥AB于点E.∵CE∥DB,CD∥AB,且∠CDB=90°,∴四边形BECD是矩形.∴CD=BE,CE=BD.在Rt△BCE中,β=60°,CE=BD=90米.∵tanβ=,∴BE=CE•tanβ=90×tan60°=90(米).∴CD=BE=90(米).在Rt△ACE中,α=30°,CE=90米.∵tanα=,∴AE=CE•tanα=90×tan30°=90×=30(米).∴AB=AE+BE=30(米).答:甲楼高为90米,乙楼高为120米.28.(8分)A,B两地相距18公里,甲工程队要在A,B两地间铺设一条输送天然气管道,乙工程队要在A,B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?【解答】解:设甲工程队每周铺设管道x公里,则乙工程队每周铺设管道(x+1)公里,根据题意,得解得x1=2,x2=﹣3经检验,x1=2,x2=﹣3都是原方程的根但x2=﹣3不符合题意,舍去∴x+1=3答:甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.29.(8分)学习了统计知识后,班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图1中,将表示“乘车”的部分补充完整.【解答】解:(1)(1﹣20%﹣50%)×360°=108°,即“步行”部分所对应的圆心角的度数是108度.(2)20÷50%=40(人),即该班共有40名学生.(3)乘车的人数=40﹣20﹣12=8人,如图所示.30.(10分)如图,△ABC内接于⊙O,过点A的直线交⊙O于点P,交BC的延长线于点D,AB2=AP•AD.(1)求证:AB=AC;(2)如果∠ABC=60°,⊙O的半径为1,且P为的中点,求AD的长.【解答】(1)证明:连接BP,∵AB2=AP•AD,∴,又∵∠BAD=∠P AB,∴△ABD∽△APB,∵∠ABC=∠APB,∠APB=∠ACB,∴∠ABC=∠ACB,∴AB=AC;(2)解:由(1)知AB=AC,∵∠ABC=60°,∴△ABC为等边三角形,∴∠BAC=60°,∵P为的中点,∴∠ABP=∠P AC=∠ABC=30°,∴∠BAP=∠BAC+∠P AC=90°,∴BP为直径,∴BP过圆心O,∴BP=2,∴AP=BP=1,∴AB2=BP2﹣AP2=3,∵AB2=AP•AD,∴AD==3.31.(12分)已知:如图,抛物线y=﹣x2+bx+c与x轴,y轴分别相交于点A(﹣1,0),B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.【解答】解:(1)由已知得:,解得:c=3,b=2,∴抛物线的线的解析式为y=﹣x2+2x+3;(2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E关于x=1对称,所以E(3,0),设对称轴与x轴的交点为F,所以四边形ABDE的面积=S+S梯形BOFD+S△DFE,△ABO===9;(3)相似.如图,作BG⊥DF,BD=,BE=,DE=,所以BD2+BE2=20,DE2=20,即:BD2+BE2=DE2,所以△BDE是直角三角形,所以∠AOB=∠DBE=90°,且,所以△AOB∽△DBE.。

【初中数学】四川省雅安市2014-2015学年下学期期末考试八年级数学试卷(解析版)-人教版

【初中数学】四川省雅安市2014-2015学年下学期期末考试八年级数学试卷(解析版)-人教版

【初中数学】四川省雅安市2014-2015学年下学期期末考试八年级数学试卷(解析版)-人教版四川省雅安市2014-2015学年下学期期末考试八年级数学试卷一、选择题(共12小题,每小题2分,满分24分)1.下列式子是一元一次不等式的是( ) A . x +y ≤0 B . x 2≥0 C . >3+x D . <0 考点:一元一次不等式的定义.分析: 根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以. 解答: 解:A 、含有2个未知数,不是一元一次不等式,选项错误; B 、最高次数是2次,不是一元一次不等式,选项错误;C 、正确;D 、不是整式,则不是一元一次不等式,选项错误. 故选C .点评: 本题考查不等式的定义,一元一次不等式中必须只含有一个未知数,位置是的最高次数是一次,并且不等式左右两边必须是整式.2.下列代数式中,是分式的是( ) A . B . C . D . 考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 解答: 解:A 、是分数,是单项式,故选项错误; B 、分母是常数,是单项式,故选项错误; C 、分母是常数,是单项式,故选项错误; D 、正确. 故选D . 点评: 本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.3.下列分解因式正确的是( )A . ﹣a+a 3=﹣a (1+a 2)B . 2a ﹣4b+2=2(a ﹣2b )C . a 2﹣4=(a ﹣2)2D . a 2﹣2a+1=(a ﹣1)2考点:提公因式法与公式法的综合运用.专题:因式分解.分析: 根据提公因式法,平方差公式,完全平方公式求解即可求得答案. 解答: 解:A 、﹣a+a 3=﹣a (1﹣a 2)=﹣a (1+a )(1﹣a ),故A 选项错误;B 、2a ﹣4b+2=2(a ﹣2b+1),故B 选项错误;C 、a 2﹣4=(a ﹣2)(a+2),故C 选项错误;D 、a 2﹣2a+1=(a ﹣1)2,故D 选项正确. 故选:D . 点评: 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4.下列条件中,能判定四边形是平行四边形的是( )A . 一组对角相等B . 对角线互相平分C . 一组对边平行,另一组对边相等D . 对角线互相垂直 考点:平行四边形的判定.分析:根据平行四边形的判定定理(①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形)进行判断即可. 解答:解:如图:A 、两组对角分别相等的四边形是平行四边形,故本选项错误;B 、∵OA=OC 、OB=OD ,∴四边形ABCD 是平行四边形,故本选项正确;C 、“一组对边平行,另一组对边相等”的四边形不一定是平行四边形,例如:等腰梯形,故本选项错误;D 、对角线互相垂直的四边形不一定是平行四边形,例如:筝形,故本选项错误. 故选:B . 点评:本题考查了对平行四边形的判定定理得应用,题目具有一定的代表性,但是一道比较容易出错的题目.5.如果把分式中的x ,y 都扩大3倍,分式的值( ) A . 扩大3倍 B . 不变C . 缩小3倍D . 缩小6倍考点:分式的基本性质.分析: 根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变. 解答:解:把分式中的x ,y 都扩大3倍,得=.故选:B . 点评:本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.6.已知x :y :z=3:4:6,则的值为( ) A . B . 1C .D .考点:比例的性质.分析: 根据比例的性质,可用x 表示y ,用x 表示z ,根据分式的性质,可得答案. 解答: 解:由x :y :z=3:4:6,得 y=,z=2x .==.故选:A . 点评: 本题考查了比例的性质,利用比例的性质得出y=,z=2x 是解题关键.7.若有一个n 边形,其内角和大于它的外角和,则n 的值至少为( ) A . 3 B . 4 C . 5 D . 6考点:多边形内角与外角.分析: 多边形的外角和等于360°,内角和为(n ﹣2)•180°,从而得出不等式,得出结论. 解答: 解:∵n 边形的内角和=(n ﹣2)•180°, 又∵多边形的外角和等于360°,∴(n ﹣2)•180°>360°, n >4, ∵n 为正整数, ∴n 的值至少为5. 故选C . 点评: 本题考查了多边形的内角和与外角和,熟记多边形的外角和等于360°,内角和为(n ﹣2)•180°是解答此题的关键.8.若不等式组无解,则m 的取值范围是( )A . m >3B . m <3C . m ≥3D . m ≤3考点:解一元一次不等式组.分析: 解出不等式组的解集(含m 的式子),与不等式组无解比较,求出m 的取值范围.解答:解:∵不等式组无解. ∴m ≤3.故选D . 点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.9.下列说法中,正确的有( )个. (1)若a >b ,则ac 2>bc 2 (2)若ac 2>bc 2,则a >b (3)对于分式,当x=2时,分式的值为0(4)若关于x 的分式方程=有增根,则m=1.A . 2B . 3C . 4D . 1考点: 不等式的性质;分式的值为零的条件;分式方程的增根.分析: (1)当c=0时,ac 2=bc 2=0,据此判断即可. (2)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可. (3)根据分式值为零的条件判断即可. (4)根据方程=有增根,可得x=m+1=2,据此求出m 的值即可. 解答: 解:∵当c=0时,ac 2=bc 2=0, ∴选项(1)不正确;∵ac 2>bc 2, ∴c 2>0, ∴a >b ,∴选项(2)正确; 由解得x=﹣2,∴当x=﹣2时,分式的值为0, ∴选项(3)不正确; ∵方程=有增根,∴x=m+1=2,解得m=1, ∴选项(4)正确. 综上,可得正确的结论有2个:(2)(4). 故选:A . 点评:(1)此题主要考查了不等式的基本性质:①不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;③不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.(2)此题还考查了分式值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. (3)此题还考查了分式方程的增根,要熟练掌握,解答此题的关键是要明确增根的产生的原因和检验增根的方法.10.若a ﹣2=b+c ,则a (a ﹣b ﹣c )+b (b+c ﹣a )﹣c (a ﹣b ﹣c )的值为( )A . 4B . 2C . 1D . 8考点:整式的混合运算—化简求值.专题:计算题.分析:原式利用单项式乘以多项式法则计算,再利用完全平方公式化简后,将已知等式变形后代入计算即可求出值. 解答: 解:∵a ﹣2=b+c ,∴b+c ﹣a=2, 则原式=a 2﹣ab ﹣ac+b 2+bc ﹣ab ﹣ac+bc+c 2=a 2+b 2+c 2﹣2ab ﹣2ac+2bc=(b+c ﹣a )2=4. 故选A . 点评: 此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.11.下列说法中不正确的是( ) A . 平行四边形是中心对称图形B . 斜边及一锐角分别相等的两直角三角形全等C . 两个锐角分别相等的两直角三角形全等D . 一直角边及斜边分别相等的两直角三角形全等 考点:直角三角形全等的判定;中心对称图形.分析: 根据中心对称图形的定义可得A 说法正确;根据AAS 定理可得B 正确;根据全等三角形的判定定理可得要证明两个三角形全等,必须有边对应相等可得C 正确;根据HL 定理可得D 正确. 解答: 解:A 、平行四边形是中心对称图形,说法正确;B 、斜边及一锐角分别相等的两直角三角形全等,说法正确;C 、两个锐角分别相等的两直角三角形全等,说法错误;D 、一直角边及斜边分别相等的两直角三角形全等,说法正确; 故选:C . 点评: 此题主要考查了直角三角形全等的判定方法,关键是掌握SSS 、HL 、SAS 、ASA 、AAS ,要证明两个三角形全等,必须有边对应相等这一条件.12.如图,▱ABCD 的周长为36,对角线AC ,BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长是( )A . 24B . 15C . 21D . 30考点:平行四边形的性质;三角形中位线定理.分析: 根据平行四边形的对边相等和对角线互相平分可得,OB=OD ,又因为E 点是CD 的中点,可得OE 是△BCD 的中位线,可得OE=BC ,所以易求△DOE 的周长. 解答: 解:∵▱ABCD 的周长为36,∴2(BC+CD )=36,则BC+CD=18.∵四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,BD=12, ∴OD=OB=BD=6. 又∵点E 是CD 的中点,∴OE 是△BCD 的中位线,DE=CD , ∴OE=BC ,∴△DOE 的周长=OD+OE+DE=BD+(BC+CD )=6+9=15, 即△DOE 的周长为15. 故选B . 点评:本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.二、填空题(共5小题,每小题3分,满分15分) 13.“四边形是多边形”的逆命题是 多边形是四边形 . 考点:命题与定理.分析:逆命题的概念就是把原来的题设和结论互换,因此可得到命题“四边形是多边形”的逆命题. 解答: 解:命题“四边形是多边形”的逆命题是“多边形是四边形”.故答案为:多边形是四边形. 点评:本题考查逆命题的概念,逆命题就是把原来命题的题设和结论互换,以及能正确找出题设和结论.14.如图,在▱ABCD 中,已知AD=10cm ,AB=6cm ,AE 平分∠BAD 交BC 边于E ,则EC 的长为4 cm .考点:平行四边形的性质.分析: 根据平行四边形的性质得出∠BAE=∠EAD ,∠DAE=∠AEB ,即可得出∠BAE=∠AEB ,进而得出答案. 解答: 解:∵在▱ABCD 中,AD=10cm ,AB=6cm ,AE 平分∠BAD 交BC 边于点E ,∴∠BAE=∠EAD ,∠DAE=∠AEB , ∴∠BAE=∠AEB , ∴AB=BE=6cm , ∴EC=10﹣6=4cm ,故答案为:4. 点评: 此题主要考查了平行四边形的性质,根据已知得出∠BAE=∠AEB 是解决问题的关键.15.计算:+= 3 .考点:分式的加减法.专题:计算题.分析: 原式利用同分母分式的加法法则计算即可得到结果. 解答:解:原式===3.故答案为:3. 点评: 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.16.如图,∠AOE=∠BOE=15°,EF ∥OB ,EC ⊥OB ,若EC=3,则EF 的长为 6 .考点:角平分线的性质;含30度角的直角三角形. 分析: 作EG ⊥OA 于G ,根据角的平分线上的点到角的两边的距离相等求出EG=EC=3,根据平行线的性质和直角三角形的性质求出EF 的长.解答: 解:作EG ⊥OA 于G , ∵∠AOE=∠BOE ,EC ⊥OB ,EG ⊥OA ,∴EG=EC=3, ∵EF ∥OB ,∴∠OEF=∠BOE=15°, ∴∠EFG=30°, ∴EF=2EC=6, 故答案为:6.点评:本题考查的是角平分线的性质和直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等和直角三角形的性质是解题的关键.17.如图,在△ABC 中,AB=AC ,∠A=120°,BC=6cm ,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,则MN的长为 2 cm .考点: 线段垂直平分线的性质;含30度角的直角三角形.分析: 连接AM 、AM ,根据线段的垂直平分线的性质证明MB=MA ,得到∠NMA=60°,同理NA=NC ,∠NMA=60°,得到MN=BC ,得到答案. 解答: 解:连接AM 、AM , ∵AB=AC ,∠A=120°,∴∠B=∠C=30°,∵EM 是AB 的垂直平分线, ∴MB=MA ,∴∠MAB=∠B=30°,∴∠NMA=60°,同理NA=NC ,∠NMA=60°,∴△MAN 是等边三角形, ∴BM=MN=NC=BC=2cm , 故答案为:2.点评: 此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.三、解答题(共7小题,满分61分)18.(13分)(2015春•雅安期末)(1)解不等式组,并把解集在数轴上表示出来.(2)解分式方程:+=1.考点: 解一元一次不等式组;解分式方程;在数轴上表示不等式的解集.分(1)首先分别计算出两个不等式的解集,再析: 根据大小小大中间找确定不等式组的解集;(2)首先两边同时乘以x 2﹣9去分母,然后再整理成一元一次方程,再解即可,注意不要忘记检验. 解答:解:(1),由①得:x ≤6,由②得:x ≥﹣1, 画图:所以原不等式组的解集为﹣1≤x ≤6;(2)两边同乘以x 2﹣9,得: 3+x (x+3)=x 2﹣9, 化简,得3x=﹣12, 解得:x=﹣4,经检验,x=﹣4是原方程的根. 点评:此题主要考查了解一元一次不等式组,以及分式方程,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.先化简,再求值:(x+1﹣)÷,其中x=2. 考点:分式的化简求值.专题:计算题.分析: 将括号内的部分通分,再将除法转化为乘法,因式分解后约分即可化简. 解答:解:原式=[﹣]•=•=•=﹣,当x=2时,原式=﹣=3.点评: 本题考查了分式的化简求值,熟悉因式分解和分式除法法则是解题的关键.20.八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度. 考点:分式方程的应用.专题:行程问题.分析: 求的速度,路程明显,一定是根据时间来列等量关系.关键描述语为:“过了20分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间﹣乘车同学所用时间=. 解答:解:设骑车同学的速度为x 千米/时.则:. 解得:x=15.检验:当x=15时,6x ≠0. ∴x=15是原方程的解.答:骑车同学的速度为15千米/时. 点评: 应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(10分)(2015春•雅安期末)如图,由边长为1个单位长度的小正方形组成的8×8网格和△ABC在平面直角坐标系中.(1)将△ABC向下平移2个单位,再向左平移2个单位,得到△A1B1C1.请在网格中画出△A1B1C1.(2)如果将△A1B1C1看成是由△ABC经过一次平移得到的,请指出这一平移的方向和距离.(3)将△A1B1C1绕着点(﹣1,﹣1)逆时针方向旋转90°得到△A2B2C2,画出△A2B2C2,并直接写出点A2、B2、C2的坐标.考作图-旋转变换;作图-平移变换.点:专几何变换.题: 分析: (1)利用点平移的规律先写出A 1、B 1、C 1的坐标,再画三角形A 1B 1C 1.(2)利用图形可得由△ABC 沿CA 方向平移2个单位可得到△A 1B 1C 1;(3)利用旋转的定义画图,再写出点A 2、B 2、C 2的坐标. 解答: 解:(1)A 1 (﹣1,﹣2)、B 1(2,﹣2)、C 1(1,0),如图;(2)由△ABC 沿CA 方向平移2个单位可得到△A 1B 1C 1;(3)如图,A 2(0,﹣1),B 2(0,2 ),C 2 (﹣2,1).点评:本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27(2)x2﹣2xy﹣3y2.因式分解-十字相乘法等.考点:专阅读型.题:分(1)原式变形后,利用阅读材料中的方法分析: 解即可;(2)原式变形后,利用阅读材料中的方法分解即可. 解答: 解:(1)原式=x 2﹣6x+9﹣36=(x ﹣3)2﹣36=(x ﹣3+6)(x ﹣3﹣6)=(x+3)(x ﹣9);(2)原式=x 2﹣2xy+y 2﹣4y 2=(x ﹣y )2﹣4y 2=(x ﹣y+2y )(x ﹣y ﹣2y )=(x+y )(x ﹣3y ). 点评: 此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.23.某工厂要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元.(1)设招聘甲种工种工人x 人,工厂付给甲、乙两种工种的工人工资共y 元,写出y (元)与x (人)的函数关系式;(2)现要求招聘的乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少? 考点:一次函数的应用.专题:压轴题.分析: (1)根据题意甲种工种工人x 人,则乙种工人为(150﹣x )人,然后根据已知条件即可确定y 与x 成一次函数关系;(2)根据题意可列出一不等式150﹣x ≥2x ,解得x ≤50,再利用一次函数的性质可解.解答: 解:(1)依题意得y=600x+1000(150﹣x ) =﹣400x+150000;(2)依题意得,150﹣x ≥2x ∴x ≤50因为﹣400<0,由一次函数的性质知,当x=50时,y 有最小值 所以150﹣50=100答:甲工种招聘50人,乙工种招聘100人时可使得每月所付的工资最少.点评: 此题首先正确理解题意,然后根据已知条件列出函数关系式.在利用一次函数求最值时,注意应用一次函数的性质.24.(10分)(2014•凉山州)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE .已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF . (1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.考点: 平行四边形的判定;全等三角形的判定与性质;等边三角形的性质.专题:证明题.分析: (1)首先Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,又因为△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,然后即可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF ; (2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形. 解答: 证明:(1)∵Rt △ABC 中,∠BAC=30°, ∴AB=2BC ,又∵△ABE 是等边三角形,EF ⊥AB , ∴AB=2AF ∴AF=BC ,在Rt △AFE 和Rt △BCA 中,,∴△AFE ≌△BCA (HL ), ∴AC=EF ;(2)∵△ACD 是等边三角形, ∴∠DAC=60°,AC=AD , ∴∠DAB=∠DAC+∠BAC=90° 又∵EF ⊥AB , ∴EF ∥AD ,∵AC=EF ,AC=AD , ∴EF=AD ,∴四边形ADFE 是平行四边形.点评:此题是首先利用等边三角形的性质证明全等三角形,然后利用全等三角形的性质和等边三角形的性质证明平行四边形.。

2015年中考真题精品解析 数学(甘孜、阿坝卷)精编word版(原卷版)

2015年中考真题精品解析 数学(甘孜、阿坝卷)精编word版(原卷版)

一、选择题(本大题共10小题,每小题4分,共40分,以下每小题给出的四个选项中,只有一项是符合题目要求的)1.计算2﹣3的结果是( )A .﹣5B .﹣1C .1D .52.如图所示的几何体的主视图是( )3.下列图形中,是中心对称图形的为( )4.使二次根式1x -的有意义的x 的取值范围是( )A .0x >B .1x >C .1x ≥D .1x ≠5.如图,在△ABC 中,∠B =40°,∠C =30°,延长BA 至点D ,则∠CAD 的大小为( )A .110°B .80°C .70°D .60°6.下列运算正确的是( )A .22(2)4x x -=-B .3412x x x ⋅=C .632x x x ÷=D .236()x x = 7.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限8.某校篮球队五名主力队员的身高分别是174,179,180,174,178(单位:cm ),则这五名队员身高的中位数是( )A .174cmB .177cmC .178cmD .180cm9.二次函数245y x x =+-的图象的对称轴为( )A .4x =B .4x =-C .2x =D .2x =-10.如图,已知扇形AOB 的半径为2,圆心角为90°,连接AB ,则图中阴影部分的面积是( )A .π﹣2B .π﹣4C .4π﹣2D .4π﹣4二、填空题(本大题共4小题,每小题4分,共16分)11.因式分21x -= .12.将除颜色外其余均相同的4个红球和2个白球放入一个不透明足够大的盒子内,摇匀后随机摸出一球,则摸出红球的概率为 .13.边长为2的正三角形的面积是 .14.若矩形ABCD 的两邻边长分别为一元二次方程27120x x -+=的两个实数根,则矩形ABCD 的对角线长为 .三、解答题(本大题共6小题,共44分,解答时应写出必要的文字说明、证明过程或演算步骤)15.【6分】(1)计算:08(1)4sin 45π---;(2)解不等式123x x >-,并将其解集表示在数轴上. 16.【6分】解分式方程:21133x x x -+=--. 17.【7分】某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?18.【7分】如图,某中学九年级数学兴趣小组测量校内旗杆AB 的高度,在C 点测得旗杆顶端A 的仰角∠BCA =30°,向前走了20米到达D 点,在D 点测得旗杆顶端A 的仰角∠BDA =60°,求旗杆AB 的高度.(结果保留根号)19.【8分】如图,一次函数5y x =-+的图象与反比例函数k y x =(0k ≠)在第一象限的图象交于A (1,n )和B 两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数5y x =-+的值大于反比例函数k y x =(0k ≠)的值时,写出自变量x 的取值范围.20.【10分】如图,△ABC 为等边三角形,以边BC 为直径的半圆与边AB ,AC 分别交于D ,F 两点,过点D 作DE ⊥AC ,垂足为点E .(1)判断DF 与⊙O 的位置关系,并证明你的结论;(2)过点F 作FH ⊥BC ,垂足为点H ,若AB =4,求FH 的长(结果保留根号).四、填空题(每小题4分,共20分)21.若二次函数22y x =的图象向左平移2个单位长度后,得到函数22()y x h =+的图象,则h = .22.已知关于x 的方程332x a x -=+的解为2,则代数式221a a -+的值是 . 23.如图,AB 是⊙O 的直径,弦CD 垂直平分半径OA ,则∠ABC 的大小为 度.24.若函数22y kx k =-++与k y x =(0k ≠)的图象有两个不同的交点,则k 的取值范围是 . 25.如图,正方形A 1A 2A 3A 4,A 5A 6A 7A 8,A 9A 10A 11A 12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A 1,A 2,A 3,A 4;A 5,A 6,A 7,A 8;A 9,A 10,A 11,A 12;…)的中心均在坐标原点O ,各边均与x 轴或y 轴平行,若它们的边长依次是2,4,6…,则顶点A 20的坐标为 .五、解答题(本大题共3小题,共30分,解答时应写出必要的文字说明、证明过程或演算步骤)26.【8分】一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?27.【10分】已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF =DE ;②AF ⊥DE 成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE =DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE =DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论.28.【12分】如图,已知抛物线252y ax ax =-+(0a ≠)与y 轴交于点C ,与x 轴交于点A (1,0)和点B .(1)求抛物线的解析式;(2)求直线BC 的解析式;(3)若点N 是抛物线上的动点,过点N 作NH ⊥x 轴,垂足为H ,以B ,N ,H 为顶点的三角形是否能够与△OBC 相似?若能,请求出所有符合条件的点N 的坐标;若不能,请说明理由.一、选择题(本大题共10小题,每小题4分,共40分,以下每小题给出的四个选项中,只有一项是符合题目要求的)1.计算2﹣3的结果是( )A .﹣5B .﹣1C .1D .5【答案】B .考点:有理数的减法.2.如图所示的几何体的主视图是( )【答案】A .考点:简单组合体的三视图.3.下列图形中,是中心对称图形的为( ) 【答案】B .【解析】考点:中心对称图形.4.使二次根式1x -的有意义的x 的取值范围是( )A .0x >B .1x >C .1x ≥D .1x ≠【答案】C .考点:二次根式有意义的条件.5.如图,在△ABC 中,∠B =40°,∠C =30°,延长BA 至点D ,则∠CAD 的大小为( )A .110°B .80°C .70°D .60°【答案】C .考点:三角形的外角性质.6.下列运算正确的是( )A .22(2)4x x -=-B .3412x x x ⋅=C .632x x x ÷=D .236()x x = 【答案】D .考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.完全平方公式.7.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B .考点:一次函数的性质.8.某校篮球队五名主力队员的身高分别是174,179,180,174,178(单位:cm ),则这五名队员身高的中位数是( )A .174cmB .177cmC .178cmD .180cm【答案】C .考点:中位数.9.二次函数245y x x =+-的图象的对称轴为( )A .4x =B .4x =-C .2x =D .2x =-【答案】D .考点:二次函数的性质.10.如图,已知扇形AOB 的半径为2,圆心角为90°,连接AB ,则图中阴影部分的面积是( )A .π﹣2B .π﹣4C .4π﹣2D .4π﹣4【答案】A .考点:扇形面积的计算.二、填空题(本大题共4小题,每小题4分,共16分)11.因式分21x -= .【答案】(1)(1)x x +-.考点:1.因式分解-运用公式法;2.因式分解.12.将除颜色外其余均相同的4个红球和2个白球放入一个不透明足够大的盒子内,摇匀后随机摸出一球,则摸出红球的概率为 . 【答案】23.考点:概率公式.13.边长为2的正三角形的面积是 . 【答案】3.考点:等边三角形的性质.14.若矩形ABCD 的两邻边长分别为一元二次方程27120x x -+=的两个实数根,则矩形ABCD 的对角线长为 .【答案】. 考点:1.矩形的性质;2.解一元二次方程-因式分解法;3.勾股定理.三、解答题(本大题共6小题,共44分,解答时应写出必要的文字说明、证明过程或演算步骤)15.【6分】(1)计算:08(1)4sin 45π---;(2)解不等式123x x >-,并将其解集表示在数轴上. 【答案】(1)﹣1;(2)3x >-.考点:1.实数的运算;2.零指数幂;3.在数轴上表示不等式的解集;4.解一元一次不等式;5.特殊角的三角函数值.16.【6分】解分式方程:21133x x x-+=--. 【答案】2x =. 考点:解分式方程.17.【7分】某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?【答案】(1)甲50,乙80,丙70;(2)丙.考点:1.加权平均数;2.统计表;3.扇形统计图;4.算术平均数.18.【7分】如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)【答案】3考点:解直角三角形的应用-仰角俯角问题.19.【8分】如图,一次函数5y x =-+的图象与反比例函数k y x =(0k ≠)在第一象限的图象交于A (1,n )和B 两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数5y x =-+的值大于反比例函数k y x =(0k ≠)的值时,写出自变量x 的取值范围.【答案】(1)4y x=;(2)1<x <4. 考点:反比例函数与一次函数的交点问题.20.【10分】如图,△ABC 为等边三角形,以边BC 为直径的半圆与边AB ,AC 分别交于D ,F 两点,过点D 作DE ⊥AC ,垂足为点E .(1)判断DF 与⊙O 的位置关系,并证明你的结论;(2)过点F 作FH ⊥BC ,垂足为点H ,若AB =4,求FH 的长(结果保留根号).【答案】1)DE 是⊙O 的切线;(2)3. 考点:切线的判定. 四、填空题(每小题4分,共20分)21.若二次函数22y x =的图象向左平移2个单位长度后,得到函数22()y x h =+的图象,则h = .【答案】2.考点:二次函数图象与几何变换.22.已知关于x 的方程332x a x -=+的解为2,则代数式221a a -+的值是 . 【答案】. 考点:一元一次方程的解.23.如图,AB 是⊙O 的直径,弦CD 垂直平分半径OA ,则∠ABC 的大小为 度.【答案】30.考点:1.垂径定理;2.含30度角的直角三角形;3.圆周角定理.24.若函数22y kx k =-++与k y x =(0k ≠)的图象有两个不同的交点,则k 的取值范围是 .【答案】12k >-且0k ≠. 【解析】学科网考点:反比例函数与一次函数的交点问题.25.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.【答案】(5,﹣5).考点:规律型:点的坐标.五、解答题(本大题共3小题,共30分,解答时应写出必要的文字说明、证明过程或演算步骤)26.【8分】一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?【答案】(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:254(元).考点:一元一次不等式的应用.27.【10分】已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【答案】(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.考点:1.四边形综合题;2.综合题.28.【12分】如图,已知抛物线252y ax ax =-+(0a ≠)与y 轴交于点C ,与x 轴交于点A (1,0)和点B .(1)求抛物线的解析式;(2)求直线BC 的解析式;(3)若点N 是抛物线上的动点,过点N 作NH ⊥x 轴,垂足为H ,以B ,N ,H 为顶点的三角形是否能够与△OBC 相似?若能,请求出所有符合条件的点N 的坐标;若不能,请说明理由.【答案】(1)215222y x x =-+;(2)122y x =-+;(3)N 坐标(5,2)或(2,﹣1). 考点:二次函数综合题.。

四川省雅安市2015-2016学年八年级下期末数学试卷含答案解析

四川省雅安市2015-2016学年八年级下期末数学试卷含答案解析

四川省雅安市2015-2016学年度下期期末检测八年级数学试卷(解析版)一、选择题,每小题2分,共24分.1.下列各式由左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2+2x+1=x(x+2)+1C.a2﹣4b2=(a+2b)(a﹣2b) D.a(x﹣y)=ax﹣ay2.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC⊥BD3.当x=2时,下列各式的值为0的是()A.B.C.D.4.下列图形是中心对称图形的是()A.B. C. D.5.不等式组的解表示在数轴上,正确的是()A.B.C.D.6.若将中的字母x、y的值分别扩大为原来的4倍,则分式的值()A.扩大为原来的4倍B.缩小为原来的C.缩小为原来的D.不变7.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=6,BC=4,则EC的长()A.1 B.1.5 C.2 D.38.解关于x的方程:=+3会产生增根,则常数m的值等于()A.5 B.﹣1 C.1 D.69.如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x 的取值范围是()A.x<2 B.x>2 C.x<﹣1 D.x>﹣110.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.411.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是()个.A.1 B.2 C.3 D.412.已知关于x的不等式组的整数解共有6个,则a的取值范围是()A.﹣6<a<﹣5 B.﹣6≤a<﹣5 C.﹣6<a≤﹣5 D.﹣6≤a≤﹣5二、填空题(共5小题,每小题3分,满分15分)13.因式分解:a3﹣a=.14.计算:(ab﹣b2)÷=.15.已知x2﹣(m﹣2)x+49是完全平方式,则m=.16.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=.17.有一张一个角为30°,最小变长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.三、解答题18.(10分)(1)解不等式3(x﹣1)<5x+2,并在数轴上表示解集.(2)解方程:=﹣.19.(6分)先化简再求值:,其中.20.(6分)在如图所示的方格纸中,△ABC,△A1B1C1,△A2B2C2的顶点及O、P、Q都在格点上如图,已知四边形ABCD是平行四边形,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,试判断四边形AECF是什么样的四边形?写出你的结论并予以证明.22.(8分)阅读理解:把多项式am+an+bm+bn分解因式.解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b)观察上述因式分解的过程,回答下列问题:(1)分解因式:m2x﹣3m+mnx﹣3n;(2)已知:a,b,c为△ABC的三边,且a3﹣a2b+5ac﹣5bc=0,试判断△ABC的形状.23.(7分)如图,在△ABC中,∠BAC的平分线是AP,PQ是线段BC的垂直平分线,PN⊥AB于N,PM⊥AC于M.求证:BN=CM.24.(8分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?25.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形过点F作BC的平行线交射线AC于点E,连接BF(1)如图1,若△ABC的边长是2,求△ADF的最小面积;(2)如图1,求证:△AFB≌△ADC';(3)如图2,若D点在BC边的延长线上,其它条件不变,请判断四边形BCEF 的形状,并说明理由.雅安市2015-2016学年度下期期末检测八年级数学试卷参考答案与试题解析一、选择题,每小题2分,共24分.1.下列各式由左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2+2x+1=x(x+2)+1C.a2﹣4b2=(a+2b)(a﹣2b) D.a(x﹣y)=ax﹣ay【考点】因式分解的意义.【分析】依据因式分解的定义判断即可.【解答】解:A、(x+1)(x﹣1)=x2﹣1,从左边到右边的变形属于整式的乘法,故A错误;B、x2+2x+1=x(x+2)+1,右边不是几个因式的积的形式,故B错误;C、a2﹣4b2=(a+2b)(a﹣2b)是因式分解,故C正确;D、(x﹣y)=ax﹣ay,从左边到右边的变形属于整式的乘法,故D错误.故选:C.【点评】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.2.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.3.当x=2时,下列各式的值为0的是()A.B.C.D.【考点】分式的值为零的条件.【分析】根据分式的值为零的条件进行判断.【解答】解:A、当x=2时,x2﹣3x+2=0,由于分式的分母不能为0,故A错误;B、当x=2时,x﹣2=0,分式的分母为0,故B错误;C、当x=2时,2x﹣4=0,且x﹣9≠0;故C正确;D、当x=2时,原式=4≠0,故D错误;故选C.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列图形是中心对称图形的是()A.B. C. D.【考点】中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.不等式组的解表示在数轴上,正确的是()A.B. C.D.【考点】在数轴上表示不等式的解集.【分析】先解不等式组求得解集,再在数轴上表示出来.【解答】解:解不等式组得﹣1<x≤2,所以在数轴上表示为故选D.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.若将中的字母x、y的值分别扩大为原来的4倍,则分式的值()A.扩大为原来的4倍B.缩小为原来的C.缩小为原来的D.不变【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解:将中的字母x、y的值分别扩大为原来的4倍,则分式的值缩小为原来的,故选:C.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.7.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=6,BC=4,则EC的长()A.1 B.1.5 C.2 D.3【考点】平行四边形的性质.【分析】根据平行四边形的性质及AE为角平分线可知:BC=AD=DE=4,又有CD=AB=6,可求EC的长.【解答】解:根据平行四边形的对边相等,得:CD=AB=6,AD=BC=4.根据平行四边形的对边平行,得:CD∥AB,∴∠AED=∠BAE,又∠DAE=∠BAE,∴∠DAE=∠AED.∴ED=AD=4,∴EC=CD﹣ED=6﹣4=2.故选C.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.解关于x的方程:=+3会产生增根,则常数m的值等于()A.5 B.﹣1 C.1 D.6【考点】分式方程的增根.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:x+5=m+3x﹣3,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:6=m+3﹣3,解得:m=6,故选D【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x 的取值范围是()A.x<2 B.x>2 C.x<﹣1 D.x>﹣1【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x>2时,直线y1=ax+b都在直线y2=mx+n的上方,即有y1>y2.【解答】解:根据题意当x>2时,若y1>y2.故选B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.4【考点】旋转的性质;等腰直角三角形.【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.11.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是()个.A.1 B.2 C.3 D.4【考点】角平分线的性质;全等三角形的判定与性质.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,∠ADC=∠ADE,然后对各小题分析判断即可得解.【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的是①②③④共4个.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并确定出全等三角形是解题的关键.12.已知关于x的不等式组的整数解共有6个,则a的取值范围是()A.﹣6<a<﹣5 B.﹣6≤a<﹣5 C.﹣6<a≤﹣5 D.﹣6≤a≤﹣5【考点】一元一次不等式组的整数解.【分析】先解不等式组,然后根据有6个整数解,求出a的取值范围.【解答】解:解不等式x﹣a>0得:x>a,解不等式2﹣2x>0得,x<1,则不等式组的解集为a<x<1,∵不等式组有6个整数解,∴﹣6≤a<5.故选B.【点评】此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(共5小题,每小题3分,满分15分)13.因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)【点评】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.计算:(ab﹣b2)÷=ab2.【考点】分式的乘除法.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=b(a﹣b)•=ab2.故答案为:ab2.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.15.已知x2﹣(m﹣2)x+49是完全平方式,则m=16或﹣12.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【解答】解:∵x2﹣(m﹣2)x+49=x2﹣(m﹣2)x+72,∴﹣(m﹣2)x=±2x•7,解得m=16或m=﹣12.故答案为:16或﹣12.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.16.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=5.【考点】勾股定理;等腰三角形的性质;含30度角的直角三角形.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故答案为:5.【点评】此题考查的是勾股定理,含30度直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键.17.有一张一个角为30°,最小变长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是8+4或16.【考点】图形的剪拼;三角形中位线定理.【分析】根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.【解答】解:由题意可得:AB=4,∵∠C=30°,∴BC=8,AC=4,∵图中所示的中位线剪开,∴CD=AD=2,CF=BF=4,DF=2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=16,故答案为:8+4或16.【点评】此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解.三、解答题18.(10分)(2016春•雅安期末)(1)解不等式3(x﹣1)<5x+2,并在数轴上表示解集.(2)解方程:=﹣.【考点】解分式方程;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)不等式去括号,移项合并,把x系数化为1,求出解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去括号得:3x﹣3<5x+2,移项合并得:2x>﹣5,解得:x>﹣2.5,;(2)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.19.先化简再求值:,其中.【考点】分式的化简求值.【分析】先把分子分母因式分解,再约分得到原式=x﹣1,然后把x的值代入计算即可.【解答】解:原式=•﹣1=x﹣1,当x=+1时,原式=+1﹣1=.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.在如图所示的方格纸中,△ABC,△A1B1C1,△A2B2C2的顶点及O、P、Q都在格点上(2016春•雅安期末)如图,已知四边形ABCD是平行四边形,AE⊥BD 于点E,CF⊥BD于点F,连接AF、CE,试判断四边形AECF是什么样的四边形?写出你的结论并予以证明.【考点】平行四边形的性质.【分析】根据垂直的定义得出∠AEF=∠CFE=90°,利用内错角相等两直线平行可得AE∥CF,再根据平行四边形的性质证明△ABE≌△CDF,根据全等三角形对应边相等可得AE=CF,然后根据有一组对边平行且相等的四边形是平行四边形即可证明.【解答】解:四边形AECF是平行四边形.理由如下:∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEF=∠CFE=90°,∴AE∥CF(内错角相等,两直线平行),在平行四边形ABCD中,AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE与△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形(有一组对边平行且相等的四边形是平行四边形).【点评】本题考查了平行四边形的性质与判定,全等三角形的判定与性质,利用三角形全等证明得到AE=CF是解题的关键.22.阅读理解:把多项式am+an+bm+bn分解因式.解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b)观察上述因式分解的过程,回答下列问题:(1)分解因式:m2x﹣3m+mnx﹣3n;(2)已知:a,b,c为△ABC的三边,且a3﹣a2b+5ac﹣5bc=0,试判断△ABC的形状.【考点】因式分解的应用.【分析】(1)首先将原式前两项和后两项分组,进而提取公因式分解因式即可得出答案;(2)首先将原式前两项和后两项分组,进而提取公因式分解因式即可得出a,b 关系,进而得出△ABC的形状.【解答】解:(1)m2x﹣3m+mnx﹣3n=m(mx﹣3)+n(mx﹣3)=(mx﹣3)(m+n);(2)∵a3﹣a2b+5ac﹣5bc=0,∴a2(a﹣b)+5c(a﹣b)=0,∴(a﹣b)(a2+5c)=0,∵a,b,c为△ABC的三边,∴a2+5c≠0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形.【点评】此题主要考查了分组分解法的应用,正确将原式分组是解题关键.23.如图,在△ABC中,∠BAC的平分线是AP,PQ是线段BC的垂直平分线,PN⊥AB于N,PM⊥AC于M.求证:BN=CM.【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.【分析】连接PB、PC,根据角平分线上的点到角的两边距离相等可得PM=PN,再根据线段垂直平分线上的点到线段两端点的距离相等可得PB=PC,然后利用“HL”证明Rt△PMC和Rt△PNB全等,最后根据全等三角形对应边相等证明即可.【解答】证明:如图,连接PB、PC,∵AP是∠BAC的平分线,PN⊥AB于N,PM⊥AC于M,∴PM=PN,∠PMC=∠PNB=90°,∵PQ是线段BC的垂直平分线,∴PB=PC,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记各性质并作辅助线构造出全等三角形是解题的关键.24.由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?【考点】一元一次不等式组的应用;一元一次方程的应用.【分析】(1)先设今年甲型号手机每台售价为x元,根据题意列出方程,解出x的值,再进行检验,即可得出答案;(2)先设购进甲型号手机m台,根据题意列出不等式组,求出m的取值范围,即可得出进货方案.【解答】解:(1)设今年甲型号手机每台售价为x元,由题意得,=,解得x=1500,经检验x=1500是方程的解,答:今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m台,则乙型号手机(20﹣m)台,由题意得,,解得:8≤m≤12,因为m只能取整数,所以m取8、9、10、11、12,共有5种进货方案,方案1:购进甲型号手机8台,乙型号手机12台;方案2:购进甲型号手机9台,乙型号手机11台;方案3:购进甲型号手机10台,乙型号手机10台;方案4:购进甲型号手机11台,乙型号手机9台;方案5:购进甲型号手机12台,乙型号手机8台.【点评】此题考查了一元一次不等式组的应用,要能根据题意列出不等式组,关键是根据不等式组的解集求出所有的进货方案,注意解分式方程要检验,是一道实际问题.25.(10分)(2016春•雅安期末)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形过点F作BC 的平行线交射线AC于点E,连接BF(1)如图1,若△ABC的边长是2,求△ADF的最小面积;(2)如图1,求证:△AFB≌△ADC';(3)如图2,若D点在BC边的延长线上,其它条件不变,请判断四边形BCEF 的形状,并说明理由.【考点】三角形综合题.【分析】(1)根据题意得到当AD⊥BC时,△ADF的面积最小,根据等边三角形的性质得到AD=,然后根据三角形的面积公式即可得到结论;(2)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(3)根据等边三角形的性质得到AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,根据全等三角形的性质得到∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.【解答】解:(1)由题意得当AD⊥BC时,AD最小,即△ADF的面积最小,∵△ABC是等边三角形,∴BC=2,BD=CD=1,∴AD=,∵△ADF是等边三角形,∴△ADF的最小面积=;(2)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(3)∵△ABC和△ADE都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF。

四川省雅安市中考数学试题(含答案)

四川省雅安市中考数学试题(含答案)

义务教育基础课程初中教学资料四川省雅安市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)每小题的四个选项中,有且仅有一个正确的。

1.(3分)(2013•雅安)﹣的相反数是()A.2B.﹣2 C.D.﹣考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣的相反数是.故选C.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2013•雅安)五边形的内角和为()A.720°B.540°C.360°D.180°考点:多边形内角与外角.分析:利用多边形的内角和定理即可求解.解答:解:五边形的内角和为:(5﹣2)×180=540°.故选B.点评:本题考查了多边形的内角和定理的计算公式,理解公式是关键.3.(3分)(2013•雅安)已知x1,x2是一元二次方程x2﹣2x=0的两根,则x1+x2的值是()A.0B.2C.﹣2 D.4考点:根与系数的关系.专题:计算题.分析:利用根与系数的关系即可求出两根之和.解答:解:∵x1,x2是一元二次方程x2﹣2x=0的两根,∴x1+x2=2.故选B点评:此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.4.(3分)(2013•雅安)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为()A.50°B.60°C.70°D.100°考点:平行线的性质;角平分线的定义.分析:根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解.解答:解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CD,∴∠BAD=∠D,∴∠CAD=∠D,在△ACD中,∠C+∠D+∠CAD=180°,∴80°+∠D+∠D=180°,解得∠D=50°.故选A.点评:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键.5.(3分)(2013•雅安)下列计算正确的是()A.(﹣2)2=﹣2 B.a2+a3=a5C.(3a2)2=3a4D.x6÷x2=x4考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据乘方意义可得(﹣2)2=4,根据合并同类项法则可判断出B的正误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可判断出C的正误;根据同底数幂的除法法则:底数不变,指数相减可判断出D的正误.解答:解:A、(﹣2)2=4,故此选项错误;B、a2、a3不是同类项,不能合并,故此选项错误;C、(3a2)2=9a4,故此选项错误;D、x6÷x2=x4,故此选项正确;故选:D.点评:此题主要考查了乘方、合并同类项法则、幂的乘方、同底数幂的除法,关键是熟练掌握计算法则.6.(3分)(2013•雅安)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,3考点:众数;算术平均数;中位数.分析:根据题意可知x=2,然后根据平均数、中位数的定义求解即可.解答:解:∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=3.5中位数为:3.故选A.点评:本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.7.(3分)(2013•雅安)不等式组的整数解有()个.A.1B.2C.3D.4考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再确定符合题意的整数解的个数即可得出答案.解答:解:由2x﹣1<3,解得:x<2,由﹣≤1,解得x≥﹣2,故不等式组的解为:﹣2≤x<2,所以整数解为:﹣2,﹣1,0,1.共有4个.故选D.点评:本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.8.(3分)(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()A.1:3 B.2:3 C.1:4 D.2:5考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.分析:先利用SAS证明△ADE≌△CFE(SAS),得出S△ADE=S△CFE,再由DE为中位线,判断△ADE∽△ABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S△ADE:S△ABC=1:4,则S△ADE:S四边形BCED=1:3,进而得出S△CEF:S四边形BCED=1:3.解答:解:∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.故选A.点评:本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理.关键是利用中位线判断相似三角形及相似比.9.(3分)(2013•雅安)将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x2考点:二次函数图象与几何变换.分析:根据“左加右减、上加下减”的原则进行解答即可.解答:解:将抛物线y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=(x﹣1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3﹣3,即y=x2.故选D.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.(3分)(2013•雅安)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A.B.C.D.考点:切线的性质;圆周角定理;特殊角的三角函数值.分析:首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值.解答:解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.点评:此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.11.(3分)(2013•雅安)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比)例函数y=在同一平面直角坐标系中的大致图象为(考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解答:解:∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线x=﹣>0,∴b<0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一三象限,且与y轴的负半轴相交,反比例函数y=图象在第一三象限,只有B选项图象符合.故选B.点评:本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.12.(3分)(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,①正确.∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°②正确,∵BC=CD,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2013•雅安)已知一组数2,4,8,16,32,…,按此规律,则第n个数是2n.考点:规律型:数字的变化类.分析:先观察所给的数,得出第几个数正好是2的几次方,从而得出第n个数是2的n次方.解答:解:∵第一个数是2=21,第二个数是4=22,第三个数是8=23,∴第n个数是2n;故答案为:2n.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题,本题的关键是第几个数就是2的几次方.14.(3分)(2013•雅安)从﹣1,0,,π,3中随机任取一数,取到无理数的概率是.考点:概率公式;无理数.分析:数据﹣1,0,,π,3中无理数只有π,根据概率公式求解即可.解答:解∵数据﹣1,0,,π,3中无理数只有π,∴取到无理数的概率为:,故答案为:点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.15.(3分)(2013•雅安)若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为5.考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.专题:分类讨论.分析:先根据非负数的性质列式求出a、b再分情况讨论求解即可.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.故答案为:5.点评:本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.16.(3分)(2013•雅安)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..考点:相似三角形的判定与性质;平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而可判定△BEF∽△DCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=.故答案为:.点评:此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DCF,再利用相似三角形的对应边成比例的性质求解.17.(3分)(2013•雅安)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,﹣2),(﹣3,0),(3,0).考点:勾股定理;坐标与图形性质.专题:分类讨论.分析:需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标.解答:解:如图,①当点C位于y轴上时,设C(0,b).则+=6,解得,b=2或b=﹣2,此时C(0,2),或C(0,﹣2).如图,②当点C位于x轴上时,设C(a,0).则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6,解得a=3或a=﹣3,此时C(﹣3,0),或C(3,0).综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).点评:本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标.三、解答题(共7小题,满分69分)18.(12分)(2013•雅安)(1)计算:8+|﹣2|﹣4sin45°﹣(2)先化简,再求值:(1﹣)÷,其中m=2.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据绝对值、特殊角的三角函数值、负指数幂的定义解答;(2)将括号内的部分通分后相减,再将除式因式分解,然后将除法转化为乘法解答.解答:解:(1)原式=8+2﹣4×﹣=8+2﹣2﹣3=7﹣2;(2)原式=(﹣)÷=•=,当m=2时,原式==.点评:本题考查了实数的运算及分式的化简求值,熟悉绝对值、特殊角的三角函数值、负指数幂的运算法则及能熟练因式分解是解题的关键.19.(9分)(2013•雅安)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.点评:此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质.20.(8分)(2013•雅安)甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)考点:二元一次方程组的应用.分析:设乙的速度为x米/分,则甲的速度为2.5x米/分,环形场地的周长为y米,根据环形问题的数量关系,同时、同地、同向而行首次相遇快者走的路程﹣慢者走的路程=环形周长建立方程求出其解即可.解答:解:设乙的速度为x米/秒,则甲的速度为2.5x米/秒,环形场地的周长为y米,由题意,得,解得:,∴甲的速度为:2.5×150=375米/分.答:乙的速度为150米/分,则甲的速度为375米/分,环形场地的周长为900米.点评:本题考查了列二元一次方程组解环形问题的运用,二元一次方程组的解法的运用,解答时运用环形问题的数量关系建立方程是关键.21.(8分)(2013•雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.解答:解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.22.(10分)(2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)考点:反比例函数综合题.专题:综合题.分析:(1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式;(2)求出反比例函数和一次函数的另外一个交点即可;(3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可.解答:解:(1)过点A作AD⊥x轴于D,∵C的坐标为(﹣2,0),A的坐标为(n,6),∴AD=6,CD=n+2,∵tan∠ACO=2,∴==2,解得:n=1,故A(1,6),∴m=1×6=6,∴反比例函数表达式为:y=,又∵点A、C在直线y=kx+b上,∴,解得:,∴一次函数的表达式为:y=2x+4;(2)由得:=2x+4,解得:x=1或x=﹣3,∵A(1,6),∴B(﹣3,﹣2);(3)分两种情况:①当AE⊥x轴时,即点E与点D重合,此时E1(1,0);②当EA⊥AC时,此时△ADE∽△CDA,则=,DE==12,又∵D的坐标为(1,0),∴E2(13,0).点评:本题考查了反比例函数的综合题,涉及了点的坐标的求法以及待定系数法求函数解析式的知识,主要考查学生的计算能力和观察图形的能力.23.(10分)(2013•雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)考点:切线的判定与性质;扇形面积的计算.分析:(1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S=S扇形OBD﹣S△BOD,即可求得答案.阴影解答:(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.点评:此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.(12分)(2013•雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C (0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y 轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,﹣m2﹣2m+3),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可.解答:解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).点评:此题主要考查了待定系数法求二次函数解析式以及二次函数的最值,根据点的坐标表示出线段的长是表示出三角形的面积的基础.。

四川省雅安市中考数学试题(含答案)

四川省雅安市中考数学试题(含答案)

4.(3分)(2013• A.50°雅安)不等式组的整数解有( )C△CEF四边形BCED,∴△ADE≌△CFE(例函数y=在同一平面直角坐标系中的大致图象为( ) A.B.C.D.x=﹣>EF,④BE+DF=EF, A.2,Rt△ABE≌Rt△ADF(HL),∴BE=DF,①正确.∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°②正确,∵BC=CD,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,DF=.故答案为:.(﹣,(,则+=6|﹣﹣a|+|a﹣|=6°﹣÷,其中×﹣2﹣32;÷=•=,==(2)若DF=BF,求证:四边形∵在△ADE和,∴△ADE≌△CBF,解得:,÷=200 P==(3)在x轴上求点E,使△ACE为直角三角形.∴==2又∵点A、C在直线∴,解得:,)由得:则=,DE==12∴E2(13,0).点评:本题考查了反比例函数的综合题,涉及了点的坐标的求法以及待定系数法求函数解析BF=,BD=2BF=2,BOD=2∠BOF=120°,=﹣×2×π﹣.②S是否存在最大值?若存在,求出最大值及此时点E的坐标;)由题意可知:解得:AC=3,BC=;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年四川省雅安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2015•雅安)下列各数中最小的是()A.﹣5 B.﹣4 C.3 D.4考点:有理数大小比较.分析:利用有理数大小的比较方法,比较得出答案即可.解答:解:∵﹣5<﹣4<3<4,∴最小的是﹣5.故选:A.点评:此题考查有理数的大小比较,掌握负数小于正数,两个负数绝对值大的反而小比较方法是解决问题的关键.2.(3分)(2015•雅安)据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.9考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将361 000 000用科学记数法表示为:3.61×108.故m=8.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•雅安)已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3 B.4 C.5 D.6考点:多边形内角与外角.分析:利用外角和360°÷外角的度数即可得到边数.解答:解:360°÷60°=6.故该正多边形的边数为6.故选:D.点评:此题主要考查了多边形内角与外角,关键是掌握多边形外角和为360°.4.(3分)(2015•雅安)下列大写英文字母,既可以看成是轴对称图形,又可以看成是中心对称图形的是()A.O B.L C.M D.N考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、O既可以看成是轴对称图形,又可以看成是中心对称图形,故A正确;B、L既不可以看成是轴对称图形,又不可以看成是中心对称图形,故B错误;C、M是轴对称图形,不是中心对称图形,故C错误;D、N既不可以看成是轴对称图形,又不可以看成是中心对称图形,故D错误;故选:A.点评:本题考查了中心对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2015•雅安)已知某同学近几次的数学成绩(单位:分)分别为92,90,88,92,93,则该同学这几次数学成绩的平均数和众数分别是()A.90分,90分B.91分,92分C.92分,92分D.89分,92分考点:众数;算术平均数.分析:观察这组数据发现92出现的次数最多,进而得到这组数据的众数为92,将五个数据相加求出之和,再除以5即可求出这组数据的平均数.解答:解:∵这组数据中,92出现了2次,最多,∴这组数据的众数为92,∵这组数据分别为:92,90,88,92,93,∴这组数据的平均数=91.故选B.点评:此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.6.(3分)(2015•雅安)如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选A.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(3分)(2015•雅安)下列计算正确的是()A.x2+x3=x5B.(x2)3=x5C.x6÷x3=x3D.2xy2•3x2y=6x2y3考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据单项式的乘法,可判断D.解答:解:A、不是同底数幂的乘法指数不能相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、系数乘系数,同底数的幂相乘,单独出现在一个单项式中的字母作为积的因式出现,故D错误;故选:C.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.8.(3分)(2015•雅安)如图所示,已知AB∥CD,直线EF交AB于点E,交CD于点F,且EG平分∠FEB,∠1=50°,则∠2等于()A.50°B.60°C.70°D.80°考点:平行线的性质.分析:根据角平分线定义求出∠BEF,根据平行线的性质得出∠2+∠BEF=180°,代入求出即可.解答:解:∵EG平分∠FEB,∠1=50°,∴∠BEF=2∠1=100°,∵AB∥CD,∴∠2+∠BEF=180°,∴∠2=80°,故选D.点评:本题考查了角平分线定义,平行线的性质的应用,能得出∠2+∠BEF=180°是解此题的关键,注意:两直线平行,同旁内角互补.9.(3分)(2015•雅安)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10考点:解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.分析:先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.解答:解:解方程x2﹣4x+3=0,(x﹣1)(x﹣3)=0解得x1=3,x2=1;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选:B.点评:此题考查用因式分解一元二次方程,三角形三边关系,注意计算结果的分类检验.10.(3分)(2015•雅安)下列命题是真命题的是()A.任何数的0次幂都等于1B.顺次连接菱形四边中点的线段组成的四边形是正方形C.图形的旋转和平移会改变图形的形状和大小D.角平分线上的点到角两边的距离相等考点:命题与定理.分析:根据根据0指数幂的定义即可判断A;根据矩形的判定方法即可判定B;根据平移的性质对C进行判断;根据角平分线性质对A进行判断.解答:解:A、除0外,任何数的0次幂都等于1,错误,是假命题;B、顺次连接菱形四边中点的线段组成的四边形是矩形,错误,是假命题;C、图形的旋转和平移不会改变图形的形状和大小,错误,是假命题;D、角平分线上的点到角两边的距离相等,正确,是真命题.故选D.点评:本题考查了0指数幂的定义,矩形的判定,平移和旋转的性质,角平分线性质,能理解性质和法则是解此题的关键.11.(3分)(2015•雅安)在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4 B.0,﹣3 C.﹣3,﹣4 D.0,0考点:二次函数的最值.分析:首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.解答:解:抛物线的对称轴是x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选A.点评:本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.12.(3分)(2015•雅安)如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.5考点:圆周角定理;垂径定理.专题:压轴题.分析:根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确,==,得出④正确,结合②④得出⑤正确即可.解答:解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.点评:此题考查圆周角定理,垂径定理,以及直角三角形斜边上的中线等于斜边的一半等知识.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)(2015•雅安)函数y=中,自变量x的取值范围是x>1.考点:函数自变量的取值范围.分析:根据二次根式被开放数大于等于0和分式的分母不为0回答即可.解答:解:由题意得:x﹣1≥0,且x﹣1≠0.解得:x>1.故答案为:x>1.点评:本题主要考查的函数自变量的取值范围问题,明确二次根式被开放数大于等于0和分式的分母不为0是解题的关键.14.(3分)(2015•雅安)已知一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外均相同,现从盒中任意摸出1个球,则摸到红球的概率是.考点:概率公式.专题:计算题.分析:直接根据概率公式计算.解答:解:摸到红球的概率==.故答案为.点评:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.(3分)(2015•雅安)不等式组的解集是1≤x<2.考点:解一元一次不等式组.分析:首先求出两个不等式的解集,再取两个解集的公共部分,即可得出原不等式组的解集.解答:解:,由①得:x≥1,由②得:x<2,∴原不等式组的解集为1≤x<2;故答案为:1≤x<2.点评:本题考查了一元一次不等式组的解法、一元一次不等式的解法;熟练掌握一元一次不等式的解法是解决问题的关键.16.(3分)(2015•雅安)为美化小区环境,决定对小区的一块空地实施绿化,现有一长为20m的栅栏,要围成一扇形绿化区域,则该扇形区域的面积的最大值为25m2.考点:扇形面积的计算.分析:首先设扇形区域的半径为xm,则扇形的弧长为(20﹣2x)cm,该扇形区域的面积为ycm2,则可得函数:y=x(20﹣2x)=﹣x2+10x=﹣(x﹣5)2+25,继而求得答案.解答:解:设扇形区域的半径为xm,则扇形的弧长为(20﹣2x)cm,该扇形区域的面积为ycm2,则y=x(20﹣2x)=﹣x2+10x=﹣(x﹣5)2+25,∴该扇形区域的面积的最大值为25m2.故答案为:25m2.点评:此题考查了扇形的面积计算以及二次函数最值问题.注意根据题意得到函数的解析式是关键.17.(3分)(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510.考点:解三元一次方程组;完全平方公式.专题:压轴题.分析:运用完全平方公式将已知的等式展开整理得m12+m22+…+m20152=1849,故此2015个数中有166个数为0.解答:解:∵(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,∴m12﹣2m1+1+m22﹣2m2+1+…+m20152﹣2m2015+1=1510,∴m12+m22+…+m20152﹣2(m1+m2+…+m2015)+2015=1510,∵m1+m2+…+m2015=1525,∴m12+m22+…+m20152=2545,∵m1,m2,…,m2015是从0,1,2这三个数中取值的一列数,∴m1,m2,…,m2015中为1的个数是2015﹣1510=505,2的个数为(1525﹣505)÷2=510个.故答案为:510.点评:此题考查完全平方公式的运用,找出运算的规律.利用规律解决问题.三、解答题(本大题共7小题,共63分,解答时应写出必要的文字说明、证明过程或演算步骤)18.(12分)(2015•雅安)(1)计算:|﹣2|+2cos45°﹣+()﹣1(2)先化简,再求值:(1﹣)÷,其中x=﹣2.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用立方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:(1)原式=2﹣+2×﹣2+2=2;(2)原式=•=,当x=﹣2时,原式=.点评:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.19.(7分)(2015•雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?考点:分式方程的应用.分析:设该车间原计划每天生产的零件为x个,然后根据计划用的天数比实际用的天数多5列出方程,再求解即可.解答:解:设该车间原计划每天生产的零件为x个,由题意得,﹣=5,解得x=15,经检验,x=15是原方程的解.答:该车间原计划每天生产的零件为15个.点评:本题考查了分式方程在实际生活中的应用,难度较小,找出题目中的等量关系是解题的关键,解分式方程时要注意验根.20.(10分)(2015•雅安)为了培养学生的兴趣,我市某小学决定再开设A.舞蹈,B.音乐,C.绘画,D.书法四个兴趣班,为了解学生对这四个项目的兴趣爱好,随机抽取了部分学生进行调查,并将调查结果绘制成如图1,2所示的统计图,且结合图中信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)请将两幅统计图补充完整;(3)若本校一共有2000名学生,请估计喜欢“音乐”的人数;(4)若调查到喜欢“书法”的4名学生中有2名男生,2名女生,现从这4名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到相同性别的学生的概率.考点:列表法与树状图法;频数(率)分布直方图;扇形统计图.专题:数形结合.分析:(1)用C类人数除以它所占的百分比即可得到调查的总人数;(2)先分别计算出B类人数和A、B两类所占的百分比,然后补全统计图;(3)利用样本估计总体,用样本中B类人数的百分比作为全校喜欢“音乐”的人数的百分比,然后用此百分比乘以全校人数即可得到全校喜欢“音乐”的人数;(4)先画树状图展示所有12种等可能的结果数,再找出相同性别的学生的结果数,然后根据概率公式求解.解答:解:(1)120÷40%=300(名),所以在这次调查中,共调查了300名学生;(2)B类学生人数=300﹣90﹣120﹣30=60(名),A类人数所占百分比=×100%=30%;B类人数所占百分比=×100%=20%;统计图为:(3)2000×20%=400(人),所以估计喜欢“音乐”的人数约为400人;(4)画树状图为:共有12种等可能的结果数,其中相同性别的学生的结果数为4,所以相同性别的学生的概率==.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了统计图和用样本估计总体.21.(8分)(2015•雅安)在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m,第一次在D处测得旗杆顶端A的仰角为60°,第二次向后退12m到达E处,又测得旗杆顶端A的仰角为30°,求旗杆AB的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:由∠AFC为△AFG的外角,利用外角性质得到∠AGF=∠FAG,利用等角对等边得到AF=GF=ED,在直角三角形ACF中,利用锐角三角函数定义求出AC的长,由AC+BC求出AB的长即可.解答:解:∵∠AFC=60°,∴∠AFG=120°,∵∠CGA=30°,∴∠GAF=30°,∴FA=FG=ED=12m,∴AC=AF•sin60°=6(m),∵BC=FD=1,∴AB=AC+BC=(6+1)m.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握运算法则是解本题的关键.22.(10分)(2015•雅安)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).(1)求一次函数和反比例函数的解析式;(2)现有一直线l与直线y=kx+b平行,且与反比例函数y=的图象在第一象限有且只有一个交点,求直线l的函数解析式.考点:反比例函数与一次函数的交点问题.分析:(1)由点A(1,5)在y=的图象上,得到5=,解得:m=5,于是求得反比例函数的解析式为y=,由于一次函数y=kx+b的图象经过A(1,5)和点C(0,6),列,解得,于是得到一次函数的解析式y=﹣x+6;(2)设直线l的函数解析式为:y=﹣x+t,由于反比例函数y=的图象在第一象限有且只有一个交点,联立方程组,化简得:x2﹣tx+5=0,得到△=t2﹣20=0,同时解得t=2,求得结果.解答:解:(1)∵点A(1,5)在y=的图象上,∴5=,解得:m=5,∴反比例函数的解析式为:y=,∵一次函数y=kx+b的图象经过A(1,5)和点C(0,6),∴,解得:,∴一次函数的解析式为:y=﹣x+6;(2)设直线l的函数解析式为:y=﹣x+t,∵反比例函数y=的图象在第一象限有且只有一个交点,∴,化简得:x2﹣tx+5=0,∴△=t2﹣20=0,解得:t=±2,∵t=﹣2不合题意,∴直线l的函数解析式为:y=﹣x+2.点评:本题考查了一次函数和反比例函数的交点问题,待定系数法求函数的解析式,认真审题弄清题意是解题的关键.23.(10分)(2015•雅安)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.专题:证明题.分析:(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.解答:(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴四边形ABED为菱形.点评:本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.24.(12分)(2015•雅安)如图,已知抛物线C1:y=﹣x2,平移抛物线y=x2,使其顶点D落在抛物线C1位于y轴右侧的图象上,设平移后的抛物线为C2,且C2与y轴交于点C(0,2).(1)求抛物线C2的解析式;(2)抛物线C2与x轴交于A,B两点(点B在点A的右侧),求点A,B的坐标及过点A,B,C的圆的圆心E的坐标;(3)在过点(0,)且平行于x轴的直线上是否存在点F,使四边形CEBF为菱形?若存在,求出点F的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)设D(a,﹣a2),进而求出a的值得出函数解析式即可;(2)利用y=0求出A,B点坐标,再利用|CE|=|AE|,求出m的值进而得出答案;(3)利用菱形的性质结合|BF|=|CF|=|CE|,再求出|FC|,进而得出答案.解答:解:(1)由题意设D(a,﹣a2),假设抛物线C2的解析式为:y=(x﹣a)2﹣a2,∵点C在抛物线C2上,∴将C(0,2)代入上式,解得:a=±2,∵点D在y轴右侧,∴a=2,∴抛物线C2的解析式为:y=(x﹣2)2﹣2;(2)由题意,在y=(x﹣2)2﹣2中,令y=0,则x=2±,∵点B在点A的右侧,∴A(2﹣,0),B(2+,0),又∵过点A,B,C的圆的圆心一定在线段AB的垂直平分线上,∴设E(2,m),且|CE|=|AE|,则22+(2﹣m)2=m2+(2﹣2+)2,解得:m=,∴圆心E的坐标为:(2,);(3)假设存在点F(t,),使得四边形CEBF为菱形,则|BF|=|CF|=|CE|,∴()2+(2+﹣t)2=(2﹣)2+t2,解得:t=,当t=时,F(2,),此时|EC|=,|FC|===,∴|CF|=|BF|=|BE|=|EC|,即存在点F(,),使得四边形CEBF为菱形.点评:此题主要考查了二次函数综合以及菱形的判定与性质以及勾股定理等知识,利用数形结合得出F点位置是解题关键.。

相关文档
最新文档