第17章 函数及其图象(单元测试卷)(解析版)

合集下载

华东师大版八年级数学下册第17章《函数及其图象》单元测试一及答案解析

华东师大版八年级数学下册第17章《函数及其图象》单元测试一及答案解析

八年级数学下册第17章《函数及其图象》单元测试一一、选择(每小题3分,共24分)1.下列各点中,在第二象限的点是()(A)(5,3).(B)(5,﹣3).(C)(﹣5,3).(D)(﹣5,﹣3).2.根据下列所示的程序计算y的值,若输入的x值为﹣3,则输出的结果为()(A)5.(B)﹣1.(C)﹣5.(D)1.3.如图,李老师早晨出门去锻炼,一段时间内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离出发点M的距离与时间x之间的函数关系的大致图象是()(A).(B).(C).(D).4.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()(A).(B).(C).(D).5.下列描述一次函数y=﹣2x+5的图象及性质错误的是()(A)y随x的增大而减小.(B)直线经过第一、二、四象限.(C)当x>0时y<5.(D)直线与x轴交点坐标是(0,5).6.小颖画了一个函数y=﹣1的图象如图,那么关于x的分式方程=1的解是()(A)x=1.(B)x=2.(C)x=3.(D)x=4.=4,则k的值为7.反比例函数y=(x>0)的图象经过△OAB的顶点A,已知AO=AB,S△OAB()(A)2.(B)4.(C)6.(D)8.8.如图,直线y1=kx+b过点A(0,2)且与直线y2=mx交于点P(﹣1,﹣m),则关于x的不等式组mx>kx+b>mx﹣2的解集为()(A)x<﹣1.(B)﹣2<x<0.(C)﹣2<x<﹣1.(D)x<﹣2.二、填空(每小题3分,共24分)9.函数中,自变量x的取值范围是.10.平面直角坐标系内,点M(a+3,a﹣2)在y轴上,则点M的坐标是.11.某快递公司收费标准的部分数据如图所示(其中t表示邮件的质量,P表示每件快递费).依次规律,质量为3.2千克的邮件快递费为元.12.过点P(8,2)且与直线y=x+1平行的一次函数表达式为.13.若两个函数的图象关于y轴对称,我们定义这两个函数是互为“镜面”函数;请写出函数的镜面函数.14.若函数y=的图象在第二、四象限,则函数y=kx﹣1的图象经过第象限.15.如图,直线AB经过点A(0,2)、B(1,0).将直线AB向左平移与x轴、y轴分别交于点C、D.若DB=DC,则直线CD的函数关系式是.16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过A、B两点,A、B两点的横坐标分别为1和4,直线AB与y轴所夹锐角为45°.则k=.三、解答(6个小题,共52分)17.(8分)已知y=y1﹣y2,y1与x成反比例,y2与(x﹣2)成正比例,并且当x=3时,y=5,当x=1时,y=﹣1;(1)求y与x之间的函数关系式.(2)当x=时,求y的值.18.(8分)某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)试求加油前油箱余油量Q与行驶时间t之间的关系式;(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.19.(8分)已知直线y1=﹣x+1与y2=2x﹣2交于点P,它们与y轴分别交于点A、B.(1)同一坐标系中画出这两个函数的图象;(2)求出这两个函数图象的交点坐标;(3)观察图象,当x取什么范围时,y1>y2?(4)求△ABP的面积.20.(8分)如图,点A(m,m+1),B(m+3,m﹣1)为第一象限内的点,并且都在反比例函数y=(k≠0)的图象上,直线AB与y轴交于点C.(1)求m,k值;(2)求△BOC的面积.21.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,双曲线y1=mx与直线y2=﹣x+b交于A,D两点,直线y2=﹣x+b交x轴于点C,交y轴于点B,点B的坐标为(0,3),S△AOB=S△DOC=3.(1)求m和b的值;(2)求y1>y2时x的取值范围.22.(10分)虽然近几年无锡市政府加大了太湖水治污力度,但由于大规模、高强度的经济活动和日益增加的污染负荷,使部分太湖水域水质恶化,富营养化不断加剧.为了保护水资源,我市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:月用水量(吨)单价(元/吨)不大于10吨部分 1.5大于10吨不大于m吨部分(20≤m≤50)2大于m吨部分3(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该用户六月份用水量为x吨,缴纳水费为y元,试列出y关于x的函数关系式;(3)若该用户六月份用水量为40吨,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.参考答案一、1.C 2.B 3.D 4.B 5.D 6.C7.B8.C二、9.x≤510.(0,﹣5)11.4712.y=x﹣613.y=﹣14.二、三、四15.y=﹣2x﹣216.4三、17.解:(1)解:设y1=,y2=b(x﹣2),∵y=y1﹣y2,∴y=﹣b(x﹣2),把x=3,y=5和x=1,y=﹣1代入得:,解得:a=3,b=﹣4,∴y与x之间的函数关系式是:y=+4x﹣8;(2)把x=代入y=+4x﹣8中得:y=6+2﹣8=0.18.解:(1)由横坐标看出,5小时后加油,由纵坐标看出,加了36﹣12=24(L)油(2)设表达式为Q=kt+b,将(0,42),(5,12)代入函数表达式,得,解得642 tb=-⎧⎨=⎩.∴函数表达式为Q=42﹣6t(3)够用,理由如下:36L的油还可以行驶6小时,∵车速为40km/h,∴36L的油可以行驶240千米,240>230.故油够用.19.解:(1)∵当x=0时,y1=1.y1=0时,x=1.∴直线y1=﹣x+1经过点(0,1),(1,0).同理,y2=2x﹣2经过点(0,﹣2),(1,0).则其图象如图所示:;(2)由(1)中的两直线图象知,这两个函数图象的交点坐标是(1,0);(3)由(1)中的两直线图象知,当<1时,y1>y2;(4)∵A(0,1),P(1,0).B(0,﹣2),∴AB=3,OP=1,∴△ABP的面积是:AB•OP=×3×1=.20.解:(1)∵点A(m,m+1),B(m+3,m﹣1)都在反比例函数y=(k≠0)的图象上,∴k=m(m+1)=(m+3)(m﹣1),解得m=3,k=12;(2)∵m=3,∴A(3,4),B(6,2).设直线AB的表达式为y=ax+b,,解得,∴直线AB的表达式为y=﹣x+6,∴C(0,6),∴△BOC的面积=×6×6=18.21.解:(1)∵点B在直线y2=﹣x+b上,∴b=3,∴y2=﹣x+3,设A点的坐标为(x,n),∵S△AOB=3,∴|x|=3,x<0,∴x=﹣2,n=﹣(﹣2)+3=5,∴A(﹣2,5),∵y1=mx过点A,∴m=(﹣2)×5=﹣10,所以,m=﹣10,b=3,(2)∵y2=﹣x+3,易得C点坐标为(3,0),同(1)可得,D点坐标为(5,﹣2),由图象可知,当y1>y2时,﹣2<x<0或x>522.解:(1)∵18<m,∴此时前面10吨每吨收1.5元,后面8吨每吨收2元,10×1.5+(18﹣10)×2=31,(2)①当x≤10时,y=1.5x,②当10<x≤m时,y=10×1.5+(x﹣10)×2=2x﹣5,华东师大版八年级数学下册第17章《函数及其图象》单元测试一及答案解析③当x>m时,y=10×1.5+(m﹣10)×2+(x﹣m)×3=3x﹣m﹣5,∴(3)∵10≤x≤50,∴当用水量为40吨时就有可能是按照第二和第三两种方式收费,①当40≤m≤50时,此时选择第二种方案,费用=2×40﹣5=75,符合题意,②当10≤m<40时,此时选择第三种方案,费用=3x﹣m﹣5,则:70≤3x﹣m﹣5≤90,∴25≤m≤45,∴此状况下25≤m<40,综合①、②可得m的取值范围为:25≤m≤50.11。

华东师大版八年级下《第17章函数及其图象》单元测试1含答案

华东师大版八年级下《第17章函数及其图象》单元测试1含答案

华东师大版八年级下《第17章函数及其图象》单元测试含答案一、选择(每小题3分,共24分)1.下列各点中,在第二象限的点是()(A)(5,3). (B)(5,﹣3). (C)(﹣5,3). (D)(﹣5,﹣3).2.根据下列所示的程序计算y的值,若输入的x值为﹣3,则输出的结果为()(A)5. (B)﹣1. (C)﹣5. (D)1.3.如图,李老师早晨出门去锻炼,一段时间内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离出发点M的距离与时间x之间的函数关系的大致图象是()(A). (B). (C). (D).4.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()(A). (B). (C). (D).5.下列描述一次函数y=﹣2x+5的图象及性质错误的是()(A)y随x的增大而减小. (B)直线经过第一、二、四象限.(C)当x>0时y<5. (D)直线与x轴交点坐标是(0,5).6.小颖画了一个函数y=﹣1的图象如图,那么关于x的分式方程=1的解是()(A)x=1. (B)x=2. (C)x=3. (D)x=4.7.反比例函数y=(x>0)的图象经过△OAB的顶点A,已知AO=AB,S△OAB=4,则k的值为()(A)2. (B)4. (C)6. (D)8.8.如图,直线y1=kx+b过点A(0,2)且与直线y2=mx交于点P(﹣1,﹣m),则关于x的不等式组mx>kx+b>mx﹣2的解集为()(A)x<﹣1 . (B)﹣2<x<0. (C)﹣2<x<﹣1. (D)x<﹣2.二、填空(每小题3分,共24分)9.函数中,自变量x的取值范围是.10.平面直角坐标系内,点M(a+3,a﹣2)在y轴上,则点M的坐标是.11.某快递公司收费标准的部分数据如图所示(其中t表示邮件的质量,P表示每件快递费).依次规律,质量为3.2千克的邮件快递费为元.12.过点P(8,2)且与直线y=x+1平行的一次函数表达式为.13.若两个函数的图象关于y轴对称,我们定义这两个函数是互为“镜面”函数;请写出函数的镜面函数.14.若函数y=的图象在第二、四象限,则函数y=kx﹣1的图象经过第象限.15.如图,直线AB经过点A(0,2)、B(1,0).将直线AB向左平移与x轴、y轴分别交于点C、D.若DB=DC,则直线CD的函数关系式是.16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过A、B两点,A、B两点的横坐标分别为1和4,直线AB与y轴所夹锐角为45°.则k= .三、解答(6个小题,共52分)17.(8分)已知y=y1﹣y2,y1与x成反比例,y2与(x﹣2)成正比例,并且当x=3时,y=5,当x=1时,y=﹣1;(1)求y与x之间的函数关系式.(2)当x=时,求y的值.18.(8分)某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)试求加油前油箱余油量Q与行驶时间t之间的关系式;(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.19.(8分)已知直线y1=﹣x+1与y2=2x﹣2交于点P,它们与y轴分别交于点A、B.(1)同一坐标系中画出这两个函数的图象;(2)求出这两个函数图象的交点坐标;(3)观察图象,当x取什么范围时,y1>y2?(4)求△ABP的面积.20.(8分)如图,点A(m,m+1),B(m+3,m﹣1)为第一象限内的点,并且都在反比例函数y=(k≠0)的图象上,直线AB与y轴交于点C.(1)求m,k值;(2)求△BOC的面积.21.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,双曲线y1=mx与直线y2=﹣x+b交于A,D两点,直线y2=﹣x+b交x轴于点C,交y轴于点B,点B的坐标为(0,3),S△AOB=S△DOC=3.(1)求m和b的值;(2)求y1>y2时x的取值范围.22.(10分)虽然近几年无锡市政府加大了太湖水治污力度,但由于大规模、高强度的经济活动和日益增加的污染负荷,使部分太湖水域水质恶化,富营养化不断加剧.为了保护水资源,我市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该用户六月份用水量为x吨,缴纳水费为y元,试列出y关于x的函数关系式;(3)若该用户六月份用水量为40吨,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.参考答案一、1. C 2.B 3.D 4.B 5.D 6.C 7.B 8.C二、9. x≤5 10.(0,﹣5)11.47 12.y=x﹣6 13.y=﹣14.二、三、四15.y=﹣2x﹣2 16.4三、17. 解:(1)解:设y1=,y2=b(x﹣2),∵y=y1﹣y2,∴y=﹣b(x﹣2),把x=3,y=5和x=1,y=﹣1代入得:,解得:a=3,b=﹣4,∴y与x之间的函数关系式是:y=+4x﹣8;(2)把x=代入y=+4x﹣8中得:y=6+2﹣8=0.18.解:(1)由横坐标看出,5小时后加油,由纵坐标看出,加了36﹣12=24(L)油(2)设表达式为Q=kt+b,将(0,42),(5,12)代入函数表达式,得,解得642 tb=-⎧⎨=⎩.∴函数表达式为Q=42﹣6t(3)够用,理由如下:36L的油还可以行驶6小时,∵车速为40km/h,∴36L的油可以行驶240千米,240>230.故油够用.19.解:(1)∵当x=0时,y1=1.y1=0时,x=1.∴直线y1=﹣x+1经过点(0,1),(1,0).同理,y2=2x﹣2经过点(0,﹣2),(1,0).则其图象如图所示:;(2)由(1)中的两直线图象知,这两个函数图象的交点坐标是(1,0);(3)由(1)中的两直线图象知,当<1时,y1>y2;(4)∵A(0,1),P(1,0).B(0,﹣2),∴AB=3,OP=1,∴△ABP的面积是:AB•OP=×3×1=.20.解:(1)∵点A(m,m+1),B(m+3,m﹣1)都在反比例函数y=(k≠0)的图象上,∴k=m(m+1)=(m+3)(m﹣1),解得m=3,k=12;(2)∵m=3,∴A(3,4),B(6,2).设直线AB的表达式为y=ax+b,,解得,∴直线AB的表达式为y=﹣x+6,∴C(0,6),∴△BOC的面积=×6×6=18.21.解:(1)∵点B在直线y2=﹣x+b上,∴b=3,∴y2=﹣x+3,设A点的坐标为(x,n),∵S△AOB=3,∴|x|=3,x<0,∴x=﹣2,n=﹣(﹣2)+3=5,∴A(﹣2,5),∵y1=mx过点A,∴m=(﹣2)×5=﹣10,所以,m=﹣10,b=3,(2)∵y2=﹣x+3,易得C点坐标为(3,0),同(1)可得,D点坐标为(5,﹣2),由图象可知,当y1>y2时,﹣2<x<0或x>522.解:(1)∵18<m,∴此时前面10吨每吨收1.5元,后面8吨每吨收2元,10×1.5+(18﹣10)×2=31,(2)①当x≤10时,y=1.5x,②当10<x≤m时,y=10×1.5+(x﹣10)×2=2x﹣5,③当x>m时,y=10×1.5+(m﹣10)×2+(x﹣m)×3=3x﹣m﹣5,∴(3)∵10≤x≤50,∴当用水量为40吨时就有可能是按照第二和第三两种方式收费,①当40≤m≤50时,此时选择第二种方案,费用=2×40﹣5=75,符合题意,②当10≤m<40时,此时选择第三种方案,费用=3x﹣m﹣5,则:70≤3x﹣m﹣5≤90,∴25≤m≤45,∴此状况下25≤m<40,综合①、②可得m的取值范围为:25≤m≤50.。

2019-2020学年度华东师大版数学八年级下册第十七章 《函数及其图像》(含解析)第17章 单元测试

2019-2020学年度华东师大版数学八年级下册第十七章    《函数及其图像》(含解析)第17章  单元测试

第十七章函数及其图像单元测试班级:姓名:学号:成绩:一、选择题1.对于圆的面积公式S=πR2,下列说法中,正确的为()A. π是自变量B. R是常量C. R是自变量D. π和R是都是常量.其中y是x函数的是() 2.关于变量x,y有如下关系:①x−y=5;②y2=2x;③:y=|x|;④y=3xA. ①②③B. ①②③④C. ①③D. ①③④3.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.4.如图,是反比例函数y1=k和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()xA. 1<x<6B. x<1C. x<6D. x>15.关于函数y=−2x+1,下列结论正确的是()A. 图象必经过点(−2,1)B. 图象经过第一、二、三象限C. 图象与直线y=−2x+3平行D. y随x的增大而增大6.已知反比例函数y=−2,下列结论不正确的是()xA. 图象经过点(−2,1)B. 图象在第二、四象限C. 当x<0时,y随着x的增大而增大D. 当x>−1时,y>27.当x=−3时,函数y=x2−3x−7的函数值为()A. −25B. −7C. 8D. 11(k≠0)的图象经过点(2,−3),则k的值为()8.若反比例函数y=kxA. 5B. −5C. 6D. −69.若反比例函数y=2k+1的图象位于第一、三象限,则k的取值可以是()xA. −3B. -2C. -1D. 010.在平面直角坐标系中,点P(-2,3-π)所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米12.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后,用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.二、填空题13. 王明在班级的座位是“第3列第5排”,若用(3,5)表示,则(5,3)表示的实际意义是______. 14. 在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b 2的解是______.15. 若一次函数y =−2x +b(b 为常数)的图象经过第二、三、四象限,则b 的值可以是 (写出一个即可).16. 已知点P(x,y)在第四象限,且到y 轴的距离为3,到x 轴的距离为5,则点P 的坐标是 . 17. 已知y =(k −1)x +k 2−1是正比例函数,则k = . 18. 函数y =√x+2−√3−x 中自变量x 的取值范围是 .19. 如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,−1)和(−3,1),那么“卒”的坐标为 .20.如图,在平面直角坐标系中,A是x轴上的任意一点,BC平行于x轴,分别交y=4x (x>0),y=kx(x<0)的图象于B,C两点若△ABC的面积为3,则k的值为______.三、解答题21.已知一次函数图象经过点(3,5),(−4,−9)两点.(1)求一次函数解析式.(2)若图象与x轴交与点A,与y轴交与点B,求出点A、B的坐标,并画出图象。

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案一、单选题1.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S (千米)与离家的时间t (分钟)之间的函数关系的是( )A .B .C .D .2.已知函数 225y x =-,不在该函数图象上的点是( )A .(3,4)B .(4,-3)C .(4,3)D .(-3,4)3.下列关系式中,y 不是x 的函数的是( )A .2x y =B .22y x =C .(0)y x x =D .||(0)y x x =4.如果点A 在直线y=x-1上,则A 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,-1)D .(1,0)5.若一次函数的y =kx+b (k <0)图象上有两点A (﹣2,y 1)、B (1,y 2),则下列y 大小关系正确的是( )A .y 1<y 2B .y 1>y 2C .y 1≤y 2D .y 1≥y 26.下列函数中,当x <0时y 随x 的增大而增大的是( )A .y=﹣3x+4B .1243y x =-- C .2y x =- D .23y x= 7.如图60MAN ∠=︒ ,点B 在射线 AN 上, 2AB =点P 在射线 AM 上运动(点P 不与点A 重合),连接 BP ,以点B 为圆心, BP 为半径作弧交射线 AN 于点Q ,连接 PQ .若AP x PQ y ==, ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .8.已知点()2A m -,,点()31B m +,,且直线AB x 轴,则m 的值为( ) A .1- B .1 C .3- D .39.当5x =时一次函数2y x k =+和3y kx =-4的值相同,则k 和y 的值分别为( )A .1,11B .19-,C .5,15D .3,3 10.关于反比例函数y=4x的图象,下列说法正确的是( ) A .必经过点(1,1) B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 二、填空题11.已知2()1f x x =-,那么(1)f -的值是 . 12.如图所示,一次函数y=kx+b (k≠0)与反比例函数y= m x (m≠0)的图象交于A 、B 两点,则关于x 的不等式kx+b < m x的解集为 .13.已知点 ()21A -,在正比例函数的图象上,则这个函数的解析式为 . 14.一次函数y=kx+b 的图象如图所示,则关于x 的方程4kx+4b=0的解为 ;方程kx+b+3=5的解为15.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:“水平底” a :任意两点横坐标差的最大值,“铅垂高” h :任意两点纵坐标的最大值,则“矩面积” S ah = .例如:三点坐标分别为A (1,2)、B (-3,1)、C (2,-2),则“水平底” a =5,“铅垂高” h =4,“矩面积”S=20.若D (1,2)、E (-2,1),F (0,t )三点的“矩面积”S=15,则的 t 值为 .三、解答题16.如图,直线PA 是一次函数y=x+1的图象,直线PB 是一次函数y=﹣2x+2的图象.(1)求A 、B 、P 三点的坐标;(2)求四边形PQOB 的面积.17.乐乐从家出发骑自行车去上学,当他以往常的速度骑了一段路后,突然想起要买文具,于是又折回到刚经过的文具店,买到文具后继续骑车去学校.如图是他本次上学所用的时间与离家的距离之间的关系图.根据图中提供的信息,解答下列问题:(1)乐乐在文具店停留了 分钟,文具店到学校的距离是 米;(2)在整个上学途中,哪个时间段乐乐骑车速度最快?最快的速度是多少?(3)如果乐乐不买文具,以往常的速度去学校,需要多长时间?18.2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.19.国际上广泛使用“身体体重指数(BMI )”作为判断人体健康状况的一个指标:这个指数B 等于人体的体重G (kg )除以人体的身高h (m )的平方所得的商,即B =2G h .身体体重指数范围身体属型 B <18不健康瘦弱 18≤B <20偏瘦 20≤B <25正常 25≤B <30超重 B ≥30 不健康肥胖(1)上表是国内健康组织提供的参考标准,若林老师体重G =81kg ,身高h =1.80m ,请问他的体型属于哪一种,请说明理由.(2)赵老师的身高为1.6m ,那么他的体重在什么范围内时体型属于正常?四、综合题20.2022年翻开序章,冬奥集结号已经吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受广大人民的喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.21.阅读下列材料:现给如下定义:以x 为自变量的函数用y=f (x )表示,对于自变量x 取值范围内的一切值,总有f (﹣x )=f (x )成立,则称函数y=f (x )为偶函数.用上述定义,我们来证明函数f (x )=x 2+1是偶函数.证明:∵f (﹣x )=(﹣x )2+1=x 2+1=f (x )∴f (x )是偶函数.根据以上材料,解答下面的问题:已知函数 ()1(0)212x a f x x x ⎛⎫=+≠ ⎪-⎝⎭(1)若f (x )是偶函数,且 ()312f = ,求f (﹣1); (2)若a=1,求证:f (x )是偶函数.22.如图,函数y 1=﹣x+4的图象与函数y 2= k x(x >0)的图象交于A (a ,1)、B (1,b )两点.(1)求k 的值;(2)利用图象分别写出当x >1时①y 1和y 2的取值范围;②y 1和y 2的大小关系.23.如图,一次函数()20y kx k =+≠的图象与反比例函数()00m y m x x=≠>,的图象交于点()2A n ,,与y 轴交于点B ,与x 轴交于点()40C -,.(1)求k 与m 的值;(2)点P 是x 轴正半轴上一点,若BP BC =,求PAB 的面积.24.如图,在平面直角坐标系 xoy 中,函数 (0)k y x x=< 的图象经过点(-6,1),直线 y mx m =+ 与y 轴交于点(0,-2).(1)求k ,m 的值;(2)过第二象限的点P(n ,-2n)作平行于x 轴的直线,交直线y =mx+m 于点A ,交函数(0)k y x x=< 的图象于点B. ①当n =-1时判断线段PA 与PB 的数量关系,并说明理由;②若PB≥2PA ,结合函数的图象,直接写出n 的取值范围.答案解析部分1.【答案】C【解析】【解答】∵小李距家3千米,∴离家的距离随着时间的增大而增大.∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C 符合.故答案为:C.【分析】根据小李距家3千米,路程随着时间的增大而增大即可确定合适的函数图象。

华东师大版八年级数学下册《第17章函数及其图形》单元检测卷(附带答案)

华东师大版八年级数学下册《第17章函数及其图形》单元检测卷(附带答案)

华东师大版八年级数学下册《第17章函数及其图形》单元检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共12小题,每小题3分,共36分)1.若点()12,y -,()21,y 和()33,y 在反比例函数22k y x+=的图像上,则1y ,2y 和3y 的大小关系是( ) A .123y y y >> B .321y y y >> C .132y y y >> D .231y y y >>2.下列函数中,正比例函数有( ).(1)2y x =-(2)y x =3)1y x =-(4)2v =5)213y x =-(6)2y r π=(7)22y x = A .1个 B .2个 C .3个 D .4个3.如图,在平面直角坐标系中,矩形OABC 的面积为6,点A ,C 分别在x 轴,y 轴上,点B 在第三象限,对角线,OB AC 交于点D ,若反比例函数(0)k y x x=<的图象经过点D ,则k 的值为( )A .32-B .32C .3-D .34.一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(3,4)-B .(1,2)--C .(3,3)D .(3,2)5.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A .函数解析式为13I R =B .蓄电池的电压是18VC .当10A I ≤时 3.6R ≥ΩD .当6R =Ω时4A I = 6.如果当0x >时,反比例函数(0)k y k x =≠的函数值随x 的增大而增大,那么一次函数123y kx k =-的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限7.已知蓄电池的电压为定值.使用电池时,电流I (A )与电阻R (Ω)是反比例函数关系,图象如图所示.如果以此蓄电池为电源的电器的限制电流不能超过3A ,那么电器的可变电阻R (Ω)应控制在( )A .R≥1B .0<R≤2C .R≥2D .0<R≤18.如图①,在矩形ABCD 中,动点P 从A 出发,以恒定的速度,沿A B C D A →→→→方向运动到点A 处停止.设点P 运动的路程为x .PAB 面积为y ,若y 与x 的函数图象如图①所示,则矩形ABCD 的面积为( )A .36B .54C .72D .819.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)和y =mx +n (m ≠0)相交于点(2,﹣1),则关于x ,y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩10.如图,在平面直角坐标系中,点P 是反比例函数y=(x >0)图象上的一点,分别过点P 作PA①x 轴于点A ,PB①y 轴于点B .若四边形OAPB 的面积为3,则k 的值为( )A .3B .﹣3C .32D .﹣3211.已知ΔABC 各顶点坐标为()()()1,1,4,11,3A B C ,,若反比例函数()0k y k x =≠的图象与ABC 有交点,则k 的最大值为( )A .5B .12124C .4D .1212512.如图,在长方形ABCD 中,动点P 从A 出发,以一定的速度,沿A B C D A →→→→方向运动到点A 处停止(提示:当点P 在AB 上运动时,点P 到DC 的距离始终等于AD 和BC ).设点P 运动的路程为x ,PCD 的面积为y ,如果y 与x 之间的关系如图所示,那么长方形ABCD 的面积为( )A .6B .9C .15D .18二、填空题(本大题共8小题,每小题3分,共24分)13.某水果店以2.5元/kg 的价格批发了 k g x 苹果,以4元/kg 的价格销售,销售这 k g x 苹果的总利润为y (元),则y 与x 的函数关系式为14.一直线y=-5x -m 过点A (x 1,-2)和P(x 2,4),则x 1,x 2大小关系为 ;15.科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2100米的地方,空气含氧量约为229克/立方米.已知某山的海拔高度为1200米,该山山顶处的空气含氧量约为 克/立方米.16.在平面直角坐标系中111,4P ⎛⎫ ⎪⎝⎭ ()22,1P 393,4P ⎛⎫ ⎪⎝⎭ ()44,4P 5255,4P ⎛⎫ ⎪⎝⎭…按照此规律排列下去,点10P 的坐标为 .17.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,若正方形的边长是2,则图中阴影部分的面积等于 .18.如图,图中的折线OABC 反映了圆圆从家到学校所走的路程()m S 与时间()min t 的函数关系,其中,OA 所在直线的表达式为()110y k x k =≠,BC 所在直线的表达式为()220y k x b k =+≠,则21k k -= .19.如图,A 为反比例函数k y x=上一动点,C 为OA 中点,过点C 作CB x ∥轴,交反比例函数于点B ,连接AB ,若三角形ABC 面积为1.8,则k =20.如图,在平面直角坐标系中,直线y=﹣kx+m与双曲线y=(x>0)交于A、B两点,点A的横坐标为1,点B的横坐标为4,则不等式﹣kx+m>的解集为.三、解答题(本大题共5小题,每小题8分,共40分)21.已知y是关于x的一次函数,如表列出了部分对应值:x⋯2-1-01b⋯y⋯8-a2-14⋯(1)求此一次函数的表达式;(2)求a,b的值.22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店.买到彩笔后继续往家走,如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是米;(2)小颖本次从学校回家的整个过程中,走的路程是多少米?(3)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?23.请你用学习“一次函数”中积累的经验和方法研究函数2y x =-的图像和性质,并解决问题.(1)①当2x =时2y x =-=______;①当2x >时2y x =-=______;①当2x <时2y x =-=______;显然,①和①均为某个一次函数的一部分.(2)在平面直角坐标系xOy 中,作函数2y x =-的图像.(3)结合图像,不等式24x -<的解集为______.24.在平面直角坐标系中,点()0,A m 和(),0C n .(1)若m ,n 满足24212m n m n -=⎧⎨+=⎩. ①直接写出m =______,n =______.①如图1,D 为点A 上方一点,连接CD ,在y 轴右侧作等腰Rt BDC ∆,=90BDC ∠︒连接BA 并延长交x 轴于点E ,当点A 上方运动时,求ACE ∆的面积;(2)如图2,若m n =,点D 在边OA 上,且11AD =,G 为OC 上一点,且8OG =,连接CD ,过点G 作CD 的垂线交CD 于点F ,交AC 于点H .连接DH ,当ADH ODC ∠=∠,求点D 的坐标.25.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股点.(1)已知点M 、N 是线段AB 的勾股点,若AM=1,MN=2,求BN 的长;(2)如图2,点P (a ,b )是反比例函数y=2x(x >0)上的动点,直线y=﹣x +2与坐标轴分别交于A 、B 两点,过点P 分别向x 、y 轴作垂线,垂足为C 、D ,且交线段AB 于E 、F .证明:E 、F 是线段AB 的勾股点;(3)如图3,已知一次函数y=﹣x +3与坐标轴交于A 、B 两点,与二次函数y=x 2﹣4x +m 交于C 、D 两点,若C 、D 是线段AB 的勾股点,求m 的值.参考答案:1.D2.C3.B4.A5.C6.B7.C8.C9.B10.A11.B12.D13. 1.5y x =14.12x x >15.25916.()10,2517.118.5019. 4.8-20.14x <<21.(1)32y x =-;(2)5a =- 2b =. 22.(1)2600(2)3400米(3)90米/分23.(1)0,2x 2x - (2)略;(3)26x -<<. 24.(1)①4m n ==;①16;(2)()0,3.25.(1(2)11;(3。

华师大版八年级下册数学第17章 函数及其图象含答案

华师大版八年级下册数学第17章 函数及其图象含答案

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、如图点A是函数y=图象上任意一点, AB⊥x轴于点B,AC⊥y轴于点C,则四边形OBAC的面积为()A.2B.4C.8D.无法确定2、下列y关于x的函数中,是正比例函数的是()A.y=x 2B.y=C.y=D.y= x+13、如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A. B. C.D.4、正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是().A. B. C. D.5、在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1, A2, A3,…,An,….例如:点A1的坐标为(3,1),则点A2的坐标为(0,4),…;若点A1的坐标为(a,b),则点A2015的坐标为()A.(﹣b+1,a+1)B.(﹣a,﹣b+2)C.(b﹣1,﹣a+1)D.(a,b)6、如图,已知第一象限的点A在反比例函数y=上,过点A作AB⊥AO交x轴于点B,∠AOB=30°,将△AOB绕点O逆时针旋转120°,点B的对应点B恰好落在反比例函数y=上,则k的值为()A.﹣4B.﹣C.﹣2D.﹣7、已知一次函数的图象与x轴交于点,且y随自变量x的增大而减小,则关于x的不等式的解集是()A. B. C. D.8、如图,一次函数的图像与轴,轴分别交于点,点,过点作直线将分成周长相等的两部分,则直线的函数表达式为()A. B. C. D.9、在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有()A.1个B.2个C.3个D.4个10、若一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,则反比例函数y=的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限11、如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后原路返回家,其中x(分钟)表示时间,y(千米)表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,下列说法正确的是( )A.食堂离小明家2.4千米B.小明在图书馆的时间有17分钟C.小明从图书馆回家的平均速度是0.04千米/分钟D.图书馆在小明家和食堂之间12、如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣)D.(2,﹣1)13、已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲,乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A.上午8:30B.上午8:35C.上午8:40D.上午8:4514、点A(m,1)在y=2x-1的图象上,则m的值是()A.1B.2C.D.015、如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,.∠AOB 的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C.当以CD为边的正方形的面积为时,k的值是()A.2B.3C.5D.7二、填空题(共10题,共计30分)16、如图,在坐标平面内A(1,1),正方形CDEF的DE边在x轴上,C,F分别在OA和AB边上,连接OF,若△OEF和以E,F,B为顶点的三角形相似,则B点坐标为________.17、已知点是直线上的点,且到轴的距离等于,则点的坐标为________.18、已知点P(a,b)在直线y= x﹣1上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2﹣4b2﹣1的值为________.19、甲、乙两车从城出发匀速行驶至城在个行驶过程中甲乙两车离开城的距离(单位:千米)与甲车行驶的时间(单位:小时)之间的函数关系如图所示.则下列结论: ①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④在乙车行驶过程中.当甲、乙两车相距千米时,或,其中正确的结论是________.20、在平面直角坐标系xOy中,已知反比例函数y= (k≠0)满足:当x<0时,y随x的增大而减小.若该反比例函数的图象与直线y=﹣x+ k都经过点P,且|OP|=4 ,则实数k的值为________.21、若电影院中的5排2号记为(5,2),则7排3号记为________.22、平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若DPAB的面积为18,则m,n满足的数量关系式为________.23、若正比例函数y=mx和反比例函数y= 的图象交于点A,B,点A的坐标为(2 ,4),则点B的坐标为________.24、已知点P(a,b)在一次函数y=2x+1的图象上,则4a﹣2b﹣1=________.25、某计算程序如图所示,当输入x=________,输出y=1.三、解答题(共5题,共计25分)26、一次函数y =kx+b()的图象经过点,27、方方驾驶小汽车匀速地从A地行使到B地,行驶里程为480千米,设小汽车的行使时间为t(单位:小时),行使速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.28、如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b﹣<0的解集.(直接写出答案)29、某单位计划组织员工到地旅游,人数估计在之间,甲乙两旅行社的服务质量相同,组织到地旅游的价格都是每人200元,在洽谈时,甲旅行社表示可给予每位旅客七五折(即原价格的75%)优惠;乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠,该单位怎样选择,才能使其支付的旅游总费用较少?30、如图,已知直线y=x+3的图象与x、y轴交于A、B两点.直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分.求直线l的解析式.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、A5、B6、B7、B8、D9、C10、B11、D12、B13、C14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

第17章函数及其图象单元测试卷2021-2022学年华东师大版八年级下册数学(word版含答案)

第17章函数及其图象单元测试卷2021-2022学年华东师大版八年级下册数学(word版含答案)

y xA第 5 题图1321y = 2xB O新华师大版八年级下册数学第17章 函数及其图象单元测试题时间:100分钟 总分:120分 姓名____________一、选择题(每小题3分,共30分)1. 已知反比例函数xky =的图象经过点()3,2,那么下列四个点中,也在这个函数图象上的是 【 】 (A )()1,6- (B )()6,1 (C )()3,2- (D )()2,3-2. 把函数32+-=x y 的图象向下平移4个单位长度后得到的函数图象的表达式为 【 】 (A )72+-=x y (B )36+-=x y (C )12--=x y (D )52--=x y3. 在平面直角坐标系中,点()1,3+-m m P 在第二象限,则m 的取值范围是 【 】 (A )31<<-m (B )3>m (C )1-<m (D )1->m4. 已知反比例函数xy 1=,下列结论中不正确的是 【 】 (A )图象经过点()1,1-- (B )图象在第一、三象限(C )当1>x 时,10<<y (D )当0<x 时,y 随x 的增大而增大 5. 如图所示,过A 点的一次函数的图象与正比例 函数x y 2=的图象相交于点B ,则这个一次函数的解析式是 【 】 (A )32+=x y (B )3--=x y (C )32-=x y (D )3+-=x y6. 若点()b a P ,在一次函数34+=x y 的图象上,则代数式24--b a 的值为 【 】 (A )5- (B )5 (C )3 (D )3-7. 已知直线kx y =)0(>k 与双曲线xy 3=交于()11,y x A ,()22,y x B 两点,则1221y x y x +的值为 【 】(A )9- (B )6- (C )0 (D )9 8. 关于x 的函数()1+=x k y 和xky =)0(≠k 在同一坐标系中的图象大致是【 】A B C D第 8 题图9. 如图所示,函数=1y x 和34312+=x y 的图象相交于()1,1-,()2,2两点,当21y y >时,x 的取值范围是 【 】 (A )1-<x (B )21<<-x (C )2>x (D )1-<x 或2>xyx第 9 题图y 2y 1( 2 , 2 )( 1 , 1 )O yx第 10 题图C BOA10. 如图,点A 、B 分别在反比例函数x y 2=)0(>x 和x y 6=)0(>x 的图象上,且x AB //轴,x BC ⊥轴,则四边形AOCB 的面积为 【 】 (A )5 (B )4 (C )3 (D )2二、填空题(每小题3分,共15分)11. 把点()1,2-A 向上平移2个单位,再向右平移3个单位后得到点B ,则点B 的坐标是_________.12. 已知一次函数1-+=m mx y 的图象过点()2,0,且y 随x 的增大而增大,则=m _________.yx第 15 题图CDOA B 13. 如图,点A 在双曲线x y 1=上,点B 在双曲线xy 3=上,且x AB //轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为_________.yx第 13 题图y =1x y =3x DC BOAyx第 14 题图y 2 = x + ay 1 = kx + b3O14. 一次函数b kx y +=1与a x y +=2的图象如图,则下列结论:①0<k ;②0>a ;③当3<x 时,21y y <;④0>b .其中正确的结论是__________(填序号). 15. 如图,在平面直角坐标系中,若菱形ABCD 的顶点A ,B 的坐标分别为()0,5-,()0,8,点D 在y 轴上,则点C 的坐标是_________.三、解答题(共60分)16.(8分)已知一次函数3-=kx y 的图象经过点()1,2-M ,求此图象与x 轴、y 轴的交点坐标.17.(10分)如图所示,正比例函数x y 2-=与反比例函数xky =的图象相相交于()2,m A ,B 两点.(1)求反比例函数的表达式及点B 的坐标; (2)结合图象直接写出当xkx >-2时,x 的取值范围. yxBAO18.(10分)如图所示,已知()2,-n A ,()4,1B 是一次函数b kx y +=的图象与反比例函数xmy =的图象的两个交点,直线AB 与y 轴交于点C ,求: (1)反比例函数和一次函数的关系式; (2)△AOC 的面积.yxC AB O19.(10分)已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数y =mx 的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.20.(10分)如图,已知一次函数y 1=kx +b 与反比例函数xmy 2的图象交于A (2 , 4)、B (﹣4 , n )两点.(1)分别求出y 1和y 2的解析式; (2)写出y 1=y 2时,x 的值; (3)写出y 1>y 2时, x 的取值范围.21.(12分)如图,已知函数b x y +-=21的图象与x 轴、y 轴分别交于点A 、B ,与函数x y =的图象交于点M ,点M 的横坐标为2,在x 轴上有一点()0,a P (2>a ),过点P 作x 轴的垂线,分别交函数b x y +-=21和x y =的图象于点C 、D .(1)求点A 的坐标及b 的值; (2)若OB CD =,求a 的值.yxy =1x + by = xCABM DOP新华师大版八年级下册数学第17章 函数及其图象单元测试题参考答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 答案BCADD题号 6 7 8 9 10 答案ABDDA二、填空题(每小题3分,共15分)11. ( 1 , 3 ) 12. 3 13. 2 14. ①④ 15. ( 13 , 12 )部分题目答案提示:10. 如图,点A 、B 分别在反比例函数x y 2=)0(>x 和xy 6=)0(>x 的图象上,且x AB //轴,x BC ⊥轴,则四边形AOCB 的面积为 【 】 (A )5 (B )4 (C )3 (D )2yx第 10 题图EC BOA解:如图所示,延长BA 交y 轴于点E ,则有:1221,6=⨯==∆AOEBCOE S S 矩形 ∴516=-=AOCB S 四边形,选【 A 】.重要结论 对于双曲线xky =,k 越大,双曲线越偏离原点.所以在第10题图中,点B 所在的双曲线为xy 6=. 13. 如图,点A 在双曲线xy 1=上,点B 在双曲线xy 3=上,且x AB //轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为_________.yx第 13 题图y =1x y = 3x EDC BOA解:延长BA 交y 轴于点E ,则有:1,3==ADOE BCOE S S 矩形矩形∴213=-=ABCD S 矩形.15. 如图,在平面直角坐标系中,若菱形ABCD 的顶点A ,B 的坐标分别为()0,5-,()0,8,点D 在y 轴上,则点C 的坐标是_________.y x第 15 题图ECDO A B解:如图所示,作x CE ⊥轴,则有:AD AB CD OE OD CE ====,∵()()0,8,0,5B A -∴()1358=--=AB ,5=OA ∴13==AD OE在Rt △AOD 中,由勾股定理得:125132222=-=-=OA AD OD∴12=CE ∴()12,13C .三、解答题(共60分)16.(8分)已知一次函数3-=kx y 的图象经过点()1,2-M ,求此图象与x 轴、y 轴的交点坐标.解:把()1,2-M 代入3-=kx y 得:132=--k解之得:2-=k ……………………3分∴32--=x y……………………………………4分 当0=y 时,032=--x∴23-=x∴直线32--=x y 与x 轴的交点为⎪⎭⎫⎝⎛-0,23;……………………………6分 当0=x 时,3-=y∴直线32--=x y 与y 轴的交点为()3,0-. ……………………………8分17.(10分)如图所示,正比例函数x y 2-=与反比例函数xky =的图象相相交于()2,m A ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)结合图象直接写出当xk x >-2时,x 的取值范围.yxBAO解:(1)把()2,m A 代入x y 2-=得:22=-m∴1-=m …………………………2分 ∴()2,1-A …………………………3分 把()2,1-A 代入xk y =得: 221-=⨯-=k∴x y 2-=…………………………6分由题意可知,A 、B 两点关于原点对称 ∴()2,1-B ;…………………………8分 (2)1-<x 或10<<x .……………………………………10分 (答对一个给1分)18.(10分)如图所示,已知()2,-n A ,()4,1B 是一次函数bkx y +=的图象与反比例函数xmy =的图象的两个交点,直线AB 与y 轴交于点C ,求: (1)反比例函数和一次函数的关系式; (2)△AOC 的面积.yxC AB O解:(1)把()4,1B 代入xm y =得: 441=⨯=k∴xy 4=……………………………3分 把()2,-n A 代入xy 4=得: 42=-n∴2-=n∴()2,2--A ………………………4分 把()2,2--A ,()4,1B 代入b kx y +=得:⎩⎨⎧=+-=+-422b k b k 解之得:⎩⎨⎧==22b k∴22+=x y ;………………………7分 (2)当0=x 时,2202=+⨯=y ∴()2,0C ,2=OC……………………………………8分 ∴22221=-⨯⨯=∆AOC S . ……………………………………10分 19.(10分)已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数y =mx 的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围. 解:(1)把A (-4,2)代入y =mx 得:824-=⨯-=m∴xy 8-=…………………………3分把B (n ,-4)代入xy 8-=得:84-=-n ∴2=n∴()4,2-B …………………………4分 把A (-4,2),()4,2-B 分别代入y =kx +b 得:⎩⎨⎧-=+=+-4224b k b k 解之得:⎩⎨⎧-=-=21b k∴2--=x y ;………………………7分 (2)04<<-x 或2>x .……………………………………10分 (全对得3分,答对一个给2分,扣1分)20.(10分)如图,已知一次函数y 1=kx +b 与反比例函数xmy =2的图象交于A (2 , 4)、B (﹣4 , n )两点. (1)分别求出y 1和y 2的解析式; (2)写出y 1=y 2时,x 的值; (3)写出y 1>y 2时, x 的取值范围. 解:(1)把A (2 , 4)代入xm y =2得: 842=⨯=m∴xy 82=……………………………3分把B (﹣4 , n )代入xy 82=得: 84=-n ∴2-=n∴()2,4--B ………………………4分 把A (2 , 4),()2,4--B 分别代入y 1=kx +b 得:⎩⎨⎧-=+-=+2442b k b k 解之得:⎩⎨⎧==21b k∴21+=x y ;………………………6分 (2)当y 1=y 2时,4-=x 或2=x ; ……………………………………8分 (答对1个给1分)(3)04<<-x 或2>x .……………………………………10分 (答对一个给1分)新华师大版八年级下册数学试卷 第11页21.(12分)如图,已知函数bx y +-=21的图象与x 轴、y 轴分别交于点A 、B ,与函数x y =的图象交于点M ,点M 的横坐标为2,在x 轴上有一点()0,a P (>a ),过点P 作x 轴的垂线,分别交函数b x y +-=21和x y =的图象于点C 、D .(1)求点A 的坐标及b 的值; (2)若OB CD =,求a 的值.yx1x + by = xCA BM DOP解:(1)当2=x 时,2==x y ∴()2,2M ………………………2分把()2,2M 代入b x y +-=21得:2221=+⨯-b ∴3=b …………………………4分∴321+=x y当=y 时,0321=+-x∴6=x∴(),6A ;…………………………6分2)当0=x 时,3=y )3,0(B3=OB …………………………8分 :⎪⎭⎫⎝⎛+-321,a a ,()a a D ,,且直线CD 平y 轴323321-=⎪⎭⎫ ⎝⎛+--=a a a CD10分 OB CD =3323=-a 4=a .…………………………12分新华师大版八年级下册数学试卷第12页。

华师大版八年级下册数学第17章 函数及其图象含答案(参考答案)

华师大版八年级下册数学第17章 函数及其图象含答案(参考答案)

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x (s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C.D.2、把的图象沿轴向下平移5个单位后所得图象的关系式是()A. B. C. D.3、已知正比例函数y=(2m-1)x的图象上两点A(x1, y1)、B(x2,y 2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<B.m>C.m<2D.m>24、下列函数中,是的一次函数的是()A. B. C. D.5、如图,在平面直角坐标系中,等腰直角三角形 OA1A2的直角边 OA1在 y轴的正半轴上,且 OA1=A1A2=1,以 OA2为直角边作第二个等腰直角三角形OA₂ A3,以 OA3为直角边作第三个等腰直角三角OA3A4,…,依此规律,得到等腰直角三角形 OA2017A2018,则点 A2017的坐标为()A.(0,2 1008)B.(2 1008, 0)C.(0,2 1007)D.(2 1007, 0)6、张老师出门散步时离家的距离y与时间x之间的函数图象如图所示,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()A. B. C. D.7、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个8、函数中自变量x的取值范围是()A.x≠﹣1B.x>﹣1C.x=﹣1D.x<﹣19、如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3B.4C.6﹣D.3 ﹣110、如图,点D为y轴上任意一点,过点A(﹣6,4)作AB垂直于x轴交x轴于点B,交双曲线于点C,则△ADC的面积为()A.9B.10C.12D.1511、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不小于m 3B.小于m 3C.不小于m 3D.小于m 312、如图,下列各曲线中能够表示y是x的函数的是().A. B. C. D.13、已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)14、已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.15、如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a 满足﹣3≤a<0时,k的取值范围是()A.﹣1≤k<0B.1≤k≤3C.k≥1D.k≥3二、填空题(共10题,共计30分)16、如图,点A、B是双曲线y= 上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为________17、在平面直角坐标系中,正方形ABCD的顶点A、B、C的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D的坐标为________.18、写出一个图象在第二、四象限的反比例函数解析式:________.19、如图,在平面直角坐标中,D是正方形ABCO的边AB上一点,以OD为边的等边△ODE,点E在x轴正半轴上,若点B的坐标为(3,3),则点E的坐标为________.20、在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;21、若函数y=(m-2)x+5是一次函数,则m满足的条件是________.22、如图,点P是反比例函数y=图象上的一点,则矩形PEOF的面积是________.23、若点在轴上.则点的坐标为________.24、使函数有意义的自变量x的取值范围是________.25、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是________三、解答题(共5题,共计25分)26、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.27、已知实数a , b满足a-b=1,a2-ab+2>0,当1≤x≤2时,函数y=(a≠0)的最大值与最小值之差是1,求a的值28、一次函数y=2x-a与x轴的交点是点(-2,0)关于y轴的对称点,求一元一次不等式2x-a≤0的解集.29、已知函数y=中,当x=a时的函数值为1,试求a的值.30、已知y=y1+y2,其中y1与x成反比例,y2与(x﹣2)成正比例.当x=1时,y=﹣1;x=3时,y=3.求:(1)y与x的函数关系式;(2)当x=﹣1时,y的值.参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、B5、A6、D7、B8、A9、B10、A11、C12、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师大版八年级下册第17章《函数及其图象》单元测试卷(解析版)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。

注意事项:1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。

一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。

)1、函数xx y 2-=中自变量x 的取值范围是( C ) A 、0≠x B 、2≥x 或0≠x C 、2≥x D 、2-≤x 且0≠x2、小明的父亲饭后出去散步,从家走20分钟到一个离家900米的报亭,看10分钟报纸后,用15分钟返回家里、下面四个图象中,表示小明父亲的离家距离与时间之间关系的是( B )3、如果点A (3,m )在x 轴上,那么点B (2+m ,3-m )所在的象限是( D ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、等腰三角形的周长为36,腰长为x ,底边长为y ,则下列y 与x 的关系式及自变量x 的取值范围中,正确的是( D)A 、x y -=36(360<<x )B 、xy -=36(180<<x )C 、x y 236-=(180<<x )D 、x y 236-=(189<<x ) 5、已知一次函数m kx y -=,若y 随x 的增大而减小,且0<km ,则在平面直角坐标系中它的大致图像是( D )A) B) C) D)A B C6、已知一次函数x y 38-=与72-=x y 的图象的交点坐标是(3,1-),则方程⎩⎨⎧=-=+7283y x y x 的解是( B )A 、⎩⎨⎧==13y xB 、⎩⎨⎧-==13y xC 、⎩⎨⎧-==3714y xD 、⎩⎨⎧=-=31y x7、下列各点在一次函数62+=x y 的图象上的是( D ) A 、(5-,4) B 、(5.3-,1) C 、(4,20) D 、(3-,0)8、在函数xy 2-=的图象上有三点(3-,1y ),(2-,2y ),(1,3y ),那么1y 、2y 、3y 的大小关系是( C )A 、132y y y <<B 、312y y y <<C 、213y y y <<D 、123y y y << 9、若反比例函数()0≠=k xky 的图象经过点(2-,5),则这个函数的图象一定经过点( D ) A 、(5,1-) B 、(51-,2) C 、(2-,5-) D 、(21,20-) 10、如图,在同一坐标系中,函数xky =和k kx y -=的图象可能为( C )A 、①③B 、②③C 、只有②D 、只有④11、如图,一次函数21-=x y 与反比例函数xy 32=的图象交于点A 、点B ,当21y y >时,x 的取值范围是( B )A 、1-<x 或30<<xB 、01<<-x 或3>xC 、03<<-x 或1>xD 、1->x12、如图所示,已知点N (1,0),一次函数4+-=x y 的图象与两坐标轴分别交于A ,B 两点,M ,P 分别是线段OB ,AB 上的动点,则MN PM +的最小值是( C )A 、4B 、5C 、225 D 、24①第12题图二、填空题(本大题共4个小题,每小题4分,共16分)13、若点P (a ,b )在第三象限,则点M (2+-a ,3-b )在第____象限; 【答案】四14、当直线()322-+-=k x k y 不经过第一象限时,则k 的取值范是_____;【答案】31≤<k 15、已知一次函数()32-+-=n x m y 图象如图所示,化简:()______22=-+-m n m ;【答案】m n 22-+16、正方形O C B A 111、1222C C B A 、2333C C B A 、…,按如图所示的方式放置。

点1A 、2A 、3A 、…,和点1C 、2C 、3C ,…,分别在直线b kx y +=(0>k )和x 轴上,已知点1B (1,1),2B (3,2),则点2021B 的坐标是_________________;【答案】(122021-,20202)三、解答题(本大题6个小题,共56分。

解答应写出必要的文字说明或演算步骤。

) 17、(本小题满分9分)如图,直线3:11+=x y l 与过点A (3,0)的直线b kx y l +=22:交于点C (1,m ),与x 轴交于点B(1)求直线2l 的解析式; (2)求ABC ∆的面积;(3)直接写出当自变量x 取何值时,满足210y y <<? 【详解】(1)∵点C (1,m )在直线1l 上∴ 将点C (1,m )代入3:11+=x y l ,即:4=m (2分) ∴ C (1,4)将A (3,0)、C (1,4)代入b kx y l +=22:中 ⎩⎨⎧=+=+403b k b k 解得⎩⎨⎧=-=62b k ∴62:22+-=x y l (4分) (2)∵点B 是直线1l 与x 轴的交点 ∴ 点B (3-,0)第15题图第16题图2∴ 6=AB ∴124621=⨯⨯=∆ABC S (6分) (3)由图象可知,两直线的交点的横坐标为1 ∵ 点B (3-,0)∴当210y y <<时,对应的自变量的取值为:13<<-x (9分)【点睛】本题考查了一次函数的解析式、三角形的面积公式、一次函数图象的性质问题,正确掌握知识点是解题的关键;18、(本小题满分9分)如图,反比例函数x a y =与一次函数b kx y +=的图象交于点A (21,8),B (m ,2).(1)求反比例函数与一次函数的解析式; (2)求OAB ∆的面积;(3)将直线AB 向下平移n 个单位,使平移后的直线与反比例函数xay =的图象有且只有一个交点,求n 的值。

【详解】(1)∵反比例函数x a y =过点A (21,8) ∴将点A 代入反比例函数即:a 28= 解得:4=a∴反比例函数解析式为:x y 4=(1分)∵点B (m ,2)在反比例函数上 ∴m42=,解得2=m ∴点B (2,2)(2分) 将A (21,8),B (2,2),代入一次函数b kx y +=中 ⎪⎩⎪⎨⎧=+=+22821b k b k , 解得⎩⎨⎧=-=104b k ∴一次函数解析式为:104+-=x y (4分) (2)设一次函数与x 轴的交点为C 点 ∴ C (2.5,0) ∴1082521=⨯⨯=∆AOC S ,2522521=⨯⨯=∆BOC S∴2152510=-=-=∆∆∆BOC ABC AOBS S S (6分)(3)将直线AB 向下平移n 个单位 ∴直线AB :n x y -+-=104∵直线AB 与反比例函数只有一个交点BAxyO∴⎪⎩⎪⎨⎧=-+-=x y n x y 4104 即xn x 4104=-+- 整理得:()041042=+--x n x∴()064102=--=∆n解得:18=n 或2=n ∴18=n 或2=n (9分)【点睛】本题考查了一次函数与反比例函数的解析式、三角形面积问题以及一次函数与反比例函数的交点问题;19、(本小题满分9分)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完、两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)请你帮该公司设计分配方案,使总利润达到最大?【详解】(1)依题意,分配给甲店A 型产品x 件,则甲店B 型产品有(x -70)件,乙店A 型有(x -40)件,B 型有()[]x --4030件,则()()()1680020101504016070170200+=-+-+-+=x x x x x w (4分) 由⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥0400700100x x x x ,解得4010≤≤x∴1680020+=x w (4010≤≤x )(6分) (2)由1680020+=x w ∵020>∴w 随x 的增大而增大∴当40=x 时,w 有最大值是:17600168002040=+⨯(元) ∴利润最大的分配方案如下:分配给下属甲商店:A 、40件,B 、30件;乙商店:A 、0件,B 、30件.答:当分配给下属甲商店:A 、40件,B 、30件;乙商店:A 、0件,B 、30件时,使总利润达到最大.(9分)【点睛】本题主要考查了利用一次函数的实际应用问题与不等式组的求解方法,解题的关键是理解题意,学会利用不等式组确定自变量的取值范围.20、(本小题满分9分)如图,在平面直角坐标系中,一次函数b ax y +=的图象与反比例函数xky =(k 为常数,0≠k )的图象交于A 、B 两点,与y 轴交于C 点、点A 的坐标为(1-,3),点B (3,n )(1)_________=k ,直线AB 的解析式是______; (2)P 是y 轴上一点,且AOB PBC S S ∆∆=2,求点P 的坐标。

【详解】(1)∵点A 的坐标为(1-,3)且点A 在反比例函数xky =上 ∴代入(1-,3),得到3-=k ,反比例函数为xy 3-= ∵ B (3,n )也在反比例函数上,代入得1-=n 将A (1-,3),B (3,1-)代入一次函数b ax y +=中 可得到直线AB 的解析式为2+-=x y 故答案为:3-;2+-=x y (4分)(2)由直线AB 为2+-=x y 可知,C (0,2) ∴432211221=⨯⨯+⨯⨯=+=∆∆∆BOC AOC AOB S S S (6如图,P 是y 轴上一点,则设P (0,t ) ∴2233221-=⨯-=∆t t S PBC ∵2PBCAOBSS=,∴42223⨯=-t ∴322=t 或310-=t ∴P 点的坐标为P (0,322)或(0,310-)(9分) 【点睛】本题考查反比例函数与一次函数综合题型,涉及求反比例函数和一次函数解析式,以及反比例函数与三角形面积有关问题,将点代入求表达式,设点P 利用t 求值是解决本题的关键。

21、(本小题满分10分)已知反比例函数xk y 1-=(k 为常数,1≠k ) (Ⅰ)若点A (1,2)在这个函数的图象上,求k 的值;(Ⅱ)若在这个函数图象的每一支上,y 随x 的增大而减小,求k 的取值范围; (Ⅲ)如图,若反比例函数xk y 1-=(0<x )的图象经过点A ,x AB ⊥轴于B ,且AOB ∆的面积为6,求k 的值;【详解】(1)∵点A (1,2)在这个函数的图象上 ∴211⨯=-k∴3=k (2分)(2)∵在这个函数图象的每一支上,y 随x 的增大而减小 ∴01>-k ∴1>k (4分)(3)由题根据反比函数k 的几何意义,可知:21-=∆k S AOB∴621=-k ,解得:13=k 或11-=k 又∵反比例函数图象经过第二象限 ∴01<-k ,即:1<k ∴11-=k (9分)【点睛】本题考查求解反比例函数的系数,反比函数的性质及反比例函数k 的几何意义,熟记基本性质是解题关键。

相关文档
最新文档