人教版-八年级下册数学-第十七章 勾股定理全章ppt课件

合集下载

人教版数学八年级下册17.1《勾股定理》说课课件_(共13张PPT)

人教版数学八年级下册17.1《勾股定理》说课课件_(共13张PPT)

教学反思
成功之处 不足之处
A
B
C
图1
2、动手操作,探索新知
A
CC
A
BB 图一 图1-1
C
C AA
B
B
图二 图1-2
引导学生在格子图上画一 个直角边分别为3和4的直 角三角形,并以其各边为 边长作正方形A、B、C。 同时给出图二,让学生小 组合作计算图一和图二中 正方形A、B、C的面积。
正方形面积间的关系:
SA+SB=SC 猜想:直角三角形三边之 间的关系,即:两直角边 的平方和等于斜边的平方。
勾股定理是人类文明的成果,几乎所有拥有古 代文化的民族和国家都对勾股定理有所研究.在地 球以外是否存在生命这个问题上,我国数学家华罗 庚曾认为,如果外星人也拥有文明的话,我们可以 用“勾股定理”的图形,作为人类探寻“外星人” 并与“外星人”联系的“语言”.
教学设计:
一、学情分析 二、教材分析 三、教法学法 四、教学过程设计 五、课后反思

学 有利因素






不利因素

教材分析
教材的地位和作用 教学目标 教学重点、难点
目标分析
知识与技能
过程与方法
情感态度与 价值观
教学重点、难点
重点:勾股定理的及其应用
难点:勾股定理的证明
难点成因
教法学法
教学过程
创设情境—引入新课 动手操作—探索新知 归纳猜想—引出命题 证明猜想—得到定理 运用知识—解决问题 归纳小结—梳理知识 布置作业—巩固知识
创设情境,引入新课
我国是最早了解勾股定理的国家之一.早在 三千多年前, 周朝的数学家商高就提出,将一根直 尺折成一个直角,如果 勾等于三,股等于四, 那么弦就等于五,即“勾三、股四、 弦五”.它被记载于我国古代著名的数学著作《周髀算经》中, 所以在我国人们就把这个定理叫作 “商高定理”。 在这本书 中 的另一处,还记载了勾股定理的一般形式.这一发现,至 少早于古希腊人500多年.作为一名中国人,我们应为我国古 人的博学和多思而感到自豪!

人教版八年级数学下册《勾股定理》PPT精品教学课件

人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2

3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了

人教版八年级数学下册《勾股定理》PPT课件

人教版八年级数学下册《勾股定理》PPT课件

b
a
c b
a
c a
b
证明:∵S大正方形=c2,
cb
S小正方形=(b - a)2,
a b- a
赵爽弦图
∴S大正方形=4·S三角形+S小正方形,
∴c2 4 1 ab b a2 a2 b2.
2
“赵爽弦图”表现了我国古人对数学的钻研精神和
聪明才智,它是我国古代数学的骄傲.因此,这个图案
被选为2002年在北京召开的国际数学家大会的会徽.
分称为“勾”,下半部分称为“股”. 我国古代学者把 直角三角形较短的直角边称为“勾”,较长的直角边 称为“股”,斜边称为“弦”.
勾股
勾2 + 股2 = 弦2
利用勾股定理进行计算
例1 如图,在 Rt△ABC 中, ∠C = 90°.
(1) 若 a = b = 5,求 c;
(2) 若 a = 1,c = 2,求 b.
问题1 试问正方形 A、B、 C 面积之间有什么样的数 量关系?
S正方形A S正方形B S正方形C
AB C
问题2 图中正方形 A、B、C 所围成的等腰直角三 角形三边之间有什么特殊关系?
AB C
一直角边2 + 另一直角边2 = 斜边2
问题3 在网格中一般的直角三角形,以它的三边为 边长的三个正方形 A、B、C 是否也有类似的面积关 系?观察下边两幅图(每个小正方形的面积为单位1):
C A
B
C A
B
左图:SC
4
1 2
2
3
11
13
右图: SC
4
1 2
4
3
11
25
你还有其 他办法求C 的面积吗?
根据前面求出的 C 的面积直接填出下表:

人教版八年级数学下册17.1勾股定理的证明(比较全的证明方法)ppt课件

人教版八年级数学下册17.1勾股定理的证明(比较全的证明方法)ppt课件

b
a
∵ S梯 形 AB CD = = 1
1 2
B
a+b 2
2 又 ∵S梯 形 AB CD =S AED +S EBC+S 1 1 1 1 = ab+ ba+ c2= (2ab+c2) 2 2 2 2 比 较上 面 二 式得 c2=a2+b2
(a2+2ab+b2)
CED
向常春的证明方法
S梯形ABCD 1 1 2 1 ( a b b )( a b ) a ab 2 2 2
那么:
朱实 中 黄实 b a
返回
( b- a) 2
ab c 4 ( b a )2 2
2
得: c2 =a2+ b2.
证明1:
该图2002年8月在北京召开的国际数学家大会的会标示意图,取材于我国古代数学著作《勾股圆方图》。
a c b
a
2 c 大正方形的面积可以表示为 ; 1 2 (b a ) 4 ab 也可以表示为 2 c 1 2 ∵ c2= (b a ) 4 ab 2 2 2 =b -2ab+a + 2ab b =a2+b2
G
已知:如图,以在Rt△ABC中, ∠ACB=90°,分别以a、b、c为边向外作 正方形.
K
H C b A c a B
F
求证:a2 +b2=c2.
D E
传说中毕达哥拉斯的证法
证明:从Rt△ABC的三边向外各作一个正方形(如图),作CN⊥DE交AB于M,那么正方形 ABED被分成两个矩形.连结CD和KB. ∵由于矩形ADNM和△ADC同底(AD),等高(即平行线AD和CN间的距离),

17.2 勾股定理的应用 课件(共17张PPT) 2024-2025学年人教版八年级数学下册

17.2 勾股定理的应用 课件(共17张PPT) 2024-2025学年人教版八年级数学下册
解 : 设水的深度为x尺 , 则这根芦苇的长 度为(x+1)尺 , 根据题意和勾股定理可列方 程为x2+52=(x+1)2 , 整理得2x+1=25 , 解得 x=12.所以水的深度为12尺,这根芦苇的长 度为13尺.
拓展延伸ቤተ መጻሕፍቲ ባይዱ
如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方
体的外表面爬到顶点B的最短距离是( B ).
探索新知
例1 一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形 薄木板能否从门框内通过?为什么?
思考:
已知两直角边求斜边.
1.木板能横着或竖着从门框通过吗?
2.这个门框能通过的最大长度是多少?
3.怎样判定这块木板能否通过门框?
探索新知
例1 一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形 薄木板能否从门框内通过?为什么?
A.3
B . 5 C.2
D.1
B
B
A
A
课堂小结
利用勾股定理解决实际问题的一般思路: ①正确理解实际问题的题意; ②建立对应的数学模型; ③解决相应的数学问题; ④将数学问题的结果“翻译”成实际问题的答案.
A
B
A′
O
亭亭多姿湖中立,突遭狂风吹一边.
A
离开原处六尺远,花贴湖面像睡莲.
请君动脑想一想,湖水在此深几尺? B
A′
解:设水深为h尺,Rt△ABC中, OB=h,AO=h+3,A′B=6. 由勾股定理得:A′O2=A′B2+BO2,即 O (h+3)2=h2+62, ∴h2+6h+9=h2+36,解得:h=4.5. 答:湖水深为4.5尺.

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。
很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!
人生,是一本太仓促的书,越认真越深刻;
越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。
3.(1)已知直角三角形的两直角边的长分别为3和4,则第三边
的长为___5____;
(2)已知直角三角形的两边的长分别为3和4,则第三边的长为
__________.
4.求图17-1-1中直角三角形中未知的长度:b=____1_2___, c=____3_0____.
知识清单
知识点1 勾股定理 勾股定理内容:直角三角形两直角边的平方和等于斜__边__的_平__方_. 勾股定理表示方法:如果直角三角形的两直角边分别为a,b ,斜边为c,那么a_2_+__b_2_=__c_2____. 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达 哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数 学家商高就提出了“勾三,股四,弦五”形式的勾股定理, 后来人们进一步发现并证明了直角三角形的三边关系为:两 直角边的平方和等于斜边的平方.
生活,只有将尘世况味种种尝遍,才能熬出头。
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
如图17-1-7,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为

新人教版八年级下册初二数学第十七章勾股定理(全章)优秀PPT课件

新人教版八年级下册初二数学第十七章勾股定理(全章)优秀PPT课件

的正方形面积叫黄
b a
c
实,大正方形面积 叫弦实,这个图也 叫弦图。
赵爽弦图
大正方形面积怎么求?
c a
b c
b
a
(b a)2 4 1 ab c2 2
b2 2ab a2 2ab c2
结论:
a2 b2 c2
有趣的总统证法
美国第二十任总统伽菲尔德的证法在数学史 上被传为佳话人们为了纪念 他对勾股定理直观、简捷、 易懂、明了的证明,就把 这一证法称为“总统”证法。
3.猜想a、b、c 之间的关系? a2 +b2 =c2

拼 图 法 证
ab
b
ca

a c cb
ba
3.猜想a、b、c 之间的关系? a2 +b2 =c2

拼 图 法 证
ab
b
ca

a c cb
ba
3.猜想a、b、c 之间的关系? a2 +b2 =c2
用 拼
∵ S大正方形=4×S直角三角形+ S小正方形
∴ AC2+BC2=A
B

B2
AB
AC2 BC 2
242 72
625 25
24
如果将题目变为:
在Rt△ABC中,AB=41, BC=40,求AC的长呢?
A7C
24
AC AB2 BC 2 412 402 81 9
结论:在直角三角形中,已知两边可以求第三边.
试一试:

1 .在Rt△ABC中,∠C=90°.
C
在Rt △ABE中, AB2=AE2+BE2
∴ AD2-AB2=(AE2+DE2)-(AE2+BE2)

第十七章 勾股定理 章末复习 课件(共23张PPT) 2024-2025学年人教版八年级数学下册

第十七章 勾股定理 章末复习 课件(共23张PPT) 2024-2025学年人教版八年级数学下册

巩固练习
1.如图,一个圆柱形油罐,要从A点环绕油罐建梯子,正好到A 点的正上方B点,请你算一算梯子最短需多少米? ( 已知油罐 的底面周长是12米,高是5米).
解:如图,将油罐侧面展开,
此时AB= 122 52 =13(m).
2.如图,已知在△ABC中,AB=17 , AC=10 , BC边上的高AD=8, 求:(1)BC边的长;(2)△ABC的面积.
A
思考:如何判定一个三角形是直角三角形呢?
1.有一个内角为直角的三角形是直角三角形.
2.两个内角互余的三角形是直角三角形.
3.如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角
形是直角三角形.
A
勾股定理的逆定理
c
几何语言:∵a2+b2=c2, b
∴△ABC是直角三角形.
C
a
B
典型例题
S阴影=S△CAD-S△ABC
=
1 2
AC·AD-
1 2
AB·BC
=24
互逆命题
勾股定理
题设:一个三角形 是直角三角形.
勾股定理 的逆定理
题设:一个三角形 的三边长a,b,c
满足a2+b2=c2.
结论:两条直角边的平 方和等于斜边的平方.
(a2+b2=c2)
结论:这个三角形 是直角三角形.
若两个命题的题设、结论正好相反,则这两个命题叫 做互逆命题.
知识框图 勾股定理
互逆定理
勾股定理的逆定理
直角三角形边 长的数量关系
直角三角形的判定
复习回顾
回顾思考:
1.直角三角形三边的长有什么特殊的关系? 2.赵爽证明勾股定理运用了什么思想方法? 3.已知一个三角形的三边长,怎样判断它是不是直角三 角形? 你作判断的依据是什么? 4.证明勾股定理的逆定理运用了什么方法? 5.一个命题成立,它的逆命题未必成立. 请举例说明.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理得:AC2+BC2=AB2
y2+52=132
y2=132-52
y2=144
∵y>0
∴ y=12
方法总结:利用勾股定理建立方程.
例:(补充)在直角三角形中,各边的长如 图,求出未知边的长度.
解:根据勾股定理,得 AB AC2 BC2 32 72 58.
解: 根据勾股定理,得
AB= BC2 AC2 102 42 2 21.
人民教育出版社义务教育教科书八年级数学(下册)
第十七章 勾股定理
全章ppt课件
义务教育教科书( RJ )八年级数学下册
第十七章 勾股定理
谁是全能王!
规则:老师出题你来答,每组同学均有回答机 会,答对,即可+1分,否则不加分。
活动即将开始
活动开始
勾股世界
我国是最早了解勾股定理的国家之 一。早在三千多年前,周朝数学家商高就 曾提出, “勾三、股四、弦五”,所以
勾股定理又叫“商高定理”
在西方,因为是毕达哥拉斯最先发现这 个定理的,所以西方人通常称勾股定理为
“毕达哥拉斯定理” .传说毕达哥拉斯
证明这个定理之后,杀了一百头牛来庆祝,
所以它又叫“百牛定理” .在欧洲中世 纪它又被戏称为“驴桥定理” ,因为那
时数学水平较低,很多人学习勾股定理时被 卡住,难以理解和接受。所以勾股定理被戏 称为“驴桥”,意谓笨蛋的难关 。
B的面积是 9 个单位面积.
C的面积是 25 个单位面
积.
A
C
你是怎样得到
正方形C的面积的?
与同伴交流交流.
B
图2
结论:仍然成立。
(图中每个小方格是1个单位面积)
至此,我们在网格中验证了:直角三角形两条直角边上的 正方形面积之和等于斜边上的正方形面积,即SA+SB=SC
问题1:去掉网格结论会改变吗?
勾股定理:如果直角三角形两直角
边长分别为a、b,斜边长为c,那么
a2 + b2 = c2
即:直角三角形两直角边的平方和等于斜 边的平方。
为什么叫勾股定理这个名称呢?原来在中国
古代,人们把弯曲成直角的手臂的上半部分称为 “勾”,下半部分称为“股”。
勾 股
国外又叫毕达哥拉斯定理
其他证明方法
勾股定理是几何学中的明珠,它充满了无穷的魅 力,千百年来,人们对它的证明趋之若鹜,其中有著 名的数学家、画家,也有业余数学爱好者,有普通的 老百姓,也有尊贵的政要权贵,也有几名中学生,甚 至有国家总统。有资料表明,关于勾股定理的证明方 法已有500余种。
用四个全等三角形拼图证明。
证 法a 二
b
b
a
b
c c
(a+b)2 =c2 4 1 ab
2
a2 + b2 + 2ab = c2+2ab
c
c
a 可得: a2 + b2 = c2
a
b
大正方形的面积该怎样表示?
证法三:
伽菲尔德的“总统”证法:
a bc
c a
b
S梯形

1 2
(a

b)(a

b)
SS梯 形
问题2:式子SA+SB=SC能用直角
三角形的三边a、b、c来表示吗?
a2 + b2 = c2
B
C
A aa cc
问题3:去掉正方形结论会改变吗? C Bbb A
问题4:那么直角三角形三边a、
b、c之间的关系式是:
a2 + b2 = c2
我们猜想:
命题1:如果直角三角形的两直角边长分 别为a,b,斜边长为c,那么a2+b2=c2.
此时第三边长为5cm;
②当4cm为斜边长时, 第三边 42 32 7 cm.
综上可得第三边的长度为5cm或 7cm.
[解题策略] 注意掌握勾股定理的表达式,分 类讨论是解决此题的关键,难点在于容易漏解.
课堂小结
1.如果直角三角形两直角边长 分别为a,b,斜边长为c,那么 a2+b2=c2.即直角三角形两直角边 长的平方和等于斜边长的平方.
2.注意事项: (1)注意勾股定理的使用条件:只对直角三角形适用,而不适 用于锐角三角形和钝角三角形. (2)注意分清斜边和直角边,避免盲目代入公式致错. (3)注意勾股定理公式的变形:在直角三角形中,已知任意两 边长,可求第三边长,即
相传2500年前,古希腊著名数学家毕达 哥拉斯在朋友家做客时,从朋友家的地砖铺 成的地面上发现了直角三角形三边的某种数 量关系.
A、B、C的面积有什么关系?
SA+SB=SC
等腰直角三角形三边有 什么关系? 两直边的平方和等于 斜边的平方
A1 2 3BB4
C
实验 探究一、三个正方形A,B,C 的面积有什么关系?
[解题策略] 在直角三角形中,已知两边长,求第三 边长,应用勾股定理求解,也可建立方程解决问题.
例:(补充)有两边长分别为3 cm,4 cm的直 角三角形,其第三边长为 5或 7 cm.
解析 分情况讨论 :当4cm为直角边长时, 当4cm为斜边长时, 依次求出答案即可
①当4cm是直角边长时, 斜边 32 42 5cm ,
c a
b
探究三、拼图证明
赵爽拼图证明法:
以直角三角形的两条直角边a、b为边作两个正方 形,把两个正方形如图1连在一起,通过剪、拼把它 拼成图2的样子。你能做到吗?试试看。
c
朱实
c
朱实 黄实 朱实
ba
图1
朱实
图2
小组活动:仿照课本中赵爽的思路,只剪两刀,
将两个连体正方形,拼成一个新的正方形.
剪、拼过程展示:
1.A中含有__9__个小方格,
即A的面积是 9 个单位面积. B的面积是 9 个单位面积. C的面积是 18 个单位面积.
结论:图1中三个正方形 A,B,C的面积之间的数 量关系是:
C A
B 图 1
SA+SB=SC
(图中每个小方格是1个单位面积)
探究二:SA+SB=SC在图2中还成立吗?
A的面积是 16 个单位面积.
b
a ca
朱实
b朱实 黄实朱实来自bac 〓b朱实
a
M a P bb
N
“赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
“赵爽弦图”表现了我国古人对数学的钻研 精神和聪明才智,是我国古代数学的骄傲。 因此,当 2002年第24届国际数学家大会在北 京召开时, “赵爽弦图”被选作大会会徽。
现在,我们已经证明了命题1的正确性,在数 学上,经过证明被确认为正确的命题叫做定理,所 以命题1在我国叫做勾股定理。

1 2
ab

1 2
ab

1 2
c2
∴ a2 + b2 = c2
探究四、实践应用
补例:求出下列直角三角形中未知边的长度.
A
x
C
y
B
6
C8
B
解:(1)在Rt△ABC中,由勾
股定理得:AB2=AC2+BC2
x2=62+82 X2 =36+64 x2 =100
∵x>0
∴X=10
5
13
A
(2)在Rt△ABC中,由勾股
相关文档
最新文档