《综合法和分析法》课件 (2)

合集下载

2014-2015学年高中数学(人教版选修2-2)配套课件第二章 2.2 2.2.1 综合法和分析法

2014-2015学年高中数学(人教版选修2-2)配套课件第二章 2.2 2.2.1 综合法和分析法

综合法是中学数学证明中最常用的方法. 综合法是 从已知到未知、从题设条件到结论的逻辑推理方法. 综合法是一种由因导果的证明方法. 用 P 表示已知条件、已有的定义、公理、定理等, Q 表示所要证明的结论,则综合法用框图表示为: P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →„→ Qn⇒Q
栏 目 链 接
栏 目 链 接
πL2 L2 πL2 L2 4 式成立, 只需证明 2 > 成立, 即证明 2 > , 两边同乘以 2, 4π 16 4π 16 L
L 2 L2 1 1 得 > ,因为上式成立,所以 π2π > 4 . π 4
所以,如果一个圆与一个正方形的周长相等,那么这 个圆的面积比这个正方形的面积大. 点评:分析法.
栏 目 链 接
从要证明的结论出发,逐步寻求推证过程中使每一步
结论成立的充分条件,直至最后,把要证明的结论归结
为判定一个明显成立的条件(已知条件、定理、定义、公
理等)为止,这种证明的方法叫做分析法.
分析法是从未知到已知、从结论到条件的逻辑推理 方法. 分析法是一种执果索因的证明方法. 用 P 表示已知条件、已有的定义、公理、定理等, Q 表示所要证明的结论,则分析法用框图表示为:
跟 踪 训 练
1 2 3 1.证明: + + <2. log519 log319 log219
1 证明: 因为 logab= , 所以左式=log195+2log193 logba +3log192= log19(5×32×23)=log19360. 因为 log19360<log19361=2, 1 2 3 所以 + + <2. log519 log319 log219
第二章
推理与证明
2.2 直接证明与间接证明 2.2.1 综合法和分析法

高二数学人选修课件第一章综合法和分析法

高二数学人选修课件第一章综合法和分析法
感谢观看
第二步,计算$f(x_1)$和$f(x_2)$的差,得到$f(x_1) - f(x_2) = (x_1^2 - 2x_1 + 2) (x_2^2 - 2x_2 + 2) = (x_1 - x_2)(x_1 +第三步,由于$x_1, x_2 in [1, +infty)$且$x_1 < x_2$,所以$x_1 - x_2 < 0$,同时$x_1 + x_2 - 2 > 0$。
第四步,再次对两边同时平方,得到 $42 > 40$。
第三步,对第二步的结论进行简化, 得到$sqrt{42} > 2sqrt{10}$。
因此,我们证明了$sqrt{6} - sqrt{5} > 2sqrt{2} - sqrt{7}$。
XX
REPORTING
2023 WORK SUMMARY
THANKS
综合法的优缺点
01
优点
02
逻辑性强:综合法遵循严格的逻辑推理,使得证明过程具 有严密性。
03
适用性广:综合法可以应用于各种数学领域,具有广泛的 适用性。
04
缺点
05
对已知条件依赖性强:综合法需要从已知条件出发进行推 导,若已知条件不足或不明确,则难以应用综合法。
06
创造性思维受限:综合法主要依赖于逻辑推理和运算,相 对于分析法而言,对创造性思维的发挥有所限制。
应用于解析几何
在解析几何中,分析法可 以帮助我们找到满足特定 条件的点、直线或曲线。
应用于数列与极限
分析法在数列与极限的求 解中也有广泛应用,可以 通过逐步推导找到数列的 通项公式或极限值。
分析法的优缺点
优点
分析法思路清晰,逻辑严密,可以逐步推导出问题的解决方 案。

综合法与分析法(二)

综合法与分析法(二)

2.2.1 综合法与分析法(二)一、基础过关1.已知a≥0,b≥0,且a +b =2,则( ) A .a≤12 B .ab≥12C .a 2+b 2≥2D .a 2+b 2≤3 2.已知a 、b 、c 、d∈{正实数},且a b <c d,则 ( ) A.a b <a +c b +d <c dB.a +c b +d <a b <c dC.a b <c d <a +c b +d D .以上均可能3.下面四个不等式: ①a 2+b 2+c 2≥ab+bc +ac ; ②a(1-a)≤14; ③b a +a b≥2; ④(a 2+b 2)(c 2+d 2)≥(ac+bd)2. 其中恒成立的有( ) A .1个 B .2个 C .3个 D .4个4.若实数a ,b 满足0<a<b ,且a +b =1,则下列四个数中最大的是( ) A.12 B .2ab C .a 2+b 2 D .a5.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是________.6.如图所示,SA⊥平面ABC ,AB⊥BC,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F.求证:AF⊥SC.证明:要证AF⊥SC,只需证SC⊥平面AEF ,只需证AE⊥SC(因为______),只需证______,只需证AE⊥BC(因为________),只需证BC⊥平面SAB ,只需证BC⊥SA(因为______).由SA⊥平面ABC 可知,上式成立.二、能力提升7.命题甲:(14)x 、2-x 、2x -4成等比数列;命题乙:lg x 、lg(x +2)、lg(2x +1)成等差数列,则甲是乙的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件8.若a>b>1,P =lg a·lg b,Q =12(lg a +lg b),R =lg(a +b 2),则 ( ) A .R<P<Q B .P<Q<R C .Q<P<R D .P<R<Q9.已知α、β为实数,给出下列三个论断:①αβ>0;②|α+β|>5;③|α|>22,|β|>2 2.以其中的两个论断为条件,另一个论断为结论,你认为正确的命题是________.10.如果a ,b 都是正数,且a≠b,求证:a b +b a >a + b.11.已知a>0,求证:a 2+1a 2-2≥a+1a-2.12.已知a 、b 、c∈R ,且a +b +c =1,求证:(1a -1)(1b -1)(1c-1)≥8.13.已知函数f(x)=x 2+2x +aln x(x>0),对任意两个不相等的正数x 1、x 2,证明:当a≤0时,f x 1+f x 22>f(x 1+x 22).三、探究与拓展14.已知a ,b ,c ,d∈R ,求证:ac +bd≤a 2+b 2c 2+d 2.(你能用几种方法证明?)。

数学:2.2.1《直接证明与间接证明-综合法和分析法》PPT课件(新人教选修2-2)

数学:2.2.1《直接证明与间接证明-综合法和分析法》PPT课件(新人教选修2-2)
Q P1
P1 P2
P2 P3

得到一个明显 成立的结论
例:设a,b,c为一个三角形的三
边,且s2=2ab,s 试证s<2a
1 = (a + b + c), 2
例:如图,SA⊥平面ABC,AB⊥BC,过A作SB 的垂线,垂足为E,过E作SC的垂线,垂足 S 为F,求证 AF⊥SC
证明:要证AF⊥SC 只需证:SC⊥平面AEF 只需证:AE⊥SC 只需证:AE⊥平面SBC 只需证:AE⊥BC 只需证:BC⊥平面SAB 只需证:BC⊥SA 只需证:SA⊥平面ABC
F E
A
B
C
因为:SA⊥平面ABC成立 所以. AF⊥SC成立
π 例. 已知α, β≠ kπ+ (k Z),且 2 sinθ+ cosθ= 2sinα sinθcosθ= sin β 1 - tan α 1 - tan β 证: 求 = . 2 2 1 + tan α 2(1 + tan β)
新课标人教版课件系列
《高中数学》
选修2-2
2.2.1《直接证明与间接证 明-综合法和分析法》
教学目标
结合已经学过的数学实例,了解直接证明的两 种基本方法:分析法和综合法;了解分析法和 综合法的思考过程、特点. 教学重点:会用综合法证明问题;了解综合法 的思考过程. 教学难点:根据问题的特点,结合综合法的思 考过程、特点,选择适当的证明方法.
Q P1
P1 P2
2 2 2
P2 P3

得到一个明显 成立的结论
也可以是经过 证明的结论
例:已知数列{an}的通项an>0,(n∈N*),它 的前n项的和记为sn,数列{s2n}是首项为3, 公差为1的等差数列. (1)求an与sn的解析式; (2)试比较sn与3nan(n∈N*),的大小.

1.5.2综合法和分析法课件人教新课标B版

1.5.2综合法和分析法课件人教新课标B版
D.取 x=-1,f(-1)=-1 +
1
1
-1
= −2.
∵f(1)=1 + 1 = 2,∴f(-1)=-f(1),则 f(x)是奇函数
答案:D
-4-
1.5.2 综合法和分析法
目标导航
Z 知识梳理 Z 重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析 S随堂演练
IANLITOUXI
UITANGLIANXI
2.分析法
从需要证明的命题出发,分析使这个命题成立的充分条件,利用
已知的一些定理,逐步探索,最后到达命题所给出的条件(或者一个
已证明过的定理或一个明显的事实),这种证明方法称为分析法.
归纳总结
证明的起
方法
始步骤

基本不等式

或已经证明

过的不等式

要求证的不

等式

求证过程
证题方
求证目标

实施一系列的推出或等
∴(a2+b2)+(b2+c2)+(a2+c2)≥2ab+2bc+2ac,即
a2+b2+c2≥ab+bc+ac,这严重背离了原题的证明意图.
分析二:设f(a)=a2+b2+c2-2(ab+bc+ac),即f(a)=a2-2a(b+c)+b2+c22bc.
Δ=4(b+c)2-4(b2+c2-2bc)=16bc>0.
证明
4
sin x+
≥5,x∈
sin
π

2.2.1《综合法和分析法》区教研课课件

2.2.1《综合法和分析法》区教研课课件
2
充分条件
思考6:上述证明方法叫做分析法. 一般 地,分析法的基本含义是什么? 从所证结论出发,逐步寻求使它成立的 充分条件,直到归结为判定一个显然成 立的条件(已知条件、定义、公理、定 理、性质、法则等)为止.
分析法又叫“逆推证法”或“执果索因法”, 其基本思想是:由未知探需知,逐步推向 已知.
2
2
2
2
4abc
其左右两边的结构有什么特点? 右边是3个数a,b,c的乘积的4倍,左边 为两项之和,其中每一项都是一个数与 另两个数的平方和之积.
思考2:利用哪个知识点可以沟通两个数 的平方和与这两个数的积的不等关系?
基本不等式 x + y
2 2
2xy
思考3:若已知a>0,b>0,如何利用不 等式性质证明
证明过程中我们要善于观察变形,合理利用已 知条件、定理、公式,把文字语言转化为符号 语言或者图形语言,由因导果!
探究(二):分析法
回顾基本不等式: a + b 2 (a>0,b>0)的证明.
ab 证明 : 要证 2 ab ,
ab
只需证
a b 2 ab
只需证
只需证
a+b-2 ab 0
例1.已知 a, b, c 是不全相等的正数 bc a c a b a b c 求证: 3 a b c
(综合法)
R ∵a,b,c ,
符号语言
b a c a c b 与 , 与 , 与 均为正实数且不能同时相等, a b a c b c b a c a c b 2, + 2 , + 2 , 由重要不等式得: + a b a c b c
2.2直接证明与间接证明
2.2.1 综合法和分析法(1)

2.2.1综合法与分析法课件人教新课标2

sinθ + cosθ = 2sinα (1) sinθgcosθ = sin2β (2)
1 - tan2α 1 - tan2β 求证 1 + tan2α = 2(1 + tan2β) .
证明:
因为(sin2θ + cos2θ)2 - 2sinθcosθ = 1,
所以将(1)(2)代入,可得
4sin2α - 2sin2β = 1. 另一方面要证
4.作业:89页1 2 3
练习.如图,SA⊥平面ABC,AB⊥BC,过A作 SB的垂线,垂足为E,过E作SC的垂线,垂足为 F,求证 AF⊥SC.
S
判断
F E
应该用综合法还
是分析法?
A
C
B
1 - 2sin2α = 1 (1 - 2sin2β), 2
4sin2α - 2sin2β = 1.
由于上式与③相同,于是问题得证.
课堂小结
1.综合法的概念:
一般地,利用已知条件和某些数学定 义、公理、定理等,经过一系列的推理论证, 最后推导出所要证明的结论成立,这种证明 方法叫做综合法.
2.分析法的概念:
则综合法可用 框图表示如下:
P Q1 Q1 Q2 Q2 Q3 … Qn Q
例题1
在△ABC中,三个内角A、B、C对应的 边分别为a、b、c,且A、B、C成等差数列, a、b、c成等比数列,求证△ABC为等边三 角形.
分析
•将A,B,C成等差数列,转化为符号 语言就是2B=A+C;
•A,B,C为△ABC的内角,这是一个隐含 条件,即A+B+C=180°;
这就是另一种证 明方法——分析法.
一般地,从要证明的结论出发,逐 步寻求推证过程中,使每一步结论成立 的充分条件,直至最后,把要证明的结 论归结为判定一个明显成立的条件(已 知条件、定理、定义、公理等)为止, 这种证明的方法叫做分析法.

1.2 综合法与分析法 课件(北师大选修2-2)


2.已知点P是直角三角形ABC所在平面外的一点,O是斜边 AB的中点,并且PA=PB=PC. 求证:PO⊥平面ABC.
证明:连接OC,如图所示,
∵AB是Rt△ABC的斜边,O是AB的中点, ∴OA=OB=OC. 又∵PA=PB=PC,∴PO⊥AB, 且△POA≌△POC, ∴∠POA=∠POC. ∴∠POC=90°. 即PO⊥AB,PO⊥OC,且AB∩OC=O,所以PO⊥ 平面ABC.
分析法与综合法的优缺点: 综合法和分析法是直接证明的两种基本方法,两种方 法各有优缺点.分析法解题方向较为明确,容易寻找到解
题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际 证题时常常两法兼用,先用分析法探索证明途径,然后用 综合法有条理地表述解题过程.
提示:基本不等式.
问题 2:本题证明顺序是什么?
提示:从已知到结论.
综合法
(1)含义:从命题的 条件 出发,利用定义、公理、定理 及运算法则,通过 演绎 推理,一步一步地接近要证明 的 结论 ,直到完成命题的证明的思维方法,称为综合法. (2)思路:综合法用以下的框图表示:
1 2 即证 a +b ≥ (a +b2+2ab),即证 a2+b2≥2ab. 2 因为 a2+b2≥2ab 对一切实数恒成立, 2 所以 a +b ≥ (a+b)成立. 2
2 2
[一点通]
分析法是“执果索因”,一步步寻找结论成
立的充分条件.它是从求证的结论出发,逆着分析,由未
知想需知,由需知逐渐地靠近已知,这种证明的方法关键
AC cos B 1.在△ABC 中,AB= ,证明 B=C. cos C
sin B cos B 证明: 在△ABC 中, 由正弦定理及已知得 = . sin C cos C 于是 sin Bcos C-cos Bsin C=0,即 sin(B-C)=0, 因为-π<B-C<π,从而 B-C=0,所以 B=C.

反证法(课件)2


注:当结论的反面不止一种情况时,该怎么办?
注意:用反证法证题时,应注意的事项 :
(1)周密考察原命题结论的否定,防止否定 不当或有所遗漏; (2)推理过程必须完整准确,否则不能说明 命题的真伪性; (3)在推理过程中,要充分使用已知条件, 否则推不出矛盾,或者不能断定推出的结果是 错误的。
大家议一议!
探究2:深度挖掘——了解反证法
反证法的证题步骤: (1)假设命题的结论不成立,即假设结论的反面成立; -(2)从这个假设出发,经过推理论证,得出矛盾; (3)从矛盾判定假设不正确,从而肯定命题的结论成立 一、你能用更简洁的文字概括反证法的基本步骤吗? 反设,归谬,存真 二、反证法在推理中可能得出哪几类矛盾?
对所有x 存在某个 x不成立 成立
牛刀小试
已知:∠A ,∠B ,∠C是△ABC的内角(如图) 求证:∠A ,∠ B ,∠ C中至少有一个角 大于或等于60 ° B
用反证法证明(填空):在三角形的内角中, 至少有一个角大于或等于60 ° A
证明:假设所求的结论不成立,即 < ∠A__ 60 ° ,∠ B__60 ° ,∠ C __60 ° < < 则∠A+∠ B+∠ C<180 ° 三角形的三个内角之和等于180 ° 这与______________________相矛盾 假设 所以______不成立, 所求证的结论成立
C
例1:已知:a是整数,2能整除a2 求证:2能整除a。 证明:假设命题的结论不成立,即“2不能整 除a”,因为a是整数,故a是奇数 不妨设a=2n+1(n是整数)
∴a2=(2n+1)2=4n2+4n+1=2(2n2+2n)+1
∴a2是奇数,则2不能整除a2 ,这与已 知矛盾。∴假设不成立,故2能整除a。

2014年人教A版选修2-2课件 2.2 直接证明与间接证明

2.1 合情推理与演绎推理 2.2 直接证明与间接证明 2.3 数学归纳法 第二章 小结
2.2 直接证明与间接证明
2.2.1 综合法与分析法
2.2.2 反证法
2.2.1的证明顺序是怎样的? 2. 什么是分析法? 它的证明顺序是怎样的? 3. 综合法与分析法有什么关系?
从要证明的结论出发, 逐步寻求使它成立的充分 条件, 直至最后, 把要证明的结论归结为判定一个明 显成立的条件 (已知、定理、定义、公理等). 这种证 明的方法叫做分析法. 用 Q 表示要证明的结论, 则可有框图表示为: QP1 P1P2 P2P3 …
明显成立的条件
例2. 求证 3 + 7 2 5 .
例3. 已知 a , b k + (k Z), 且 sinq+cosq=2sina, 2 sinq · cosq=sin2b. 求证: 1 - tan2 a = 1 - tan2 b . 1 + tan2 a 2(1 + tan2 b ) 证明: 由 sinq+cosq=2sina, sinq · cosq=sin2b 消去 q 得 4sin2a-2sin2b=1. 1 - tan2 a = 1 - tan2 b , 要证 1 + tan2 a 2(1 + tan2 b ) 2 2 sin b sin a 1- 2 1- 2 cos b cos a = , 只需证 2 2 1 + sin 2a 2(1 + sin 2 b ) cos a cos b cos2 a - sin2 a = cos2 b - sin2 b , 即证 cos2 a + sin2 a 2(cos2 b + sin2 b )
3. 已知 tana+sina=a, tana-sina=b, 求证 (a2-b2)2=16ab. 证明: 解关于 tana 和 sina 的方程组 tana + sina = a, tana - sina = b. 得 tana = a + b , sina = a - b . 2 2 又由 tana = sina 得 cosa = a - b . cosa a+b 因为 sin2a+cos2a=1, 所以得 ( a - b )2 + ( a - b )2 = 1, 2 a+b 整理得 (a2-b2)2=16ab.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同
间接证明法——反 证 法
【探究1】将9个球分别染成红色或白 色无论怎样染色,至少有5个球同色的。 正确吗?
复习
直接证明是从命题的条件或结论出发,根据已知的定义、 公理、定理,直接推理证明结论的真实性。 常用的直接证明方法有综合法与分析法。
综合法的思路是由因导果;分析法的思路是执果索因。 在解决有关问题时,常常把分析法和综合法结合起来使用。 先用分析法寻求解题思路,再用综合法解答或证明;有时要 分析法和综合法结合起来交替使用。 间接证明不是从正面证明命题的真实性,而是证明命题的反 面为假,或改证它的等价命题为真,间接地达到证明的目的。 反证法就是一种常用的间接证明方法。
证明: 左边cos4 sin 4 (cos2 sin 2 )(cos2 sin 2 )
1. 已知a、b、c、d都是正数,求证 (ab cd )(ac bd) 4abcd
证明 : a、b、c、d 都是正数 ab cd 2 abcd 同理ac bd 2 abcd (ab cd )(ac bd ) 4abcd
常用的直接证明方法有综合法与分 析法。
探究(一):综合法
思考1:对于不等式
a(b + c ) + b(c + a ) ? 4abc
其左右两边的结构有什么特点?
右边是3个数a,b,c的乘积的4倍,左边 为两项之和,其中每一项都是一个数与 另两个数的平方和之积.
2
2
2
2
思考2:利用哪个知识点可以沟通两个数 的平方和与这两个数的积的不等关系?
a+b 所以 2
ab成立
直接证明法2、——分析法
定义:从证明的结论出发,逐步寻找使它 成立的充分条件,直到最后,把要证明 的结论归结为只需判定一个明显成立的 条件(已知条件,定义、定理、公理) 为止。
【分析法】
从结论出发,寻找结论成立的充分条件 直至最后,把要证明的结论归结为判定一 个明显成立的条件。 要证: 只要证: 只需证:
补充练习
等式成立
cos2 sin 2 cos2 右边
2.ABC的三边长a、b、c的倒数成等差数列,求 证:B<90
2.ABC的三边长a、b、c的倒数成等差数列,求 证:B<90 2 1 1 解:依题意知: b(a c) 2ac 2 b a c a 2 c 2 b 2 2ac b 2 b2 b2 b cos B 1 1 1 2ac 2ac 2ac b( a c ) ac b b a c>b <1 1 >0 cos B 0 ac ac
反证法:
假设原命题不成立(即在原命题的条 件下,结论不成立),经过正确的推理, 最后得出矛盾,因此说明假设错误,从 而证明了原命题成立.
思考1:用反证法证题的核心问题是什么? 在正确的推理下得出矛盾. 思考2:在反证法应用中,矛盾的构设有 哪几种情形? (1)与已知条件矛盾; (2)与假设矛盾; (3)与定义、公理、定理、性质矛盾; (4)与客观事实矛盾.
例:在△ABC中,三个内角A、B、C对应的边分别为a、 b、c,且A、B、C成等差数列,a、b、c成等比数列,求证 △ABC为等边三角形. 证明: A、B、C成等差数列 2B A C
A B C
3 a、b、c成等比数列 b2 ac
由余弦定理得 b2 a 2 c 2 2ac cos B a 2 c 2 ac
例4
求证:
3+
7<2 5
.
【例5】 如图:SA 平面 ABC , AB BC
过A作SB的垂线,垂足为E,过E作SC
的垂线,垂足为F。
AF SC 求证:
S F
E A
C
B
例6 已知sinθ +cosθ =2sinα , sinθ ·cosθ =sin2β , p (k ? Z ) ,求证: 其中 a , b ? k p 2
证明: 因为;( a b ) 0
2
a+b ab 证明:要证; 2 只需证;a + b 2 ab
所以 a + b 2 ab 0 所以 a + b 2 ab
a+b ab 成立 所以 2
只需证;a + b 2 ab 0
2 ( a b ) 0 只需证;
因为;( a b )2 0 成立
例1、ABC在平面 外,AB P, BC Q, AC R.求证:P、Q、R三点共线
例2、在ABC中,设AB=a,CA=b, 1 2 2 2 求证:S ABC | a | | b | a b) 2
例3:在△ABC中,三个内角A、 B、C对应的边分别为a、b、c,且 A、B、C成等差数列,a、b、c成 等比数列,求证△ABC为等边三 角形.
显然成立
要证:
格 式

上述各步均可逆

所以 结论成立
所以 结论成立
分析法,又叫“逆推证法”或“执果索 因法”,其基本思想是:由未知探需知, 逐步推向已知. 若用Q表示所要证明的结 论,则分析法的推理过程用流程框图可 怎样表示?
Q Ü P1
P1 Ü P2 P2 Ü P3 …
显然成立的条件
1 - t an a 1 - t an b = 2 2 1 + t an a 2(1 + t an b )
2
2
直接证明(数学理论)
上述两种证法有什么异同?
相同
都是直接证明 证法1 从已知条件出发,以已知的定义、公理、 定理为依据,逐步下推,直到推出要证明的结论 为止 综合法 证法2 从问题的结论出发,追溯导致结论成立的 条件,逐步上溯,直到使结论成立的条件和已知 条件吻合为止 分析法
B

a 2 c 2 ac ac 即(a c)2 0 ABC是等边三角形 a c
解决数学问题时,往往要先作语言的转换,如把文字语言 转换成符号语言,或把符号语言转换成图形语言。还要通 过细致的分析,把其中的隐含条件明确表示出来.
练习:P42 1 求证:对任意锐角 , cos4 sin 4 cos2
P Q1
Q1 Q 2
Q2 Q3

Qn Q
综合法是中学数学证明中最常用的方 法。 综合法一种由因索果的证明方法。 综合法是从已知到未知,从题设条件 到结论的逻辑推理方法。
例:已知a、b、c是不全相等的正数, 求证a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc 证明:因为a、b、c是不全为相等的正数 所以a(b2+c2)≥2abc. ① 同理b(c2+a2)≥2abc. ② 同理c(a2+b2)≥2abc. ③ ∵a、b、c是不全相等的正数 ∴①②③三式不能全取“=” ∴①②③三式相加得 a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc
基本不等式
a + b 2 ab
思考3:若已知a>0,b>0,如何利用不 等式性质证明 2 2 + 2 2 a(b + + c ) + b(c + + a ) ? 4abc
例:已知a>0,b>0,求证a(b2+c2)+b(c2+a2)≥4abc
证明:因为b2+c2
≥2bc,a>0
所以a(b2+c2)≥2abc. 又因为c2+b2
复习
推 理
合情推理
(或然性推理)
演绎推理 (必然性推理) 三段论 (一般到特殊)
归纳
(特殊到一般)
类比 (特殊到特殊)
数学结论、证明思路的发现,主 要靠合情推理. 数学结论的证明主要靠演绎推理
2.2
直接证明与间接证明
综合法和分析法
直接证明是从命题的条件或结论出 发,根据已知的定义、公理、定理, 直接推理证明结论的真实性。
0o B 180o cos B 0 B 90
o
小结
一般地,利用已知条件和某些已经学 过的定义、定理、公理等,经过一系列 的推理、论证,最后推导出所要证明的 结论成立,这种证明方法叫做综合法。
特点:“由因导果”
a+b 引例:基本不等式: 2
ab
(a>,b>0)的证明.
例7, 已知 a ≠0 ,证明关于 x 的方程 a x = b 有且只有一个根。
≥2bc,b>0
所以b(c2+a2)≥ 2abc.
因此a(b2+c2)+b(c2+a2)≥4abc.
利用已知条件和某些数学定义、公理、定理等, 经过一系列的推理论证,最后推导出所要证明的 结论成立,这种证明方法叫做综合法 用P表示已知条件、已有的定义、公理、定理 等,Q表示所要证明的结论.
则综合法用框图表示为:
相关文档
最新文档