第1章-建筑声学基础
合集下载
第一章声学基本知识

1)物理量的初步描述: 波长入: 振动在一个周期的时间所传播的距离。
声波波长范围:1.7cm ------17m 频率 f :质点在单位时间作完全振动的次数。人耳所
能感觉到的频率大约在20——20000Hz之间 声速 C: 声波在单位时间所传播的距离。
12
■ 声速的大小与介质的物理性质、温度有关。 空气中: C=331+0要点
4、声音的计量—— 声功率、声强、声压、声功率级、
声强级、声压级、响度、总声级(重点是A声级)、
声压级的叠加。 5、频谱、倍频程的概念 6、声波的传播特点
声波的反射、绕射(衍射)(重点)、透射、声波 的聚焦、扩散及特点 7、人耳的听觉特性 声源的指向性、时差效应、双耳听闻效应、掩蔽效 应、音调和音色。
六个倍频带 音乐:63 125 250 500 1K 2K 4K 8K
八个倍频带 实验室精细研究: 125 ~ 4K 18个1/3倍频带 63 ~ 8K 24个1/3倍频带
46
47
48
三、 声源指向特性
1、定义: 声源辐射声能是空间方位的函数,此属性称为指 向性。
2、特点: 当声源尺寸L和声波波长之间的关系为: 1、L《入时:无方向性,声源可看作点声源,
(W,W)声功率不等于电功率。 40万人同时大声讲话——40W灯泡功率
2、声能密度D: 1)定义: 声场中单位体积的声能量。
符号:D 单位: J/m3 2)特点:标量。 3)运算:
28
3、声强I: 1)定义:单位时间通过垂直于声传播方向单位 面积的声能量。 2)特点:矢量。符号:I 单位:W/m2 3)运算:
((1) 《建筑物理》五校合编
刘加平 主编
(2)《建筑物理》 东南大学
声波波长范围:1.7cm ------17m 频率 f :质点在单位时间作完全振动的次数。人耳所
能感觉到的频率大约在20——20000Hz之间 声速 C: 声波在单位时间所传播的距离。
12
■ 声速的大小与介质的物理性质、温度有关。 空气中: C=331+0要点
4、声音的计量—— 声功率、声强、声压、声功率级、
声强级、声压级、响度、总声级(重点是A声级)、
声压级的叠加。 5、频谱、倍频程的概念 6、声波的传播特点
声波的反射、绕射(衍射)(重点)、透射、声波 的聚焦、扩散及特点 7、人耳的听觉特性 声源的指向性、时差效应、双耳听闻效应、掩蔽效 应、音调和音色。
六个倍频带 音乐:63 125 250 500 1K 2K 4K 8K
八个倍频带 实验室精细研究: 125 ~ 4K 18个1/3倍频带 63 ~ 8K 24个1/3倍频带
46
47
48
三、 声源指向特性
1、定义: 声源辐射声能是空间方位的函数,此属性称为指 向性。
2、特点: 当声源尺寸L和声波波长之间的关系为: 1、L《入时:无方向性,声源可看作点声源,
(W,W)声功率不等于电功率。 40万人同时大声讲话——40W灯泡功率
2、声能密度D: 1)定义: 声场中单位体积的声能量。
符号:D 单位: J/m3 2)特点:标量。 3)运算:
28
3、声强I: 1)定义:单位时间通过垂直于声传播方向单位 面积的声能量。 2)特点:矢量。符号:I 单位:W/m2 3)运算:
((1) 《建筑物理》五校合编
刘加平 主编
(2)《建筑物理》 东南大学
建筑声学1---基本知识要点20140118

例:在一自由声场中,距离面声源2m远的直达 声的声压级为65dB,则距声源4m处的声压级为: A. 65dB C. 61dB B. 63dB D.59dB
二、混响和混响时间计算公式
混响过程:对室内音质影响很大 声源停止后,室内声场逐渐被房间内表面所 吸收而消 失的过程。此过程与听音的质量关 系极大 。 停止发声→直达声→一次反射声→二次反、 射声→………… 多次反射声整个过程连续且 逐渐衰减——是一个逐渐衰减的混响过程.
2、定义响度级 A、 选定标准声音: 1000Hz(纯音)——Lp=50dB B、f1(2000Hz)(待测)——Lp=48dB
f2(100Hz) (待测)——Lp=59dB
他们的响度级都是: 50方 定义:某频率声音的响度级等于根据听力正 常的听音的听音判断为等响的1KHz 纯音的声压级。 单位: 方 1KHz的声压级为响度级
第二节 室内声学原理
一、自由声场(无反射)
(一)点声源观测点与声源的距离增加一倍,声压级
降低6dB。
Lp =Lw— 20lg r --11
(二)无限长的线声源观测点与声源的距离增 加一倍,声压级 降低3dB。 交通噪声观测点与声源的距离增加一倍, 声压级降低4dB。 (三)面声源观测点与声源的距离增加,声压 级不衰减。
生声扩散现象? A 凸曲面 C 平面 B 凹曲面 D 软界面
6、 (2006)两个声音传至人耳的时间差为多少 毫秒(ms)时,人们就会分辨出他们是断续的?
A 25ms
C 45ms
B 35ms
D 55ms
7、 (2005)低频声波在传播途径上遇到相对尺
寸较小的障板时,会产生下列哪种声现象? A 反射 C 扩散 答案:D B 干涉 D 绕射
建筑物理 +声学部分+《第1章:建筑声学基础知识》

0c 又称为介质的特性阻抗。
郑州华信学院
建筑物理
第1章 建筑声学
1.2.2 声功率级、声强级和声压级 人耳刚能听见的下限声强为10-12w/m2,相应的声压为 2×10-5N/m2;使人感到疼痛的上限声强为1w/m 2,相 应的声压为20N/m2。所以用声强和声压计量声音很难。 1.声功率级( LW ) 声功率级是声功率与基准功率之比的对数的10倍。记为 LW W LW 10 lg (dB) W0
郑州华信学院
建筑物理
第1章 建筑声学
2.声强级(LI ) 声强级是声强与基准声强之比的对数的10倍。记为 LI
I LI 10 lg I0
(dB)
郑州华信学院
建筑物理
第1章 建筑声学
3.声压级(Lp) 声压级是声压与基准声压之比的对数的20倍。记为 Lp
p L p 20 lg (dB) p0
郑州华信学院
建筑物理
第1章 建筑声学
1.1.4 声音的透射、反射和吸收
当声波入射到建筑构件(如墙、天花)时,声能的一部 分被反射,一部分透过构件,还有一部分被构件吸收。 根据能量守恒定律,若入射总声能为E0,反射的声能 为Eρ,构件吸收的声能为Eα,透过构件的声能为Eτ, 则互相间有如下的关系:
E0=E 十Eα十E τ
Lp LW 20lg r 8
郑州华信学院
建筑物理
第1章 建筑声学
1.4.2 室内声压级的计算
1.直达声、早期反射声及混响声。
1.直达声:是指声源直接到达接收点的声音。 2.早期反射声:一般指直达声到达以后,相对延 迟时间为50ms内到达的反射声。(对于音乐声可 放宽至80ms)。 3.混响声:在早期反射声之后陆续到达的,经过 多次反射后的声音统称为混响声。
1-建筑声学的基本知识 1

就会被分解成许多较小的反射声线,并且使传播的立 体角扩大,这种现象称之为扩散反射。适当的声波扩 散反射可以促进声音分布均匀,并可防止一些声学缺 陷的出现。
1-建筑声学的基本知识
• 扩散反射可分为完全扩散反射和部分扩散反射两 种。前者是将入射的声线均匀地向四面八方反射,即 反射的方向分布完全与入射方向无关;作后者是指反 射同时具有镜像和扩散两种性质,即部分镜像反射, 部分作扩散反射。
•
声源辐射声波时对外作功。声功率是指声源在单位时
间内向外辐射的声能,记作W,单位是瓦(W)或微瓦
(μW)。 是属于声源本身的一种特性。
声源种类 喷气飞机 汽锤 汽车 钢琴 女高音 对话
几种不同声源的声功率 声功率
10kW 1W 0.1W 2mw 1000-7200μW 20μW
1-建筑声学的基本知识
1-建筑声学的基本知识
• 第1章 建筑声 1 声音的物理性质
• 本节要点: • 1.
1-建筑声学的基本知识
• 1.1声音 声源 空气中的声波
声音是人耳所能感觉 到的“弹性”介质的振动, 是压力迅速而微小的起伏 变化。
声音产生于物质的振 动,例如扬声器的膜片、 拨动的琴弦等。这些振动 的物体称之为声源。
1-建筑声学的基本知识
• 二、声强级LI
•
声强级是声强与基准声强之比的对数的10倍,
记作LI,单位也是分贝(dB),可用下式表示:
I LI 10 lg I0
式中 I ——某点的声强,W/m2;
I 0 ——基准声强,10-12W/m2。
1-建筑声学的基本知识
• 三、声压级
•
声压级是声压与基准声压之比的对数乘以20,
• 应注意不同波长与扩散反射之间的关系
1-建筑声学的基本知识
• 扩散反射可分为完全扩散反射和部分扩散反射两 种。前者是将入射的声线均匀地向四面八方反射,即 反射的方向分布完全与入射方向无关;作后者是指反 射同时具有镜像和扩散两种性质,即部分镜像反射, 部分作扩散反射。
•
声源辐射声波时对外作功。声功率是指声源在单位时
间内向外辐射的声能,记作W,单位是瓦(W)或微瓦
(μW)。 是属于声源本身的一种特性。
声源种类 喷气飞机 汽锤 汽车 钢琴 女高音 对话
几种不同声源的声功率 声功率
10kW 1W 0.1W 2mw 1000-7200μW 20μW
1-建筑声学的基本知识
1-建筑声学的基本知识
• 第1章 建筑声 1 声音的物理性质
• 本节要点: • 1.
1-建筑声学的基本知识
• 1.1声音 声源 空气中的声波
声音是人耳所能感觉 到的“弹性”介质的振动, 是压力迅速而微小的起伏 变化。
声音产生于物质的振 动,例如扬声器的膜片、 拨动的琴弦等。这些振动 的物体称之为声源。
1-建筑声学的基本知识
• 二、声强级LI
•
声强级是声强与基准声强之比的对数的10倍,
记作LI,单位也是分贝(dB),可用下式表示:
I LI 10 lg I0
式中 I ——某点的声强,W/m2;
I 0 ——基准声强,10-12W/m2。
1-建筑声学的基本知识
• 三、声压级
•
声压级是声压与基准声压之比的对数乘以20,
• 应注意不同波长与扩散反射之间的关系
建筑物理-声学基本知识

2000Hz 4000Hz
1000Hz
4m
21
0.004
0.01
0.024
Architectural Acoustics
2019年3月8日星期五
第一章 建筑声学基本知识
室内声学原理 混响与混响时间
混响时间的意义及影响因素
• •
反映了声波在房间衰减的快慢程度; 大致反映了直达声与反射声的比例;
人耳的主观听觉特性 人耳的听闻范围
听觉过程:外耳——中耳——内耳——大脑 人耳对不同频率的声音的敏感程度不一样
•
对中、高频敏感;对低频不敏感
听闻范围
人耳所感觉的声音的大小称为响度
相同声压级,不同频率的声音,响度不同 • 相同频率,不同声压级的声音,响度不同 • 等响
•
响度
响度的单位为宋(sone)
线源声音随距离的衰减
无限长线声源:传播距离加倍,声压级降低 3 dB 有限长线声源:传播距离加倍,声压级降低 3~6 dB
面源声音随距离的衰减
近处:声能没有衰减 远处:传播距离加倍,声压级降低3~6dB
14
2019年3月8日星期五
Architectural Acoustics
第一章 建筑声学基本知识
声波的性质>>声波的折射 声波的折射
介质的温度、密度等条件发生变化后,会产生声传播的弯曲现象 温度的影响:
白天,地面附近的空气温度高,声波向上弯曲; 夜间,地面附近的空气温度低,声波向下弯曲
风的影响:
顺风时声波向下弯曲;逆风时向上弯曲
1000Hz
4m
21
0.004
0.01
0.024
Architectural Acoustics
2019年3月8日星期五
第一章 建筑声学基本知识
室内声学原理 混响与混响时间
混响时间的意义及影响因素
• •
反映了声波在房间衰减的快慢程度; 大致反映了直达声与反射声的比例;
人耳的主观听觉特性 人耳的听闻范围
听觉过程:外耳——中耳——内耳——大脑 人耳对不同频率的声音的敏感程度不一样
•
对中、高频敏感;对低频不敏感
听闻范围
人耳所感觉的声音的大小称为响度
相同声压级,不同频率的声音,响度不同 • 相同频率,不同声压级的声音,响度不同 • 等响
•
响度
响度的单位为宋(sone)
线源声音随距离的衰减
无限长线声源:传播距离加倍,声压级降低 3 dB 有限长线声源:传播距离加倍,声压级降低 3~6 dB
面源声音随距离的衰减
近处:声能没有衰减 远处:传播距离加倍,声压级降低3~6dB
14
2019年3月8日星期五
Architectural Acoustics
第一章 建筑声学基本知识
声波的性质>>声波的折射 声波的折射
介质的温度、密度等条件发生变化后,会产生声传播的弯曲现象 温度的影响:
白天,地面附近的空气温度高,声波向上弯曲; 夜间,地面附近的空气温度低,声波向下弯曲
风的影响:
顺风时声波向下弯曲;逆风时向上弯曲
第1章建筑声学基本知识

反射系数、透射系数、吸收系数; 隔声材料与吸声材料
第1章建筑声学基本知识
第二节 声音的计量 主要内容提要 声功率、声强和声压 声压级、声强级、声功率级及其
叠功率、声强和声压
1.声功率
声源辐射声波时对外作功,声功率是指声源在单位时间内向 外辐射的声能,记为W,单位为瓦(w)。声源声功率有时是指
声速、波长和频率有如下关系:C=λ*f 或C=λ/T
第1章建筑声学基本知识
当温度为0℃时,声波在不同介质中的速度为: 松木 3320 m/s 软木 500 m/s 钢 5000 m/s 水 1450m/s
声速不是质点振动的速度,而是振动状态传播的速度:它的 大小与振动的特性无关,而与介质的弹性、密度以及温度有 关。在空气中,声速与温度的关系如下:
6.声波的类型 波的传播过程中,空气质点的振动方向与波传播的方 向相平行,称为纵波。若介质质点的振动方向与波传 播的方向相垂直,则称为横波,如水的表面波。 根据介质的不同,声音可分为空气声和固体声 ,通过 空气传播的声音为空气声,通过固体传播的声音为固 体声。
第1章建筑声学基本知识
二、频率、波长与声速
任一点的声压都是随时间而不断变化的,每一 瞬间的声压称瞬时声压,某段时间内瞬时声压 的均方根值称为有效声压。
如未说明,通常所指的声压即为有效声压。
第1章建筑声学基本知识
声压与声强有着
密切的关系。在 自由声场中,某 处的声强与该处 声压的平方成正 比而与介质密度 与声速的乘积成 反比。
第1章建筑声学基本知识
第1章建筑声学基本知识
3. 如用小锤敲打音叉,音叉便会发生振动,并带动邻近的空 气发生振动,当音叉向某一方向振动时,便压缩其邻近的 空气发生振动,使之变密;当音叉向另一方向振动时,便 反向拉伸这一部分空气,使之变疏,从而导致上述部分空 气随着音叉的振动频率,产生一密一疏的周期变化,即形 成振动。而后,其又带动较远部分的空气亦随之发生振动, 使音叉的振动在空气中由近及远,向四面八方传播。
第1章建筑声学基本知识
第二节 声音的计量 主要内容提要 声功率、声强和声压 声压级、声强级、声功率级及其
叠功率、声强和声压
1.声功率
声源辐射声波时对外作功,声功率是指声源在单位时间内向 外辐射的声能,记为W,单位为瓦(w)。声源声功率有时是指
声速、波长和频率有如下关系:C=λ*f 或C=λ/T
第1章建筑声学基本知识
当温度为0℃时,声波在不同介质中的速度为: 松木 3320 m/s 软木 500 m/s 钢 5000 m/s 水 1450m/s
声速不是质点振动的速度,而是振动状态传播的速度:它的 大小与振动的特性无关,而与介质的弹性、密度以及温度有 关。在空气中,声速与温度的关系如下:
6.声波的类型 波的传播过程中,空气质点的振动方向与波传播的方 向相平行,称为纵波。若介质质点的振动方向与波传 播的方向相垂直,则称为横波,如水的表面波。 根据介质的不同,声音可分为空气声和固体声 ,通过 空气传播的声音为空气声,通过固体传播的声音为固 体声。
第1章建筑声学基本知识
二、频率、波长与声速
任一点的声压都是随时间而不断变化的,每一 瞬间的声压称瞬时声压,某段时间内瞬时声压 的均方根值称为有效声压。
如未说明,通常所指的声压即为有效声压。
第1章建筑声学基本知识
声压与声强有着
密切的关系。在 自由声场中,某 处的声强与该处 声压的平方成正 比而与介质密度 与声速的乘积成 反比。
第1章建筑声学基本知识
第1章建筑声学基本知识
3. 如用小锤敲打音叉,音叉便会发生振动,并带动邻近的空 气发生振动,当音叉向某一方向振动时,便压缩其邻近的 空气发生振动,使之变密;当音叉向另一方向振动时,便 反向拉伸这一部分空气,使之变疏,从而导致上述部分空 气随着音叉的振动频率,产生一密一疏的周期变化,即形 成振动。而后,其又带动较远部分的空气亦随之发生振动, 使音叉的振动在空气中由近及远,向四面八方传播。
建筑声学 复习资料

Lp 20lg
np p 20lg 10lg n p0 p0
•两个相等的声压级叠加
L = 3 dB
响度级:表示声音的强弱。
以1000Hz的纯音作为标准音,它在丌同声压级条件下 响度丌同,将待测纯音不他比较,二者听起来同样响时 ,该1000Hz纯音的声压级值就定义为待测声音的“响度 级”,单位是”方”(phon)。
• 当房间容积越大,界面吸声量越小时,每次反射经 过的路程就越长,声音衰发就越慢,混响时间越长 ; • 赛宾公式应用亍 差; 的情况,否则将产生较大的误
0.2
2. 依林公式
0.161V T60 S ln(1 )
式中: V——房间容积,m3; S——室内总表面积,m2; ——室内表面平均吸声系数。 S和 计算方法同上。
代入依林公式得 查表得
=0.197 ln(1 ) =0.178
附表
室内声压级计算不混响半径
1. 室内声压级计算
当一点声源在室内连续収声时,假定声场充分扩散,则利用 以下的稳态声压级公式计算离开声源丌同距离处的声压级,即 或
Q 4 Q 4 L p 10 lg W 10 lg( ) 120 L p LW 10 lg( ) 2 2 4r R 4r R Lw -声源的声功率级,dB; W -声源声功率,W; r -离开声源的距离,m; R-房间常数, R S , m2; 1 S-室内总表面积,m2; -室内平均吸声系数; Q-声源指向性因数,叏决亍声源不接收点的相对关系。
Lp 10 lg 0.00034 10 lg(
1 4 ) 120 58.7 dB 2 4 r 1869
混响半径:
r 0 0.14 RQ 6m
[建筑声学] 第1讲 声学基本知识
![[建筑声学] 第1讲 声学基本知识](https://img.taocdn.com/s3/m/6ad09b005f0e7cd1842536dc.png)
一、振动与声波
【 声 音 的 产 生 与 传 播 】
• 2、振动在空气中的传播——声波 • 必须注意:声波的传播是能量的传递,而非质点的 转移。空气质点总是在其平衡点附近来回振动,而 不传向远处。
一、振动与声波
【 声 音 的 产 生 与 传 播 】
• 2、振动在空气中的传播——声波
• 纵波 — 质点的振动方向与传播方向一致的波。
【 声 音 的 产 生 与 传 播 】
皇穹宇
四、声波的反射和扩散
【 声 音 的 产 生 与 传 播 】
• 回音壁
四、声波的反射和扩散
【 声 音 的 产 生 与 传 播 】
• 三音石
五、声波的绕射(衍射)
【 声 音 的 产 生 与 传 播 】
• 绕射(衍射)
五、声波的绕射(衍射)
【 声 音 的 产 生 与 传 播 】
• 每一瞬间的声压叫瞬时声压,某段时间内瞬时 声压的平均值称为有效声压,用它的均方根值 来表示。
一、声功率、声强、声压
【 声 音 的 计 量 与 听 觉 特 性 】
• 声强与声压的平方成正比。
I
p
2
c
0
二、声强级、声压级、声功率级
【 声 音 的 计 量 与 听 觉 特 性 】
• 由于以下两个原因,实际应用中,表示声音强 弱的单位并不采用声压或声功率的绝对值,而 采用相对单位——级(类似于风级、地震级)。 • 1)声压对人耳感觉的变化非常大。
• 注意:① 声功率所指的频率范围。 ② 声功率≠电功率
一、声功率、声强、声压
【 声 音 的 计 量 与 听 觉 特 性 】
• 声强是指在单位时间内在垂直于声波传播方向 的单位面积上的所通过的声能,记作 I ,单位 是 w/m2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇: 建筑声学
当前建筑设计中经常遇到的若干声学问题
1、大量住宅建设中的隔声问题 2、各类厅堂中的室内音质问题
3、轻薄结构和预制构件带来的隔声新问题
4、现代化建筑中大量采用各种机械设备,使噪声源 增多,噪声增大,尤其在高层建筑中,机房条件 受限制,将如何处理好这类问题。
5、城市环境噪声日益严重,如何从规划和总体设计 及管理上加以改善。
声波在弹性介质中传播的速度称为声速,记为c,单 位是米每秒(m/s)。它的大小与质点振动的特性无关,而 与介质的状态、密度及温度有关。声波在不同的介质中的 传播速度也不相同。通常室温下(15oC),空气中的声速为 340m/s,在0℃时,C钢=5000m/s, C水=1450m/s。
声速、波长和频率之间有如下关系: c f
当声波通过弹性介质传播时,介质质点在其平 衡位置附近作来回振动。一次完全振动所需的时
间称为周期,记为T ,单位是秒(s)。质点在1s内 完成完全振动的次数称为频率,记作f,单位为赫
兹(Hz),它是周期的倒数,即:
f 1 T
第一节 声音的基本性质
§2 声音的物理性质
一、声波的频率、波长与声速
声波在其传播途径上,相邻两个同相位质点之间的 距离称为波长,记为λ,单位是米(m)。或者说,波长是 声波在每一次完全振动周期中所传播的距离。
第一节 声音的基本性质 §1 声音的产生
声音、声波和声源
第一节 声音的基本性质 §1 声音的产生
声音、声波和声源
声音的产生于物质的振动,如扬声器的膜片,这些振动的 物体,称之为声源 声音的传播,需要一定的介质(空气声、固体声)
第一节 声音的基本性质 §2 声音的物理性质
一、声波的频率、波长与声速
6、建筑设计中重造型,轻功能的倾向,带来许多与 声学要求相违的后果!!!
20世纪中有过几次重大建筑声学事故!
重大失败事故[之一]
纽约林肯文化中心,是美国二战以后规模最大的文化建设项目, 由5座演艺建筑组成,其最后建成也是最重要的一座音乐厅 (2644座),于1962年建成。
Leo Beranek(流专家改造,由于先天不足, 虽在1975年除保留结构外,全部拆除重建,音质有明显改善, 但仍落得B级水平。
●其中一个主要原因,建筑师不重视科学,不尊重声学顾问的意见 当然建筑声学本身也存在一些未知因素。
重大失败事故[之二]
●曾被誉为20世纪最佳建筑之一的悉尼歌剧院中音乐厅(2679座) 历时15年,造价超出预算11倍 (1973年完工)。政府已无力支付, 以发行债券向市民集资来完成。但澳洲人以此地标性建筑闻名 于世而感到骄傲。
一、声音的基础知识
1.声音的产生,声音的传播特性,声音的频谱与指向性 2.人对声音的感知和评价,人的听觉特性
二、吸声知识(实现两大任务的手段)
1.各种吸声材料和构造的吸声特性 2.特殊的吸声形式,吸声材料的发展趋势
三、隔声知识(实现两大任务的手段)
1.空气声的隔绝 2.撞击声的隔绝
四、噪声控制(建筑声学目标之一)
约恩·伍重
●但由于音质不佳,而又未能改进,长期来为音乐界 所抱怨,乃至引发悉尼交响乐团抵制在该厅演出。 (见人民日报报导)
学习难点:
声学设计与室内设计(建筑设计)的结合; 一个成功的设计应该在声学、美观方面结合得很好 。
建筑师要重视建筑声学!
建筑声学的目的
噪声控制:
创造安静的环境,降低、隔绝和控制不需要的声音
中频声
频率
31.25 Hz
低频声
高频声
第一节 声音的基本性质
§2 声音的物理性质
二、频带 不同频率的声音,声学特性各不相同
给出每个频率的信息,不仅工作量太大,显然也没必要
将声音的频率范围划分成若干区段,称为频带
最常用的是以倍频带和1/3倍频带分类
倍 频 带 中 心 频 率 为 31.5 、 63 、 125 、 250 、 500 、 1000 、 2000、4000、8000和16000Hz。1/3倍频带则是在倍频带 中间再插入两个值,可以满足较高精度的要求。测量和 报告中最常用的倍频程介于125~4000Hz之间。人类语言 频率范围在500~4000Hz之间
1.噪声评价(制定相关法律法规的依据) 2.噪声控制(室内、环境噪声)
五、音质设计(建筑声学目标之二)
1.音质评价(确定设计的目标) 2.音质设计内容(过程)
第一章 声音的基础知识
本节要点:
第一节:声音的基本性质
第二节:声音的计量
第三节:声音的传播特性§1 声音的产生
第四节:声音的频谱和声§源2 的声指音的向物性理性质
➢频率、波长和声速
第五节:人的主观听觉特➢性频带
第一节 声音的基本性质
§1 声音的产生
声音、声波和声源
声音:是人耳所感觉到的空气压力迅速而微小的起伏变化
•随着活塞的不断的来回的振 动,它的两侧就形成了疏密相 间的质点层,这个质点层会逐 步的向远处传播,这就是声波。
•对于声波而言,当声源发生 后,必须经过一定的介质,才 能向外传播。
三、隔声知识(实现两大任务的手段)
1.空气声的隔绝 2.撞击声的隔绝
四、噪声控制(建筑声学目标之一)
1.噪声评价(制定相关法律法规的依据) 2.噪声控制(室内、环境噪声)
五、音质设计(建筑声学目标之二)
1.音质评价(确定设计的目标) 2.音质设计内容(过程)
某城市小区噪声分析
某大礼堂室内声学分析
第一节 声音的基本性质 §2 声音的物理性质
一、声波的频率、波长与声速
第一节 声音的基本性质 §2 声音的物理性质
一、声波的频率、波长与声速
第一节 声音的基本性质
§2 声音的物理性质
二、频带 人耳可以听见范围为 20 ~ 20000Hz
人耳听不见的范围
20 Hz 以下:次声
20000 Hz 以上:超声
音质设计:
提供良好的听闻环境,满意的音质
建筑声学的研究内容
声音的传递方式
声源
媒质
接收器
耳膜的振动让人听到声音
一、声音的基础知识
1.声音的产生,声音的传播特性,声音的频谱与指向性 2.人对声音的感知和评价,人的听觉特性 3.声音的计量
二、吸声知识(实现两大任务的手段)
1.各种吸声材料和构造的吸声特性 2.特殊的吸声形式,吸声材料的发展趋势
当前建筑设计中经常遇到的若干声学问题
1、大量住宅建设中的隔声问题 2、各类厅堂中的室内音质问题
3、轻薄结构和预制构件带来的隔声新问题
4、现代化建筑中大量采用各种机械设备,使噪声源 增多,噪声增大,尤其在高层建筑中,机房条件 受限制,将如何处理好这类问题。
5、城市环境噪声日益严重,如何从规划和总体设计 及管理上加以改善。
声波在弹性介质中传播的速度称为声速,记为c,单 位是米每秒(m/s)。它的大小与质点振动的特性无关,而 与介质的状态、密度及温度有关。声波在不同的介质中的 传播速度也不相同。通常室温下(15oC),空气中的声速为 340m/s,在0℃时,C钢=5000m/s, C水=1450m/s。
声速、波长和频率之间有如下关系: c f
当声波通过弹性介质传播时,介质质点在其平 衡位置附近作来回振动。一次完全振动所需的时
间称为周期,记为T ,单位是秒(s)。质点在1s内 完成完全振动的次数称为频率,记作f,单位为赫
兹(Hz),它是周期的倒数,即:
f 1 T
第一节 声音的基本性质
§2 声音的物理性质
一、声波的频率、波长与声速
声波在其传播途径上,相邻两个同相位质点之间的 距离称为波长,记为λ,单位是米(m)。或者说,波长是 声波在每一次完全振动周期中所传播的距离。
第一节 声音的基本性质 §1 声音的产生
声音、声波和声源
第一节 声音的基本性质 §1 声音的产生
声音、声波和声源
声音的产生于物质的振动,如扬声器的膜片,这些振动的 物体,称之为声源 声音的传播,需要一定的介质(空气声、固体声)
第一节 声音的基本性质 §2 声音的物理性质
一、声波的频率、波长与声速
6、建筑设计中重造型,轻功能的倾向,带来许多与 声学要求相违的后果!!!
20世纪中有过几次重大建筑声学事故!
重大失败事故[之一]
纽约林肯文化中心,是美国二战以后规模最大的文化建设项目, 由5座演艺建筑组成,其最后建成也是最重要的一座音乐厅 (2644座),于1962年建成。
Leo Beranek(流专家改造,由于先天不足, 虽在1975年除保留结构外,全部拆除重建,音质有明显改善, 但仍落得B级水平。
●其中一个主要原因,建筑师不重视科学,不尊重声学顾问的意见 当然建筑声学本身也存在一些未知因素。
重大失败事故[之二]
●曾被誉为20世纪最佳建筑之一的悉尼歌剧院中音乐厅(2679座) 历时15年,造价超出预算11倍 (1973年完工)。政府已无力支付, 以发行债券向市民集资来完成。但澳洲人以此地标性建筑闻名 于世而感到骄傲。
一、声音的基础知识
1.声音的产生,声音的传播特性,声音的频谱与指向性 2.人对声音的感知和评价,人的听觉特性
二、吸声知识(实现两大任务的手段)
1.各种吸声材料和构造的吸声特性 2.特殊的吸声形式,吸声材料的发展趋势
三、隔声知识(实现两大任务的手段)
1.空气声的隔绝 2.撞击声的隔绝
四、噪声控制(建筑声学目标之一)
约恩·伍重
●但由于音质不佳,而又未能改进,长期来为音乐界 所抱怨,乃至引发悉尼交响乐团抵制在该厅演出。 (见人民日报报导)
学习难点:
声学设计与室内设计(建筑设计)的结合; 一个成功的设计应该在声学、美观方面结合得很好 。
建筑师要重视建筑声学!
建筑声学的目的
噪声控制:
创造安静的环境,降低、隔绝和控制不需要的声音
中频声
频率
31.25 Hz
低频声
高频声
第一节 声音的基本性质
§2 声音的物理性质
二、频带 不同频率的声音,声学特性各不相同
给出每个频率的信息,不仅工作量太大,显然也没必要
将声音的频率范围划分成若干区段,称为频带
最常用的是以倍频带和1/3倍频带分类
倍 频 带 中 心 频 率 为 31.5 、 63 、 125 、 250 、 500 、 1000 、 2000、4000、8000和16000Hz。1/3倍频带则是在倍频带 中间再插入两个值,可以满足较高精度的要求。测量和 报告中最常用的倍频程介于125~4000Hz之间。人类语言 频率范围在500~4000Hz之间
1.噪声评价(制定相关法律法规的依据) 2.噪声控制(室内、环境噪声)
五、音质设计(建筑声学目标之二)
1.音质评价(确定设计的目标) 2.音质设计内容(过程)
第一章 声音的基础知识
本节要点:
第一节:声音的基本性质
第二节:声音的计量
第三节:声音的传播特性§1 声音的产生
第四节:声音的频谱和声§源2 的声指音的向物性理性质
➢频率、波长和声速
第五节:人的主观听觉特➢性频带
第一节 声音的基本性质
§1 声音的产生
声音、声波和声源
声音:是人耳所感觉到的空气压力迅速而微小的起伏变化
•随着活塞的不断的来回的振 动,它的两侧就形成了疏密相 间的质点层,这个质点层会逐 步的向远处传播,这就是声波。
•对于声波而言,当声源发生 后,必须经过一定的介质,才 能向外传播。
三、隔声知识(实现两大任务的手段)
1.空气声的隔绝 2.撞击声的隔绝
四、噪声控制(建筑声学目标之一)
1.噪声评价(制定相关法律法规的依据) 2.噪声控制(室内、环境噪声)
五、音质设计(建筑声学目标之二)
1.音质评价(确定设计的目标) 2.音质设计内容(过程)
某城市小区噪声分析
某大礼堂室内声学分析
第一节 声音的基本性质 §2 声音的物理性质
一、声波的频率、波长与声速
第一节 声音的基本性质 §2 声音的物理性质
一、声波的频率、波长与声速
第一节 声音的基本性质
§2 声音的物理性质
二、频带 人耳可以听见范围为 20 ~ 20000Hz
人耳听不见的范围
20 Hz 以下:次声
20000 Hz 以上:超声
音质设计:
提供良好的听闻环境,满意的音质
建筑声学的研究内容
声音的传递方式
声源
媒质
接收器
耳膜的振动让人听到声音
一、声音的基础知识
1.声音的产生,声音的传播特性,声音的频谱与指向性 2.人对声音的感知和评价,人的听觉特性 3.声音的计量
二、吸声知识(实现两大任务的手段)
1.各种吸声材料和构造的吸声特性 2.特殊的吸声形式,吸声材料的发展趋势