行测答题技巧“巩固”:“十字交叉”用于资料分析
十字交叉在行测资料分析解题中的妙用

在近几年的行测资料分析部分,往往会涉及到部分和整体的增长率,此时,十字交叉就能成功的解答此类问题。
十字交叉的原理我们在这就不详细的讲解了,红麒麟公考专家提醒你,在行测资料分析使用十字交叉,一般应用于求整体(部分)的增长率或者是求比重的试题中,且要活学活用。
一、十字交叉最浅显应用资料分析的试题往往会涉及到三个指标,两个部分、一个整体,我们依据十字交叉可以得到,整体的增长率必然处于部分增长率之间,此时,比较仁慈的考官,就会在设置选项的时候,让我们能够很容易的排除三个选项,直接得到答案,来看个试题。
******************************************************************************* ******【例1】2008年1~8月,公路客运量比上年同期增长()。
A.6.9% B.7.4% C.7.9% D.11.7% 整体:1~9月公路客运量;部分:1~8月公路客运量增长11.4%;9月公路客运量增长7.4%;整体的在7.4%~11.4%之间,选C。
******************************************************************************* ******二、十字交叉稍变态应用虽说,整体的增长率处于部分的增长率之间,但是有的时候,试题往往给出的选项,只允许我们排除其中的两个,剩下的也无法排除,此时就要稍稍分析一下基期各部分占整体的比重的大小,来分析整体的增长率到底是偏向哪个部分,即可以将剩余的两个选项,排除掉一个,剩下的一个就是正确答案。
在这肯定注意到,为什么要分析基期的比重,而不是末期的比重呢?因为在这里面涉及了增长率,这就暗含着增长量这个等式,我们具体来看一下。
******************************************************************************* ******整体:末期增长率:r,基期值:R;部分:末期增长率a、b,基期值:A、B;等量关系:A×a+B×b=R×r,A×a+B×b=(A+B)×r;变形:A:B=(r-b):(a-r)。
行测资料分析技巧:十字交叉法

⾏测资料分析技巧:⼗字交叉法 任何⼀场考试取得成功都离不开每⽇点点滴滴的积累,下⾯由店铺⼩编为你精⼼准备了“⾏测资料分析技巧:⼗字交叉法”,持续关注本站将可以持续获取更多的考试资讯!⾏测资料分析技巧:⼗字交叉法 ⼗字交叉法主要解决的就是⽐值的混合问题,在公务员考试的过程中,资料分析部分解题经常⽤的⼀种解题⽅法。
它应⽤起来快速、准确、⽅便,为我们考试中秒杀题⺫提供了很⼤的助⼒。
那么接下来跟⼤家⼀起来学习⼗字交叉法。
⼀、⼗字交叉法概述 ⼗字交叉法是解决⽐值混合问题的⼀种⾮常简便的⽅法。
这⾥需要⼤家理解“⽐值”“混合”这两个概念。
⽐值:满⾜C/D的形式都可以看成是⽐值;混合:分⼦分⺟具有可加和性。
平均数问题、浓度问题、利润问题、增⻓率问题、⽐重等混合问题,都可以⽤⼗字交叉法来解决。
⼆、⼗字交叉法的模型 在该模型中,需要⼤家掌握以下⼏个知识点: 1、a和b为部分⽐值、r为整体⽐值、A和B为实际量 2、交叉作差时⼀定要⽤⼤数减去⼩数,保证差值是⼀个正数,避免出现错误。
这⾥假定a>b 3、实际量与部分⽐值的关系 实际量对应的是部分⽐值实际意义的分⺟。
如:平均分=总分/⼈数,实际量对应的就是相应的⼈数;浓度=溶质/溶液,实际量对应的就是相应的溶液质量;增⻓率=增⻓量/基期值,实际量对应的就是相应的基期值。
4、在这⾥边有三组计算关系 (1)第⼀列和第⼆列交叉作差等于第三列 (2)第三列、第四列、第五列的⽐值相等 (3)第1列的差等于第三列的和 三组计算关系是我们应⽤⼗字交叉法解题的关键,⼀定要记住并且灵活应⽤。
三、四种考查题型 1、求a,即已知总体⽐值、第⼆部分⽐值、实际量之⽐,求第⼀部分⽐值。
例某班有⼥⽣30⼈,男⽣20⼈。
期中的数学考试成绩如下,全班总的平均分为76,其中男⽣的平均分为70。
求全班⼥⽣的平均分为多少? 解析:平均分=总分/⼈数,是⽐值的形式。
此题中,男⽣的平均分和⼥⽣的平均分混合成了全班的平均分,是⽐值的混合问题,可以⽤⼗字交叉法来解题。
行测备考-资料分析答题技巧

行测备考-资料分析答题技巧
经过一段时间的复习备考,考生对于资料分析的基础知识都有了比较扎实的掌握,但是很多考生却发现模拟答题的紧张状态下很难快速有效的确定正确答案。
中公网校的辅导专家会结合广东省考真题特点,陆续帮大家分析、总结资料分析的答题技巧,提高大家的得分能力!中公网校每周也做同步公开课与大家分享学习方法,帮助大家快速提分!
一、利用十字交叉巧计算
十字交叉法是数学运算解题很重要的方法,在资料分析中很多数据之间也满足十字交叉的关系,巧用十字交叉可快速得答案。
例1.
二、用好同位比较法巧判断
分析广东省考真题,资料分析题型中考查比较类题目比较多,用同位比较法解决这类题目会收到事半功倍的效果。
例2.
2005-2009年全市卫生机构情况
问题:与前一年相比,B市卫生机构数量增幅最大的年份是()
A.2006
B.2007
C.2008
D.2009
资料分析的答题技巧暂时分析到这里,大家可以密切关注2014年广东省考答题技巧汇总,学习更多的内容。
资料分析:速算技巧之十字交叉法

资料分析:速算技巧之十字交叉法今天带大家一起学习一个特殊的速算技巧——十字交叉法,这种方法主要用于解决两个部分混合成一个整体的题型。
满足关系式:,则可写成十字交叉的形式,常见应用:(1)已知两部分平均数和整体平均数,求两部分人数之比;(2)已知两部分某指标的占比和整体中该指标的占比,求两部分数量之比;(3)已知两部分增长率和整体增长率,求两部分基期量之比或者某部分基期量占比。
练习题:【例1】2018 年国家统计局组织开展了第二次全国时间利用的随机抽样调查,共调查48580 人。
结果显示,受访居民在一天的活动中,有酬劳动平均用时4 小时24 分钟。
其中,男性 5 小时15 分钟,女性 3 小时35 分钟;城镇居民 3 小时59 分钟,农村居民 5 小时1 分钟;工作日4 小时50 分钟,休息日3 小时19 分钟。
受访的男性居民约有:A.2.38 万人B.2.43 万人C.2.65 万人D.2.91 万人【例2】2018 年11 月中旬,某市统计局对全市2000 名18~65 周岁的常住居民进行了有关“双11”网购情况的电话调查。
调查结果显示,47.5%的受访者参与了2018 年“双11”的网购,其中64.4%的男性和67.2%的女性表示“有实际购物需求”是其参与“双11”网购的原因之一。
该市参与2018 年“双11”网购的受访者中,男、女人数的比值最接近:A.0.47B.0.51C.0.59D.0.65【例3】2017 年1—12 月,全国内燃机累计销量5645.38 万台,同比增长 4.11%,累计完成功率266879.47 万千瓦,同比增长9.15%,其中柴油内燃机功率同比增长34%。
从燃料类型来看,柴油机增幅明显高于汽油机,柴油机累计销量556 万台,同比增长13.04%;汽油机累计销量5089 万台。
2017 年,汽油内燃机累计销量同比增速:A.低于−4%B.在−4%~0%之间C.在0%~4%之间D.超过4%答案【例1】【答案】A【解析】出现了两个部分和一个整体的平均数,求解某部分人数。
公务员—行测—十字交叉法的原理

一、十字交叉法的原理(这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改)首先通过例题来说明原理。
某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。
方法一:搞笑(也是高效)的方法。
男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。
月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。
方法二:假设男生有X,女生有Y。
有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。
月月讲解:这个就是常用的列方程法方法二:假设男生有X,女生有Y。
男生:X 75 85-80=580女生:Y 85 80-75=5男生:女生=X:Y=1:1。
月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。
总结一下,一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有(1-X)。
AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/A-B因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。
月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。
有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的浓度为Y,则有:X*x+Y*y=(X+Y)*r整理有X(x-r)=Y(r-y);所以有X:Y=(r-y):(x-r)上面的计算过程就抽象为:X x r-yrY y x-r这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。
行测备考:十字交叉法在资料分析中的应用

行测备考:十字交叉法在资料分析中的应用中公教育研究与辅导专家柴杏子在资料分析考试当中,部分题目运用十字交叉法求解更加简便,接下来中公教育给大家介绍一下十字交叉法在资料分析中的运用。
例1.2013年上半年,全国汽车生产1075.17万辆,同比增长12.83%,同比增幅提高8.75个百分点;1、2季度汽车销量分别为542.42万辆和535.73万辆,1季度同比增长13.11%,2季度同比增长11.55%。
问题:与去年同期相比,2013年上半年全国汽车销量增长百分之几?A.19.1%B.14.5%C.12.3%D.10.4%【答案】C。
【考点点拨】题干中已知第一季度增长率为13.11%,第二季度增长率为11.55%,根据十字交叉法可知整体比值应介于部分比值之间,所以上半年的增长率大于11.55%,小于13.11%,选C。
例2.2015年我国货物进出口总额245741亿元,同比下降7%。
其中货物出口额同比下降1.8%。
一般贸易出口75456亿元,占出口总额的比重为53.4%。
货物进口额104485亿元,同比下降13.2%,一般贸易进口57323亿元,占进口总额的比重为54.9%。
问题:2015年我国一般贸易进出口总额占我国货物进出口总额的比重为多少?A.52.1%B.54.0%C.55.2%D.56.3%【答案】B。
【考点点拨】一般贸易出口占出口总额的比重为53.4%,一般贸易进口占进口总额的比重为54.9%,整体比值介于部分比值之间,选B。
例 3.2011年8月新疆全区规模以上工业实现增加值235.25亿元,比上年同期增长10.6%,其中轻工业实现增长15.4%,重工业实现增长10.2%。
问题:2010年8月规模以上重工业增加值是轻工业增加值的多少倍?A.8.3B.12C.23D.1.3【答案】B。
【考点点拨】轻工业增长率15.4%,重工业增长率10.2%,整体增长率10.6%,交叉作差可得:轻工业 15.4% 0.4% 1 规模以上工业10.6%重工业10.2% 4.8% 12交叉作差后的比值等于两个部分比值分母的比,而增长率=增长量÷基期值,分母为其对应的基期值,所以重工业与轻工业的基期值比值为12:1。
资料分析中的“十字交叉法”

资料分析中的“⼗字交叉法” ⼗字交叉法作为初中化学计算的重要技巧之⼀,⼀直以来都是解决浓度问题的常⽤⽅法,但很少有同学了解到这个⽅法在我们公考中也同样占据重要的地位。
⼗字交叉思想是公务员⾏政职业能⼒测验中解答题⽬的⼀种快速锁定答案的⽅法。
⼀、 “⼗字交叉法”原理简介⼗字交叉法最初是根据溶液混合问题得到的,即如果有A、B两种溶液的浓度分别为a和b(此处假设a>b),则A、B混合在⼀起的混合溶液的浓度r肯定介于之间。
上述例⼦,我们可以⽤如下的关系表⽰:⼗字交叉法不仅仅在数学运算模块中能够帮助同学们快速解决浓度问题、利润问题,同样在资料分析的解题过程当中也可以有效的利⽤。
⼆、 “⼗字交叉法”在资料分析中的应⽤我们在解浓度问题的时候运⽤⼗字交叉的原理是混合溶液浓度介于原始浓度之间,那么同样在资料分析中该原理为:部分的增长量的和等于整体的增长量,则整体的增长率介于部分增长率之间,哪部分占的⽐重⼤就偏向哪个部分。
所以在资料分析中出现:给出了各部分(⼀般是两部分)现期的值以及增长率,求解整体的增长率。
我们可以利⽤⼗字交叉法中计算出相应结果,接下来我们看⼀下资料分析中“⼗字交叉”法是如何运⽤的。
1、部分与整体思想-混合增长率【例1】 2009年第四季度,某地区实现⼯业增加值828亿元,同⽐增加12.5%。
在第四季度的带动下,全年实现的⼯业增加值达到3107亿元,增长8.7%。
请问该地区前三季度⼯业增加值同⽐增长率为( )A.7.4%B.8.8%C.9.6%D.10.7% 【答案】A【解析】如果根据相关增长率计算公式进⾏计算,题⽬相当复杂。
但是根据部分与整体的思想就很简单了,全年由前三季度和第四季度两部分组成,全年增长率为8.7%,第四季度增长率为12.5%,全年的必然介于前三季度和第四季度增长率之间,故前三季度应该低于8.7%,直接选择A选项。
【例2】12⽉份宾馆平均开房率为74.02%。
同⽐增长0.06%;全年累计宾馆平均开房率为62.37%。
行测冲刺:巧用“十字交叉”法

“十字交叉”法做为数学运算中常用的一种解题思想。
一般情况下,我们是在“溶液问题”中引入“十字交叉法”,我们简单把“十字交叉”法的原理重述一遍。
例:重量分别为 A 和 B 的溶液,浓度分别为 a 和b,混合后的浓度为 r。
例: A 个男生的平均分为 a, B 个女生的平均分为 b,总体平均分为 r 。
上述两个例子,我们均可以用如下的关系表示:(此处假设 a>b)上述“十字交叉”法的操作过程很简单,但是碰到类似的题目,学生很难把握 A 到底放哪个量,因此就很难将复杂的计算转化成简单的“十字交叉”法来操作。
如果学生能理解“十字交叉”法到底适合哪类题型,并且记住接下来讲的做题套路,就可以从“战略”层次提升“十字交叉”法的应用。
从上边的两个例子,我们可以看出,只要一个整体由两个部分构成,题目涉及到某个量在各部分中的比例,以及这个量在整体中的比例,即“混合”问题,均可思考用“十字交叉”法来操作。
而对于 A 到底放哪个量,我们可以观察:第 1 个例题, A 是一种溶液的质量,所以 A 是 a 的分母,同样 B 是 b 的分母。
对于第 2 个例题, A 是男生的总人数,同样 A 是a 的分母,同理 B 是 b 的分母。
综上,大家只要记住“十字交叉”法大家在操作时, A 就是 a 的分母, B 是 b 的分母,这样就很容易把“十字交叉”法的各个量放到操作模型中了。
【例题 1】现有含盐 20%的盐水 500g,要把它变成含盐 15%的盐水,应加入 5%的盐水多A.200B.250C.350D.500【答案】 B【解析】这是一道非常典型的溶液问题,溶液由两部分构成,我们可以用“十字交叉”法来操作,如下:【例题 2】一只松鼠采松子,晴天每天采 24 个,雨天每天采 16 个,它一连几天共采168 个松子,平均每天采 21 个,这几天当中晴天有几天?A.3B.4C.5D.6【答案】 C【解析】本题是典型的一个整体由两个部分组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行测答题技巧“巩固”:“十字交叉”用于资料分析
十字交叉是行测资料分析中一个很重要的知识点,应用于求解比值混合的问题,在资料分析中常用于求解增长率混合和比重混合的题目中,接下来中公教育专家通过几道例题来加深对十字交叉方法的理解:
一、基本模型
结论:
1.整体比值r位于部分比值a与b之间
2.后三列的比值相等
3.我们可以通过观察a的基期值和b的基期值的大小来判断整体比值更靠近于a还是b,谁的基期值大整体比值就靠近谁的增长率,但在实际运用中我们也可以近似地通过现期值的大小来判断,影响不大
4.在增长率混合中a、b的分母分别为其部分增长率的基期值,而在比重混合问题中a、b分母应分别为其部分比重的整体值。
二、例题解析
例1.某公司2018年前三个季度总营收52.8亿元,同比增长56.0%。
归属于上市公司股东的净利润2.2亿元,同比增长29.9%。
第三季度总营收20.73亿元,同比增长61.4%。
归属于上市公司股东的净利润0.9亿元,同比增长44.3%。
问题:该公司2018年上半年总营收同比增速为:
A.52.7%
B.59.7%
C.63.5%
D.64.1%
答案:A
中公解析:题目求上半年增速,而材料中给出前三个季度的增速和第三季度的增速,我们可以将前三个季度看做由上半年和第三季度混合而成,所以根据第一个结论,前三季度的增长率应在上半年和第三季度增长率之间,又知第三季度增长率大于前三季度增长率,则上半年增长率小于前三季度增长率56.0%,观察选项只有A符合。
例2.2017年,我国航空公司共完成旅客运输量5.51亿人次,增速较上年提升1.1个百分点。
其中,国内、国际航线分别完成4.96亿人、0.55亿人,同比分别增长13.7%、7.4%。
问题:2017年我国航空公司完成总旅客运输量同比增长约:
A.8.8%
B.13%
C.13.8%
D.14.2%
答案:B
中公解析:题目求我国航空公司完成总旅客运输量同比增长率,而材料中分别提供了国内、国际航线增速,总旅客运输量由国内航线和国际航线运输量构成,我们可知所求应介于国内、国际航线旅客运输量增速之间,即13.7%和7.4%之间,选项A和B均符合,我们需要继续排除,根据结论3我们可知,因为国内航线4.96亿人远远大于国际航线0.55亿人,所以所求应更靠近于国内航线增长率13.7%。
例3.某省2017年上半年自A市购进的小麦占上半年购进小麦总量的比重为21.5%。
下半年自A市购进的小麦占下半年购进小麦总量的比重为31.3%。
问题:若该省2017年上、下半年购进小麦比值为3:2,则2017年全年自A市购进的小麦占购进小麦总量的比重约为多少?
A.21.4%
B.26.5%
C.27.4%
D.28.7%
答案:C
中公解析:题干为比重混合问题,我们可以根据基本模型进行求解,可设2017年全年自A市购进的小麦占购进小麦总量的比重为x%,可得:
根据结论2,后三列的比值相等我们可以求解x=27.4。