高分子物理名词解释
高分子物理名词解释

第二章名词解释1.凝聚态:根据物质的分子运动在宏观力学性能上的表现来区分为固体、液体、气体。
2.单分子链凝聚态:大分子特有现象,高分子最小单位。
3.内聚能:1mol凝聚体汽化时需要的能量,△E = CE =△HV-RT(△HV——摩尔蒸发热,RT——汽化时做膨胀功)4.晶胞:晶体结构中具有周期性排列的最小单位。
5.晶系:晶体按其几何形态的对称程度。
ler指数:是一种特殊的,以结晶学单胞三条棱为坐标系时确定的指数。
7.单晶:晶体的整体在三维方向上由同一空间格子组成。
8.球晶:浓溶液中析出或熔体中析出,在不存在应力的条件下,形成圆球形的晶体。
9.片晶厚度:结晶聚合物的长周期与结晶度的乘积。
10.结晶度:试样中结晶部分所占的质量分数或体积分数。
11.高分子链的缠结:高分子链之间形成物理交联点,构成网络结构,使分子链的运动受到周围分子的羁绊和限制。
12.聚合物液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动性,结构上仍保持有序结构,表现各向异性,成为固体-液体过渡状态。
13.溶致液晶:一种包含溶剂化合物在内的两种或多种化合物形成的液晶。
14.热致液晶:加热液晶物质时,形成的各向异性熔体。
15.液晶晶型:向列相(N相):完全没有平移有序手征性液晶(胆甾相,手征性近晶相)层状液晶(近晶A,近晶C )一维平移有序盘状液晶相(向列相ND)16.取向:在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构取向度:f=1/2(3cos2θ-1)(θ:分子链主轴与取向方向之间的夹角,称为取向角)17.双折射:一条入射光线产生两条折射光线的现象。
18.相容性:共混物各组分彼此相互容纳,形成宏观均匀材料的能力。
19.多组分聚合物:多组分聚合物又称高分子合金,指该体系中存在两种或两种以上不同的聚合物组分,不论组分之间是否以化学键相互连接。
20.自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。
高分子物理名词解释

9.等效自由结合链 以链段为统计单元,高分子链看 等效自由结合链: 以链段为统计单元, 等效自由结合链 作由若干个链段组成的自由结合链,称为“ 作由若干个链段组成的自由结合链,称为“等效 自由结合链” 自由结合链” 。 10.空间位阻参数 空间位阻参数: 空间位阻参数 表示由于链的内旋转
受阻而导致的分子尺寸增大程度的量度。 受阻而导致的分子尺寸增大程度的量度。 11.无扰尺寸 无扰尺寸: 无扰尺寸 单位分子量的均方末端距
5.键接结构:指聚合物大分子结构单元的连接方式。 5.键接结构:指聚合物大分子结构单元的连接方式。 键接结构 6.全同立构:结构单元含有不对称碳原子的聚合物, 6.全同立构:结构单元含有不对称碳原子的聚合物, 全同立构 C-C链成锯齿状放在一个平面上。当取代基全部 链成锯齿状放在一个平面上。 处于主链平面的一侧,称为全同立构。 处于主链平面的一侧,称为全同立构。 7.柔顺性:高分子长链能发生不同程度卷曲的特性。 7.柔顺性:高分子长链能发生不同程度卷曲的特性。 柔顺性 (高分子链能改变其构象的性质。) 高分子链能改变其构象的性质。) 8.链段:高分子链上能独立运动的最小单元。 8.链段:高分子链上能独立运动的最小单元。 链段
3.全同或间同的PP可以结晶,而无规PP不结晶? 3.全同或间同的PP可以结晶,而无规PP不结晶? 全同或间同的PP可以结晶 PP不结晶 答:全同PP的取代基甲基全部处于主链平面的一侧,间同PP 全同PP的取代基甲基全部处于主链平面的一侧,间同PP PP的取代基甲基全部处于主链平面的一侧 的取代基相间的分布于主链平面的二侧,结构规整, 的取代基相间的分布于主链平面的二侧,结构规整,容 易结晶。 无规PP的取代基在平面两侧作不规则分布, 易结晶。而无规PP的取代基在平面两侧作不规则分布, PP的取代基在平面两侧作不规则分布 结构不规整,不能结晶。 结构不规整,不能结晶。 4.顺式聚丁二烯及顺式聚异戊二烯可做橡胶使用,而其反式 4.顺式聚丁二烯及顺式聚异戊二烯可做橡胶使用, 顺式聚丁二烯及顺式聚异戊二烯可做橡胶使用 产物却能结晶? 产物却能结晶? 答:顺式聚丁二烯及顺式聚异戊二烯分子链之间的距离大, 顺式聚丁二烯及顺式聚异戊二烯分子链之间的距离大, 等同周期长,不易结晶,室温下是弹性很好的橡胶。 等同周期长,不易结晶,室温下是弹性很好的橡胶。反 式产物分子链结构较规整,等同周期短,容易结晶。 式产物分子链结构较规整,等同周期短,容易结晶。
高分子物理名词解释

近程结构:高分子中与结构单元相关的化学结构,包括结构单元的构造与构型远程结构:指与整个高分子链相关的结构构型:分子链中由化学键所固定的原子在空间的几何排布方式构象:分子链中单键内旋转所形成的原子或基团在空间的几何排列图像碳链高分子:高分子主链全部由碳原子组成,且碳原子之间以共价键连接而成的高分子杂链高分子:主链上除碳原子外,还有氧氮硫等其他原子存在,原子键以共价键相连接的高分子元素有机高分子:主链不含碳原子,由Si,B,P,Al,Ti,As,O等无机元素组成,侧基为有机取代基团链接异构:结构单元在分子链中因键接顺序或连接方式不同而形成的异构体序列异构:不同序列排布方式形成的键接异构体旋光异构:d型和l型旋光异构单元在分子链中排列方式不同而构成的异构体几何异构:根据内双键连接的两个碳原子上键接基团在键两侧的排列方式分出顺式和反式两种立体异构体,称为顺反异构体,也称为几何异构体全同立构:分子链中所有不对称碳原子均以相同的构型键接间同立构:分子链中的不对称碳原子分别以d型和l型交替键接无规立构:分子链中的不对称碳原子以d和l构型任意键接线性高分子:具有一维拓扑结构的线性长链,长径比大,每个分子链带有两个端基支化高分子:分子主链上带有与其化学组成相同而长短不一的支链的高分子,端基数目大于2交联网络:经交联后,分子链形成的具有一定强度的网状结构内旋转:与σ键相连的两个原子可以做相对旋转而不影响σ键电子云的分布,称为σ键的内旋转内旋转势垒:内旋转时需要消耗一定能量以克服所受的阻力,所需能量即为内旋转势垒内旋转势能差:内旋转异构体之间的势能差称为内旋转势能差静态分子链柔顺性:又称为平衡态柔顺性,指高分子链在热力学平衡条件下的柔顺性动态分子链柔顺性:指分子链在一定外界条件下,微构象从一种平衡态构象转变到另一种平衡态构象的速度或难易程度链段:如果人为的将若干个相互牵连的相邻σ键合并,看做一个相对独立的单元,即为链段均方末端距:均方末端距为末端距向量的平方按分子链构象分布求得的统计平均值均方旋转半径:均方旋转半径定义为从分子链质心到各质点的向量的平方以质点质量为权重的统计平均值伸展链:呈充分伸展的宏构象的高分子链自由连接链:假定分子链上化学键数目n相当大,各化学键之间自由连接每个键在任何方向取向的概率相等,不受键角的限制和位垒的障碍,内旋转完全自由,且分子量不占有体积自由旋转链:假定化学键在键角上的旋转是完全自由的,即每个单键可以在以键角的补角为半锥顶角的锥面上自由旋转,这种分子链模型即为自由旋转链模型等效自由连接链:将若干个相互连接的σ键合并成链段,视其为相对独立的单元,由于链段之间自由连接,高分子链可以视为以链段为统计单元的自由连接链,该模型为等效自由连接链模型Kuhn等效链段:等效自由连接链的等效结构单元是链段,也称为Kuhn等效链段Gauss链:链段数足够多,符合无规行走模型的要求,那么以链段为统计单元的分子链的构象也符合Gauss分布,称为Gauss链模型Flory特征比:定义为无扰均方末端距与自由链模型计算的均方末端距之比值凝聚态结构:在不同外部条件下,高分子链可能以无规线团构象堆砌,也可能排列整齐呈伸展链,折叠链,及螺旋链等构象,形成不同的有序晶相结构分子间作用力:主价键完全饱和的原子,仍有吸引其他分子中饱和原子的能力,这种作用力称为分子间作用力范德华力:分子间静电相互作用,主要指分子间静电引力,称为范德华力氢键:本质是氢原子参与形成的一种相当弱的化学键憎水相互作用:高分子链结构中的各类基团,可分为亲水基团和疏水基团,表面活性剂溶于水中,由于该作用,按浓度不同聚集成胶束,单层膜,双层膜,微泡体等结构内聚能密度:把一摩尔液体或固体的分子分离到分子引力范围以外所需要的能量,用于度量分子间作用力晶胞参数:分为三个边长参数和三个夹角参数,根据参数不同分为七大晶系等同周期:分子链排列时以相同结构单元重复出现的周期长度单晶:高分子链以折叠方式形成的晶片球晶:聚合物在无应力状态下从溶液或熔体结晶得到的一种最为普遍的结晶形态折叠链晶片:在一般温度场中结晶,分子链多沿晶片厚度方向反复折叠排列,形成折叠链晶片伸展链晶片:在强应力场中结晶,分子链易于沿应力方向伸展排列形成伸展链晶片纤维状晶:既有伸展链晶体又有折叠链片晶串晶:以纤维晶为结晶中心,在其周围生长出许多折叠链晶片,与纤维晶一起构成串状结构结晶度:晶区部分在聚合物总量中所占的质量分数或体积分数结晶速率:表征结晶的快慢异相成核:依靠外来杂质或加入的成核剂,或容器壁作为晶体的生长点均相成核:由热运动形成分子链局部有序,生成有一定体积而热力学稳定的晶核,晶核的化学组成与后生长的晶体相同熔点:结晶聚合物的熔点一般指晶体完全融化时的温度熔限:结晶聚合物的熔化温度范围无规线团:在非晶聚合物中,高分子链为柔性链,大量分子链以无规线团状互相穿插,缠结在一起,无局部有序结构,分子链间存在空隙,称为无规线团模型无定形态:以非晶态或非晶态占绝对优势的聚合物称为无定型聚合物取向度:材料的取向程度单轴取向:指材料只沿一个方向拉伸,分子链或链段沿拉伸方向排列双轴取向:指材料沿两个互相垂直的方向拉伸,分子链或链段处于与拉伸平面平行排列的状态,但平面内结构单元的排列可能是无序的液晶:介于液态和晶态之间的中介状态热致性液晶:由于温度导致分子运动能力变化,在液固相变过程中形成的中间态熔致性液晶:由于有机分子溶液浓度变化,在憎水作用下,形成的有机分子溶质有序排列机构织态结构:多相高分子材料由于成分复杂,凝聚态也相对复杂,这类凝聚态结构称为织态结构高分子共混物:两种或两种以上高分子材料的物理混合物填充改性高分子材料:通过填充使材料获得新的功能及性质,提高其性价比软物质:包括液晶材料,高分子材料,两亲分子,生物有机材料和胶体等多尺度性:从空间尺度的角度去理解即为多层次性运动单元的多重性:高分子材料具有多层次,多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次,多类型的形变-温度曲线:在一定载荷和恒速升温条件下式样形变与温度的关系力学状态:材料力学性能规定的物质存在状态玻璃态:温度低,分子热运动能量低,分子链及链段的运动均处于冻结状态,弹性模量高,形变小,外力撤去后形变立即恢复高弹态:温度升高,热运动加剧,链段具有充分运动能力,模量小,形变大外力撤去后形变可恢复粘流态:自由体积进一步增大,链段协同运动加剧,在外力作用下分子链质心发生相对位移的运动占优势,具有明显的粘性流动特征,材料呈熔体状玻璃化转变:由玻璃态转变为高弹态,自由体积增大,链段运动解冻黏流转变:由高弹态转变为粘流态,链段可沿外力方向协同运动,分子链解缠结,分子质心发生相对位移分解温度:分解温度指处于粘流态的聚合物当温度进一步升高时,便会使分子链的降解加剧,升至使聚合物分子链明显降解时的温度为分解温度脆化温度:以具有一定能量的冲锤冲击试样时,当试样开裂几率达到50%时的温度称脆化温度自由体积:分子尺寸的空穴和堆砌形成的空隙分子占有体积:单个原子的振动体积,由原子的范德华半径和与原子振动有关的体积确定等自由体积理论:对不同高分子材料而言,发生玻璃化转变时自由体积分数的临界值基本相等,高分子材料的玻璃态为等自由体积状态自由体积膨胀系数:玻璃化转变温度前后玻璃态和高弹态聚合物的膨胀系数之差松弛过程:物质状态的时间演变过程松弛时间:松弛过程所用时间玻璃化转变的多维性:恒温下改变其他条件,如改变各向同性压力,外力作用频率等也能改变链段运动状态,引发玻璃化转变主转变:玻璃化转变,高分子结晶或熔融等涉及链段运动状态的改变次级转变:在温度,频率等外界条件变化时尺寸小于链段的小结构单元的运动也存在冻结或释放的状态变化,影响材料的性质拉伸应力:物体在被拉伸时产生的应力剪切应力:物体由于外因而变形时,在它内部任一截面的两方出现的相互作用力拉伸应变:物体在拉伸力作用下的形变剪切应变:物体在变形时截面上的形变模量:应力与应变的比例系数柔量:模量的倒数杨氏模量:拉伸时的应力与应变之比剪切模量:发生剪切应变时的应力与应变之比普弹性:小分子材料的弹性形变能力高弹性:高分子材料的弹性形变能力高弹形变:高分子材料在外力下发生的形变网链:在交联橡胶和处于高弹态的高分子材料内部,分子链之间存在着化学的和物理的交联点,使所有分子链构成一个大网络应变诱导结晶:在大拉伸比下产生诱导结晶,结晶度增大线性粘弹性:符合胡克定律的线性弹性和符合牛顿粘性定律的线性粘性的组合非线性粘弹性:不符合胡克定律的线性弹性和符合牛顿粘性定律的线性粘性的组合应力松弛:在恒温状态下拉伸,保持应变恒定,测试样内应力随时间增长逐渐降低松弛模量:应力松弛时应力与应变之比蠕变:蠕变是指在一定温度和恒定外力作用下,材料的形变随时间增大而逐渐增大的现象蠕变柔量:发生蠕变时形变与应力之比滞后现象:对一般粘弹性材料,应变比应力落后滞后角:滞后现象中应力与应变的相位差储能模量:粘弹性材料复数模量的实部,描述应力应变同位相的弹性形变损耗模量:粘弹性材料复数模量的虚部,描述应变落后应力π/2的粘性应变复数模量:应力与应变之比力学损耗:一个拉伸回缩周期中,单位体积材料所损耗的机械功损耗正切:储能模量与损耗模量之比Mexwell模型:由一个胡克弹簧和一个装有牛顿液体的黏壶串联组成,测量应力松弛Kelvin模型:由一个胡克弹簧和一个装有牛顿液体的黏壶并联组成,测蠕变四原件模型:由弹簧,Kelvin模型,黏壶串联而成,测未交联聚合物的实际蠕变情况广义Mexwell模型:将若干个具有不同松弛时间的Mexwell模型并联广义Kelvin模型:将若干个具有不同推迟时间的Kelvin模型串联松弛时间谱:不同松弛时间Ti的集合等温时效原理:对高分子材料的力学状态转变及力学松弛性能而言,外力作用时间和环境影响有等效作用Boltzmann叠加原理:对时间序列中一系列阶跃式应变或应力的输入,体系在即时t的应力或应变响应可以表示为不同时刻的一系列个别相应的线性叠加破坏:指材料在使用,储存状态下变形,破裂,疲劳乃至失去效用断裂:指外力作用下本体开裂成两个或多个碎片产生新表面疲劳:指长时间动态加载条件下发生的失效屈服:外力作用下,材料发生不可逆形变工程应力:拉力F除以式样原始截面积A真应力:式样拉伸过程中产生的真实应力拉伸强度:应力应变曲线到达断裂点时所受的应力断裂伸长率:应力应变曲线到达断裂点时发生的应变屈服强度:应力应变曲线到达极大值点时对应的应力屈服应变:应力应变曲线到达极大值点时对应的应变应变软化:越过屈服点后式样的应力略有下降细颈:发生应变软化时试样上某一局部会出现颈缩现象断裂能:拉伸试样直至断裂单位体积所消耗的能量脆韧转变温度:拉伸断裂强度和屈服强度两曲线交点对应的温度剪切屈服:试样在拉伸时出现颈缩现象,颈缩处出现45度的剪切屈服带拉伸屈服:在外力作用下,材料内部垂直于外力作用方向出现的微结构的撕裂,挣脱,位移,消耗形变能强迫高弹形变:在软玻璃态发生的大形变称为非晶聚合物的强迫高弹形变冷拉:结晶聚合物发生的强迫高弹变形应变硬化:冷拉伸结束后,再继续拉伸,应力将上升脆性断裂:断裂伸长率很小,拉应力作用下未发生屈服即断裂韧性断裂:断裂伸长率较大,拉应力作用下先发生屈服,而后在更大断裂伸长率下再发生断裂应力集中效应:缺陷的存在影响了材料内部应力分布的均匀性,应力会集中于细微裂纹的尖端理论强度:所有分子链单向有序排列,沿主链方向同时均匀受力,同时被拉断,这样求得的强度为理论强度实际强度:拉伸外力先克服次价键,使局部分子链滑脱,取向,伸直,再克服主价键,拉断分子链增强:使用化学法或物理方法提高材料的力学强度或其它性能临界弹性能释放速率:材料断裂韧性的一种度量抗冲击强度:标准式样在高速冲击作用下发生断裂时,单位断面面积所消耗的能量银纹:聚合物在张应力作用下,于某种材料某些薄弱部位出现应力集中而产生局部的塑性形变和取向,光线照射下呈现银白色光泽裂纹:材料在应力或环境(或两者同时)作用下产生的裂隙剪切屈服带:材料内部具有高度剪切应变的薄层,在应力作用下材料内部局部区域产生应变软化形成的环境应力开裂:指在外力与环境气氛共同作用下材料内部出现银纹,裂缝,空隙以至于性能下降而失效增韧:聚合物的增韧就是把聚合物的断裂方式由脆性断裂转变为韧性断裂溶胀:溶剂小分子渗透,扩散到高分子中间,削弱大分子间相互作用力,使体积膨胀溶解:大多数线型或支化高分子材料置于适当溶剂中并给予适当条件,就可溶解而成为高分子溶液溶胀比:溶胀后与溶胀前的体积之比溶胀平衡:当溶剂的渗入,膨胀作用与交联网的弹性回缩作用相等时,达到溶胀平衡内聚能密度:摩尔内聚能与摩尔体积之比溶解度参数:内聚能密度的平方根溶剂化作用:广义酸和碱相互作用产生溶剂化,使聚合物溶解理想溶液:溶液中各分子之间的相互作用能相等,溶解时无体积变化,与外界无热量交换无热溶液:溶解时与外界无热量交换Flory-Huuggins参数X12:高分子-溶剂相互作用参数,相当于把一个溶剂分子放到高分子体系中引起的能量变化偏摩尔自由能:在一定的温度压力和浓度下,向溶液中再加入1mol溶剂或溶质,体系中自由能的改变溶剂的稀释自由能:溶剂在溶液中的化学势与纯溶剂化学势的差值超额化学势:高分子溶液与理想溶液相比多出的化学势θ状态:某种条件下高分子溶液满足理想溶液的条件,称该状态为θ状态θ温度:θ状态时的温度θ溶剂:θ状态时的溶剂排除体积:高分子或链段在溶液中可有效地排除所有其他高分子或链段的体积数均分子量:按各级分分子的数量分数求平均重均分子量:按各级分分子的质量分数求平均粘均分子量:用粘度法测得的聚合物的分子量渗透压:用半透膜把溶剂与溶液隔开时发生渗透现象,到达平衡时半透膜两侧溶液产生的压力差第二virial系数:表征高分子稀溶液性质,判断溶剂优劣流变性:高分子液体流动时不同程度的发生弹性形变和弹性恢复,出现如挤出胀大,熔体破裂,法向应力差等弹性效应,称为流变性。
高分子物理名词解释

1.应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。
2.氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。
3.等规聚合物:指全同立构和间同的高聚物。
4.等规度:高聚物中含有全同立构和间同立构总的百分数。
5.聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。
1999年1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。
2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。
3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。
4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。
5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。
6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。
2000年1.链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。
2.构型:构型是对分子中的最近邻原子间的相对位臵的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。
3.构象:由于单键内旋转而产生的分子在空间的不同形态。
4.熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。
5.熔点:高聚物结晶部分完全熔化的温度。
6.剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。
7.高聚物的屈服:聚合物在外力作用下产生的塑性变形。
2001年1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。
2002年1.高聚物的熔点:比容-温度曲线上熔融终点处对应的温度为高聚物的熔点。
高分子物理名词解释

一、概念与名词第一章高分子链的结构高聚物的结构指组成高分子的不同尺度的结构单元在空间相对排列,包括高分子的链结构和聚集态结构。
高分子链结构表明一个高分子链中原子或基团的几何排列情况。
聚集态结构指高分子整体的部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。
近程结构指单个大分子一个或几个结构单元的化学结构和立体化学结构。
远程结构指单个高分子的大小和在空间所存在的各种形状称为远程结构化学结构除非通过化学键的断裂和生成新的化学键才能改变的分子结构为化学结构。
物理结构而一个分子或其基团对另一个分子的相互作用构型分子中各原子在空间的相对位置和排列叫做构型,这种化学结构不经过键的破坏或生成是不能改变的。
旋光异构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三中键接方式,即全同、间同、无规立构,此即为旋光异构。
全同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的异构体是相同的,此即为全同立构。
间同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是交替出现的,此即为间同立构。
无规立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是无规则出现的,此即为无规立构。
有规立构全同和间同立构高分子统称为有规立构。
等规度全同立构高分子或全同立构高分子和间同立构高分子在高聚物中的百分含量。
几何异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。
顺反异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。
高分子物理名词解释

高分子物理名词解释1、近程结构:高分子重复单元的化学结构和立体结构合称为高分子的近程结构2、远程结构:由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构3、链段与链节:高分子链中能自由取向并在一定范围独立运动的最小单元称为链段。
链节是指高分子链中不断重复的单元。
4、均方旋转半径:分子链质心与组成该分子链所有链段质心之间矢量距离的均方值。
5、大分子链的末端距:高分子链中由一端指向另一端的有向线段6、构型与构象:构象系指由C-C单键内旋转而形成的空间排布。
构型系指化学键连接的邻近原子或原子团之间的空间状态表征。
7、液晶态:某些物质的结晶受热熔融或被溶剂溶解之后,仍部分地保持晶态物质分子的有序排列,呈现各项异性的物理性质,形成一种兼有晶态和液态部分性质的过渡状态,称为液晶态。
8、取向函数:9、高斯链:统计单元为一个链段且链段与链段之间自由结合,无规取向的高分子链称为等效自由结合链,因为其链段分布函数服从高斯分布,故也称为高斯链。
10、等规立构:聚合物一种或两种构型的结构单元以单一顺序重复排列。
11、无规立构:手性中心的构型呈无规排列。
12、柔顺性和刚性:高分子长链能以不同程度卷曲的特性。
13、UCST 和LCST :最高共溶温度和最低共溶温度。
14、凝胶和冻胶:凝胶是高分子链之间以化学键形成的交联结构的溶胀体,加热不溶不熔,既是高分子的浓溶液,又是高弹性的固体。
冻胶是由高分子间以分子间作用力形成的,加热时可以溶解。
15、高分子电解质:在侧链中有许多可电离的离子型基团的高分子称为高分子电解质。
16、溶解度参数δ:1.高分子化合物:由众多原子或原子团主要以共价键结合而成的相对分子质量在1万以上的化合物。
2.近程结构:构成大分子链的结构单元的化学组成和物理结构。
3.远程结构:由数目众多结构单元构成的分子链的长短及其空间形态和结构。
4.凝聚态结构:从物理学角度界定聚合物的微观结构类型。
5.化学结构:除非通过化学键断裂并同时生成新键才能产生改变的分子结构。
高分子物理名词解释

高分子物理名词解释
高分子物理是研究高分子材料结构、性质和行为的物理学分支。
以下是一些高分子物理的常见名词解释:
1. 高分子:由数个重复单元组成的大分子,通常由合成或天然材料制成,如塑料、橡胶、纤维等。
2. 分子量:高分子化合物中分子的重量,可以使用数量单位如摩尔质量或克/摩尔来表示。
3. 结晶度:高分子材料中结晶部分的比例,高结晶度意味着高分子链有序排列,提高材料的力学性能。
4. 玻璃化转变温度:高分子材料由玻璃态变为橡胶态的温度,通常以Tg来表示。
5. 弹性模量:衡量高分子材料恢复形变能力的物理量,描述了材料的刚度和形变程度。
6. 熔融温度:高分子材料由固态变为液态的温度,通常以Tm
来表示。
7. 热分解温度:高分子材料在高温下分解的温度,表示材料的热稳定性。
8. 力学性能:高分子材料的物理性质,如拉伸强度、弯曲刚度、韧性等,决定了材料在应用中的可靠性和性能。
9. 粘弹性:高分子材料同时表现出粘性和弹性特性的能力,即在受力后能够部分恢复形变。
10. 层状结构:高分子材料中分子链在水平方向上堆叠形成层状结构,可以影响材料的力学性能和透明度。
高分子物理名词解释

名词解释1.构型:分子中由化学键所固定的原子在空间中的排列2.构象:由于单键内旋转而产生的分子在空间不同形态成为构象。
3.构造:指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等。
4.支化度:以支化点密度或亮相邻支化点之间的链平均分子量来表示支化度的程度。
5.交联度:通常用相邻两个交联点之间的链的平均分子量来表示。
6.邦联结构:高分子链之间通过支链连接成一个三维空间网型大分子时即称为交联结构。
7.立构方式(3种):无规立构:两种旋光异构单位完全无规则检接。
间同立构:由两种旋光异构单位交替键接。
全同立构:高分子全部由一种旋光异构单位键接而成。
8.等规高聚物:全同立构和间同立构难道高聚物有时通常称为等规高聚物9.等规度:指高聚物中含有全同立构和间同立构的总的百分数。
10.等效自由结构链:我们就把有若干个键组成的一段链算作一个独立的单位,称他为链段,令链段与链段自由结合,并且无规取向,这种链称为~~~11.高斯链:因为等效自己结合链的链段分布符合高斯分布函数,故称为~~~~~~~12.链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。
13.高分子柔顺性:高分子链能够改变其构象的性质。
14.无规线团:单链的内旋转是导致高分子链成蜷曲构象的原因,内旋转越是自由,蜷曲的趋势就越大。
我们称这种不规则的蜷曲的高分子链的构象为无规线团。
15.聚集态结构:高分子的聚集态结构是指高分子链之间的排序和堆砌结构,也称为超分子结构。
16.内聚能密度:克服分子间作用力,把1mol液体或固体分子地道其间分子间的引力范围之外所需要的能量。
17.结晶度:结晶高聚物中通常总是包含结晶区和非结晶区两个部分,为了对这种状态做出定量描述,提出结晶度的概念,作为结晶部分含量的得量度,通常以重量百分数或体积百分数俩表示。
18.取向:当线形高分子充当伸展的时候,其长度是其宽度的几百,几万倍,这种结构上悬殊的不对称性,使他们在某些情况下很容易沿某特定方向做占优势的平行排列,称为取向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近程结构:高分子中与结构单元相关的化学结构,包括结构单元的构造与构型远程结构:指与整个高分子链相关的结构构型:分子链中由化学键所固定的原子在空间的几何排布方式构象:分子链中单键内旋转所形成的原子或基团在空间的几何排列图像碳链高分子:高分子主链全部由碳原子组成,且碳原子之间以共价键连接而成的高分子杂链高分子:主链上除碳原子外,还有氧氮硫等其他原子存在,原子键以共价键相连接的高分子元素有机高分子:主链不含碳原子,由Si,B,P,Al,Ti,As,O等无机元素组成,侧基为有机取代基团链接异构:结构单元在分子链中因键接顺序或连接方式不同而形成的异构体序列异构:不同序列排布方式形成的键接异构体旋光异构:d型和l型旋光异构单元在分子链中排列方式不同而构成的异构体几何异构:根据内双键连接的两个碳原子上键接基团在键两侧的排列方式分出顺式和反式两种立体异构体,称为顺反异构体,也称为几何异构体全同立构:分子链中所有不对称碳原子均以相同的构型键接间同立构:分子链中的不对称碳原子分别以d型和l型交替键接无规立构:分子链中的不对称碳原子以d和l构型任意键接线性高分子:具有一维拓扑结构的线性长链,长径比大,每个分子链带有两个端基支化高分子:分子主链上带有与其化学组成相同而长短不一的支链的高分子,端基数目大于2交联网络:经交联后,分子链形成的具有一定强度的网状结构内旋转:与σ键相连的两个原子可以做相对旋转而不影响σ键电子云的分布,称为σ键的内旋转内旋转势垒:内旋转时需要消耗一定能量以克服所受的阻力,所需能量即为内旋转势垒内旋转势能差:内旋转异构体之间的势能差称为内旋转势能差静态分子链柔顺性:又称为平衡态柔顺性,指高分子链在热力学平衡条件下的柔顺性动态分子链柔顺性:指分子链在一定外界条件下,微构象从一种平衡态构象转变到另一种平衡态构象的速度或难易程度链段:如果人为的将若干个相互牵连的相邻σ键合并,看做一个相对独立的单元,即为链段均方末端距:均方末端距为末端距向量的平方按分子链构象分布求得的统计平均值均方旋转半径:均方旋转半径定义为从分子链质心到各质点的向量的平方以质点质量为权重的统计平均值伸展链:呈充分伸展的宏构象的高分子链自由连接链:假定分子链上化学键数目n相当大,各化学键之间自由连接每个键在任何方向取向的概率相等,不受键角的限制和位垒的障碍,内旋转完全自由,且分子量不占有体积自由旋转链:假定化学键在键角上的旋转是完全自由的,即每个单键可以在以键角的补角为半锥顶角的锥面上自由旋转,这种分子链模型即为自由旋转链模型等效自由连接链:将若干个相互连接的σ键合并成链段,视其为相对独立的单元,由于链段之间自由连接,高分子链可以视为以链段为统计单元的自由连接链,该模型为等效自由连接链模型Kuhn等效链段:等效自由连接链的等效结构单元是链段,也称为Kuhn等效链段Gauss链:链段数足够多,符合无规行走模型的要求,那么以链段为统计单元的分子链的构象也符合Gauss分布,称为Gauss链模型Flory特征比:定义为无扰均方末端距与自由链模型计算的均方末端距之比值凝聚态结构:在不同外部条件下,高分子链可能以无规线团构象堆砌,也可能排列整齐呈伸展链,折叠链,及螺旋链等构象,形成不同的有序晶相结构分子间作用力:主价键完全饱和的原子,仍有吸引其他分子中饱和原子的能力,这种作用力称为分子间作用力范德华力:分子间静电相互作用,主要指分子间静电引力,称为范德华力氢键:本质是氢原子参与形成的一种相当弱的化学键憎水相互作用:高分子链结构中的各类基团,可分为亲水基团和疏水基团,表面活性剂溶于水中,由于该作用,按浓度不同聚集成胶束,单层膜,双层膜,微泡体等结构内聚能密度:把一摩尔液体或固体的分子分离到分子引力范围以外所需要的能量,用于度量分子间作用力晶胞参数:分为三个边长参数和三个夹角参数,根据参数不同分为七大晶系等同周期:分子链排列时以相同结构单元重复出现的周期长度单晶:高分子链以折叠方式形成的晶片球晶:聚合物在无应力状态下从溶液或熔体结晶得到的一种最为普遍的结晶形态折叠链晶片:在一般温度场中结晶,分子链多沿晶片厚度方向反复折叠排列,形成折叠链晶片伸展链晶片:在强应力场中结晶,分子链易于沿应力方向伸展排列形成伸展链晶片纤维状晶:既有伸展链晶体又有折叠链片晶串晶:以纤维晶为结晶中心,在其周围生长出许多折叠链晶片,与纤维晶一起构成串状结构结晶度:晶区部分在聚合物总量中所占的质量分数或体积分数结晶速率:表征结晶的快慢异相成核:依靠外来杂质或加入的成核剂,或容器壁作为晶体的生长点均相成核:由热运动形成分子链局部有序,生成有一定体积而热力学稳定的晶核,晶核的化学组成与后生长的晶体相同熔点:结晶聚合物的熔点一般指晶体完全融化时的温度熔限:结晶聚合物的熔化温度范围无规线团:在非晶聚合物中,高分子链为柔性链,大量分子链以无规线团状互相穿插,缠结在一起,无局部有序结构,分子链间存在空隙,称为无规线团模型无定形态:以非晶态或非晶态占绝对优势的聚合物称为无定型聚合物取向度:材料的取向程度单轴取向:指材料只沿一个方向拉伸,分子链或链段沿拉伸方向排列双轴取向:指材料沿两个互相垂直的方向拉伸,分子链或链段处于与拉伸平面平行排列的状态,但平面内结构单元的排列可能是无序的液晶:介于液态和晶态之间的中介状态热致性液晶:由于温度导致分子运动能力变化,在液固相变过程中形成的中间态熔致性液晶:由于有机分子溶液浓度变化,在憎水作用下,形成的有机分子溶质有序排列机构织态结构:多相高分子材料由于成分复杂,凝聚态也相对复杂,这类凝聚态结构称为织态结构高分子共混物:两种或两种以上高分子材料的物理混合物填充改性高分子材料:通过填充使材料获得新的功能及性质,提高其性价比软物质:包括液晶材料,高分子材料,两亲分子,生物有机材料和胶体等多尺度性:从空间尺度的角度去理解即为多层次性运动单元的多重性:高分子材料具有多层次,多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次,多类型的形变-温度曲线:在一定载荷和恒速升温条件下式样形变与温度的关系力学状态:材料力学性能规定的物质存在状态玻璃态:温度低,分子热运动能量低,分子链及链段的运动均处于冻结状态,弹性模量高,形变小,外力撤去后形变立即恢复高弹态:温度升高,热运动加剧,链段具有充分运动能力,模量小,形变大外力撤去后形变可恢复粘流态:自由体积进一步增大,链段协同运动加剧,在外力作用下分子链质心发生相对位移的运动占优势,具有明显的粘性流动特征,材料呈熔体状玻璃化转变:由玻璃态转变为高弹态,自由体积增大,链段运动解冻黏流转变:由高弹态转变为粘流态,链段可沿外力方向协同运动,分子链解缠结,分子质心发生相对位移分解温度:分解温度指处于粘流态的聚合物当温度进一步升高时,便会使分子链的降解加剧,升至使聚合物分子链明显降解时的温度为分解温度脆化温度:以具有一定能量的冲锤冲击试样时,当试样开裂几率达到50%时的温度称脆化温度自由体积:分子尺寸的空穴和堆砌形成的空隙分子占有体积:单个原子的振动体积,由原子的范德华半径和与原子振动有关的体积确定等自由体积理论:对不同高分子材料而言,发生玻璃化转变时自由体积分数的临界值基本相等,高分子材料的玻璃态为等自由体积状态自由体积膨胀系数:玻璃化转变温度前后玻璃态和高弹态聚合物的膨胀系数之差松弛过程:物质状态的时间演变过程松弛时间:松弛过程所用时间玻璃化转变的多维性:恒温下改变其他条件,如改变各向同性压力,外力作用频率等也能改变链段运动状态,引发玻璃化转变主转变:玻璃化转变,高分子结晶或熔融等涉及链段运动状态的改变次级转变:在温度,频率等外界条件变化时尺寸小于链段的小结构单元的运动也存在冻结或释放的状态变化,影响材料的性质拉伸应力:物体在被拉伸时产生的应力剪切应力:物体由于外因而变形时,在它内部任一截面的两方出现的相互作用力拉伸应变:物体在拉伸力作用下的形变剪切应变:物体在变形时截面上的形变模量:应力与应变的比例系数柔量:模量的倒数杨氏模量:拉伸时的应力与应变之比剪切模量:发生剪切应变时的应力与应变之比普弹性:小分子材料的弹性形变能力高弹性:高分子材料的弹性形变能力高弹形变:高分子材料在外力下发生的形变网链:在交联橡胶和处于高弹态的高分子材料内部,分子链之间存在着化学的和物理的交联点,使所有分子链构成一个大网络应变诱导结晶:在大拉伸比下产生诱导结晶,结晶度增大线性粘弹性:符合胡克定律的线性弹性和符合牛顿粘性定律的线性粘性的组合非线性粘弹性:不符合胡克定律的线性弹性和符合牛顿粘性定律的线性粘性的组合应力松弛:在恒温状态下拉伸,保持应变恒定,测试样内应力随时间增长逐渐降低松弛模量:应力松弛时应力与应变之比蠕变:蠕变是指在一定温度和恒定外力作用下,材料的形变随时间增大而逐渐增大的现象蠕变柔量:发生蠕变时形变与应力之比滞后现象:对一般粘弹性材料,应变比应力落后滞后角:滞后现象中应力与应变的相位差储能模量:粘弹性材料复数模量的实部,描述应力应变同位相的弹性形变损耗模量:粘弹性材料复数模量的虚部,描述应变落后应力π/2的粘性应变复数模量:应力与应变之比力学损耗:一个拉伸回缩周期中,单位体积材料所损耗的机械功损耗正切:储能模量与损耗模量之比Mexwell模型:由一个胡克弹簧和一个装有牛顿液体的黏壶串联组成,测量应力松弛Kelvin模型:由一个胡克弹簧和一个装有牛顿液体的黏壶并联组成,测蠕变四原件模型:由弹簧,Kelvin模型,黏壶串联而成,测未交联聚合物的实际蠕变情况广义Mexwell模型:将若干个具有不同松弛时间的Mexwell模型并联广义Kelvin模型:将若干个具有不同推迟时间的Kelvin模型串联松弛时间谱:不同松弛时间Ti的集合等温时效原理:对高分子材料的力学状态转变及力学松弛性能而言,外力作用时间和环境影响有等效作用Boltzmann叠加原理:对时间序列中一系列阶跃式应变或应力的输入,体系在即时t的应力或应变响应可以表示为不同时刻的一系列个别相应的线性叠加破坏:指材料在使用,储存状态下变形,破裂,疲劳乃至失去效用断裂:指外力作用下本体开裂成两个或多个碎片产生新表面疲劳:指长时间动态加载条件下发生的失效屈服:外力作用下,材料发生不可逆形变工程应力:拉力F除以式样原始截面积A真应力:式样拉伸过程中产生的真实应力拉伸强度:应力应变曲线到达断裂点时所受的应力断裂伸长率:应力应变曲线到达断裂点时发生的应变屈服强度:应力应变曲线到达极大值点时对应的应力屈服应变:应力应变曲线到达极大值点时对应的应变应变软化:越过屈服点后式样的应力略有下降细颈:发生应变软化时试样上某一局部会出现颈缩现象断裂能:拉伸试样直至断裂单位体积所消耗的能量脆韧转变温度:拉伸断裂强度和屈服强度两曲线交点对应的温度剪切屈服:试样在拉伸时出现颈缩现象,颈缩处出现45度的剪切屈服带拉伸屈服:在外力作用下,材料内部垂直于外力作用方向出现的微结构的撕裂,挣脱,位移,消耗形变能强迫高弹形变:在软玻璃态发生的大形变称为非晶聚合物的强迫高弹形变冷拉:结晶聚合物发生的强迫高弹变形应变硬化:冷拉伸结束后,再继续拉伸,应力将上升脆性断裂:断裂伸长率很小,拉应力作用下未发生屈服即断裂韧性断裂:断裂伸长率较大,拉应力作用下先发生屈服,而后在更大断裂伸长率下再发生断裂应力集中效应:缺陷的存在影响了材料内部应力分布的均匀性,应力会集中于细微裂纹的尖端理论强度:所有分子链单向有序排列,沿主链方向同时均匀受力,同时被拉断,这样求得的强度为理论强度实际强度:拉伸外力先克服次价键,使局部分子链滑脱,取向,伸直,再克服主价键,拉断分子链增强:使用化学法或物理方法提高材料的力学强度或其它性能临界弹性能释放速率:材料断裂韧性的一种度量抗冲击强度:标准式样在高速冲击作用下发生断裂时,单位断面面积所消耗的能量银纹:聚合物在张应力作用下,于某种材料某些薄弱部位出现应力集中而产生局部的塑性形变和取向,光线照射下呈现银白色光泽裂纹:材料在应力或环境(或两者同时)作用下产生的裂隙剪切屈服带:材料内部具有高度剪切应变的薄层,在应力作用下材料内部局部区域产生应变软化形成的环境应力开裂:指在外力与环境气氛共同作用下材料内部出现银纹,裂缝,空隙以至于性能下降而失效增韧:聚合物的增韧就是把聚合物的断裂方式由脆性断裂转变为韧性断裂溶胀:溶剂小分子渗透,扩散到高分子中间,削弱大分子间相互作用力,使体积膨胀溶解:大多数线型或支化高分子材料置于适当溶剂中并给予适当条件,就可溶解而成为高分子溶液溶胀比:溶胀后与溶胀前的体积之比溶胀平衡:当溶剂的渗入,膨胀作用与交联网的弹性回缩作用相等时,达到溶胀平衡内聚能密度:摩尔内聚能与摩尔体积之比溶解度参数:内聚能密度的平方根溶剂化作用:广义酸和碱相互作用产生溶剂化,使聚合物溶解理想溶液:溶液中各分子之间的相互作用能相等,溶解时无体积变化,与外界无热量交换无热溶液:溶解时与外界无热量交换Flory-Huuggins参数X12:高分子-溶剂相互作用参数,相当于把一个溶剂分子放到高分子体系中引起的能量变化偏摩尔自由能:在一定的温度压力和浓度下,向溶液中再加入1mol溶剂或溶质,体系中自由能的改变溶剂的稀释自由能:溶剂在溶液中的化学势与纯溶剂化学势的差值超额化学势:高分子溶液与理想溶液相比多出的化学势θ状态:某种条件下高分子溶液满足理想溶液的条件,称该状态为θ状态θ温度:θ状态时的温度θ溶剂:θ状态时的溶剂排除体积:高分子或链段在溶液中可有效地排除所有其他高分子或链段的体积数均分子量:按各级分分子的数量分数求平均重均分子量:按各级分分子的质量分数求平均粘均分子量:用粘度法测得的聚合物的分子量渗透压:用半透膜把溶剂与溶液隔开时发生渗透现象,到达平衡时半透膜两侧溶液产生的压力差第二virial系数:表征高分子稀溶液性质,判断溶剂优劣流变性:高分子液体流动时不同程度的发生弹性形变和弹性恢复,出现如挤出胀大,熔体破裂,法向应力差等弹性效应,称为流变性。