外文翻译
毕设外文翻译是什么意思(两篇)

引言概述:在现代高等教育中,毕业设计(或称为毕业论文、学士论文等)是学生完成学业的重要环节。
而对于一些特定的专业,例如翻译专业,有时候还需要完成外文翻译这一项任务。
本文将探讨毕设外文翻译的意义和目的,以及为什么对翻译专业的学生而言这一任务极其重要。
正文内容:1.提高翻译能力和技巧外文翻译是一项对翻译专业学生而言十分重要的任务,通过进行外文翻译,学生们可以通过实践提高自己的翻译能力和技巧。
在这个过程中,他们可以学习如何处理不同类型的外文文本,熟悉不同领域的专业术语,并掌握一些常用的翻译技巧和策略。
2.扩展语言和文化知识毕设外文翻译要求学生们对翻译语言的相关知识和背景有一定的了解。
在进行翻译时,学生们需要遵循目标语言的语法规则,并确保所翻译的内容准确、清晰地传达源语言的意义。
通过这一过程,学生们可以进一步扩展自己的语言和文化知识,提高自己的跨文化沟通能力。
3.提供实践机会毕设外文翻译为学生们提供了一个实践的机会,让他们能够将在课堂上所学到的理论知识应用于实际操作中。
通过实践,学生们可以对所学知识的理解更加深入,同时也可以发现并解决实际翻译过程中的问题和挑战。
这对于学生们将来从事翻译工作时具备更好的实践能力和经验具有重要意义。
4.培养翻译专业素养毕设外文翻译要求学生们具备良好的翻译专业素养。
在进行翻译过程中,学生们需要保持专业的态度和责任心,严谨地对待每一个翻译任务。
他们需要学会如何进行翻译质量的评估和控制,以确保最终翻译稿的准确性和流畅性。
这一系列的要求和实践,可以帮助学生们培养出色的翻译专业素养。
5.提升自我学习和研究能力毕设外文翻译要求学生们进行广泛的文献阅读和研究,以便更好地理解所翻译的内容,并找到适当的翻译方法和策略。
在这个过程中,学生们需要培养自己的自主学习和研究能力,提高对学术和专业领域的敏感性,并能够独立思考和解决问题。
这将对学生们未来的学术研究和进一步的职业发展产生积极的影响。
总结:引言概述:毕业设计外文翻译(Thesis Translation)是指在毕业设计过程中,对相关外文文献进行翻译,并将其应用于研究中,以提供理论支持和参考。
外文翻译 - 英文

The smart gridSmart grid is the grid intelligent (electric power), also known as the "grid" 2.0, it is based on the integration, high-speed bidirectional communication network, on the basis of through the use of advanced sensor and measuring technology, advanced equipme nt technology, the advancedcontrol method, and the application of advanced technology of decision support system, realize the power grid reliability, security, economic, efficient, environmental friendly and use the security target, its main features include self-healing, incentives and include user, against attacks, provide meet user requirements of power quality in the 21st century, allow all sorts of different power generation in the form of access, start the electric power market and asset optimizatio n run efficiently.The U.S. department of energy (doe) "the Grid of 2030" : a fully automated power transmission network, able to monitor and control each user and power Grid nodes, guarantee from power plants to end users among all the nodes in the whole process of transmission and distribution of information and energy bi-directional flow.China iot alliance between colleges: smart grid is made up of many parts, can be divided into:intelligent substation, intelligent power distribution network, intelli gent watt-hourmeter,intelligent interactive terminals, intelligent scheduling, smart appliances, intelligent building electricity, smart city power grid, smart power generation system, the new type of energy storage system.Now a part of it to do a simple i ntroduction. European technology BBS: an integration of all users connected to the power grid all the behavior of the power transmission network, to provide sustained and effective economic and security of power.Chinese academy of sciences, institute of electrical: smart grid is including all kinds of power generation equipment, power transmission and distribution network, power equipment and storage equipment, on the basis of the physical power grid will be modern advanced sensor measurement technology, network technology, communicationtechnology, computing technology, automationand intelligent control technology and physical grid highly integrated to form a new type of power grid, it can realize the observable (all the state of the equipment can monitor grid), can be controlled (able to control the power grid all the state of the equipment), fully automated (adaptive and self-healing) and system integrated optimization balance (power generation, transmission and distribution, and the optimization of the balance between electricity), so that the power system is more clean, efficient, safe and reliable.American electric power research institute: IntelliGrid is a composed of numerous automation system of power transmission and distribution power system, in a coordinated, effective and reliable way to achieve all of the power grid operation: have self-healing function;Rapid response to the electric power market and enterprise business requirements;Intelligent communication architecture, realizes the real-time, security, and flexible information flow, to provide users with reliable, economic power services. State grid electric power research institute, China: on the basis of the physical power grid (China's smart grid is based on high voltage network backbone network frame, different grid voltage level based on the coordinated development of strong power grid), the modern advanced sensor measurement technology, communication technology, information technology, computer technology and control technology and the physical power grid highly integrated to form a new type of power grid.It to fully meet user demand for electricity and optimize the allocation of resources, guarantee the safety, reliability and economy of power supply, meet environmental constraints, ens ure the quality of electric energy, to adapt to the development of power market, for the purpose of implementing the user reliable, economic, clean and interactive power supply and value-added services.BackgroundStrong smart grid development in the wor ld is still in its infancy, without a common precisely defined, its technology can be roughly divided into four areas: advanced Measurement system, advanced distribution operation, advanced transmission operation and advanced asset management.Advanced meas urement system main function is authorized to the user, make the system to establish a connection with load, enabling users to support the operationof the power grid;Advanced core distribution operation is an online real-time decision command, goal is to disaster prevention and control, realizing large cascading failure prevention;Advanced transmission operation main role is to emphasize congestion ma nagement and reduce the risk of the large-scale railway;Advanced asset management is installed in the system can provide the system parameters and equipments (assets) "health" condition of advanced sensor, and thereal-time information collected by integrat ion and resource management, modeling and simulation process, improve the operation and efficiency of power grid.The smart grid is an important application of Internet of things, and published in the journal of computer smart grid information system archit ecture research is carried on the detailed discussion on this, and the architecture of the smart grid information system are analyzed.The market shareThe establishment of the smart grid is a huge historical works.At present many complicated smart grid project is underway, but the gap is still great.For the provider of the smart grid technology, promote the development of facing the challenges of the distribution network system i s upgrading, automation and power distribution substation transportation, smart grid network and intelligent instruments.According to the latest report of parker investigators, smart grid technology market will increase from $2012 in 33 billion to $2020 in 73 billion, eight years, the market accumulated up to $494 billion.China smart grid industry market foresight and investment forward-looking strategic planning analysis, points out that in our country will be built during the "twelfth five-year""three vertical and three horizontal and one ring" of uhv ac lines, and 11 back to u hv dc transmission project construction, investment of 300 billion yuan.Although during the period of "much starker choices-and graver consequences-in" investment slowed slightly, the investment is 250 billion yuan.By 2015, a wide range of national power grid, long distance transmission capacity will reach 250 million kilowatts, power transmission of 1.15 trillion KWH per year, to support the new 145 million kilowatts of clean energy generation given and sent out, can satisfy the demand of morethan 1 million electric cars, a grid resource configuration optimization ability, economic efficiency, safety and intelligent levels will be fully promoted.The abroad application of analysisIn terms of power grid development foundation, national electricity dema nd tends to be saturated, the grid after years of rapid development, architecture tends to be stable, mature, have a more abundant supply of electric power transmission and distribution capacity.Germany has "E - Energy plan, a total investment of 140 million euros, from 2009 to 2012, four years, six sites across the country to the smart grid demonstration experiment.At the same time also for wind power and electric car empirical experiments, testing and management of power consumption of the Internet.Big companies such as Germany's Siemens, SAP and Swiss ABB are involved in this plan.To smart grid Siemens 2014 annual market scale will reach 30 billion euros, and plans to take a 20% market share, make sure order for 6 billion euros a year.The advanced nat ureCompared with the existing grid, smart grid, reflects the power flow, information flow and business flow marked characteristics of highly integration, its advancement and advantage mainly displays in:(1) has a strong foundation of grid system and te chnical support system, able to withstand all kinds of external disturbance and attacks, can adapt to large-scale clean energy and renewable energy access, strong sex of grid reinforced and ascend.(2) the information technology, sensor technology, automatic control technology organic combination with power grid infrastructure, a panoramic view of available power grid information, timely detection, foresee the possibility of failure.Fault occurs, the grid can be quickly isolate fault,realize self recovery,to avoid the occurrence of blackouts.(3) flexible ac/dc transmission, mesh factory coordination, intelligent scheduling, power storage, and distribution automation technology widespread application, makes the control of power grid operation more flexibl e,economic, and can adapt to a large number of distributed power supply, power grid and electric vehicle charging and discharging facility access.(4) communication, information, and the integrated use of modern management technology, will greatly improve the efficiency of power equipment, and reduce the loss of electrical power, making the operation of power grid is more economic and efficient.(5) the height of the real-time and non real-time information integration, sharing and utilization, to run the show management comprehensive, complete and fine grid operation state diagram, at the same time can provide decision support, control scheme and the corresponding response plans.(6) to establish a two-way interactive service mode, users can real-time understand the status of the power supply ability, power quality, price and power outage information, reasonable arrangement of electric equipment use;The electric power enterprise can obtain the user's electricity information in detail, to provide more value-added services.developmentaltrend"Twelfth five-year" period, the state grid will invest 500 billion yuan to build the connection of large ene rgy base and center of the "three horizontal three longitudinal" main load of ultra high voltage backbone network frame and 13 back to long branch, engineering, to form the core of the world first-class strong smart grid."Strong smart grid technology standards promulgated by the state grid system planning", has been clear about the strong smart grid technology standards roadmap, is the world's first used to guide the development of smart grid technology guiding standards.SGC planning is to built 2015 basic information, automation, interaction characteristics of strong smart grid, formed in north China, central China, east China, for the end to the northwest and northeast power grid for sending the three synchronous power grid, the grid resource allocati on ability, economic efficiency and safety level, technology level and improve intelligent level.(1) the smart grid is the inevitable developing trend ofpower grid technology.Such as communication, computer, automation technology has extensive applicati on in the power grid, and organic combination with traditional electric power technology, and greatly improve the intelligent level of the power grid.Sensor technology and information technology application in the power grid, the system state analysis and auxiliary decision provides the technical support, make it possible to grid self-healing.Scheduling technology, automation technology and the mature development of flexible transmission technology, for the development and utilization of renewable energy an d distributed power supply provides the basic guarantee.The improvement of the communication network and the popularization and application of user information collection technology, promote the two-way interaction with users of the grid.With the further development of various new technologies, application and highly integrated with the physical power grid, smart grid arises at the historic moment.(2) the development of smart grid is the inevitable choice of social and economic development.In order to ach ieve the development of clean energy, transport and given power grid must increase its flexibility and compatibility.To withstand the increasingly frequent natural disasters and interference, intelligent power grid must rely on means to improve its securit y defense andself-healing ability.In order to reduce operating costs, promote energy conservation and emissions reduction, power grid operation must be more economic and efficient, at the same time must to intelligent control of electric equipment, reduce electricity consumption as much as possible.Distributed generation and energy storage technology and the rapid development of electric cars, has changed the traditional mode of power supply, led power flow, information flow, business flow constantly fusion, in order to satisfy the demands of increasingly diverse users.PlanJapan plans to all the popularity of smart grid in 2030, officer of the people at the same time to promote the construction of overseas integrated smart grid.In the field of battery, Japanese firms' global market share goal is to strive to reach 50%, with about 10 trillion yen in the market.Japan's trade ministry has set up a "about the next generation of energy systems international standardizationresearch institute", the japan-american established in Okinawa and Hawaii for smart grid experimental project [6].Learns in the itu, in 2020 China will be built in high power grid with north China, east China, China as the center, northeast, northwest 750 kv uhv power grid as the sending, connecting each big coal base, large hydropower bases, big base for nuclear power, renewable energy base, the coordinated development of various grid strong smart grid.In north China, east China, China high voltage synchronous ZhuWangJia six "five longitudi nal and transverse" grid formation.The direction ofIn the green energy saving consciousness, driven by the smart grid to become the world's countries to develop a focus areas.The smart grid is the electric power network, is a self-healing, let consum ers to actively participate in, can recover from attacks and natural disasters in time, to accommodate all power generation and energy storage, can accept the new product, service and market, optimize asset utilization and operation efficiency, provide qua lity of power supply for digital economy.Smart grid based on integrated, high-speed bidirectional communication network foundation, aims to use advanced sensor and measuring technology, advanced equipment, technology and advanced control methods, and adv anced technology of decision support system, realize the power grid reliability, security, economic, efficient, environmental friendly, and the use of safe run efficiently.Its development is a gradual progressive evolution, is a radical change, is the product of the coordinated development of new and existing technologies, in ad dition to the network and smart meters also included the wider range.Grid construction in high voltage network backbone network frame, all levels of the coordinated development, informatization, automation, interaction into the characteristics of strong smart grid, improve network security, economy, adaptability and interactivity, strength is the foundation, intelligence is the key.meaningIts significance is embodied in the foll owing aspects:(1) has the strong ability of resources optimization allocation.After the completion of the smart grid in China, will implement the big water and electricity, coal, nuclear power, large-scale renewable energy across regions, long distance, large capacity, low loss, high efficiency, regional power exchange capacity improved significantly.(2) have a higher level of safe and stable operation.Grid stability and power supply reliability will be improved, the safety of the power grid close coord ination between all levels of line, have theability to against sudden events and serious fault, can effectively avoid the happening of a wide range of chain failure, improve power supply reliability, reduce the power loss.(3) to adapt and promote the dev elopment of clean energy.Grid will have wind turbines power prediction and dynamic modeling, low voltage across, and active reactive power control and regular units quickly adjust control mechanism, combined with the application of large capacity storage technology, the operation control of the clean energy interconnection capacity will significantly increased, and make clean energy the more economical, efficient and reliable way of energy supply.(4)implementing highly intelligent power grid scheduling.Co mpleted vertical integration, horizontal well versed in the smart grid scheduling technology support system, realize the grid online intelligent analysis, early warning and decision-making, and all kinds of new transmission technology and equipment of effi cient control and lean control of ac/dc hybrid power grid.(5)can satisfy the demands of electric cars and other new type electric power user services.Would be a perfect electric vehicle charging and discharging supporting infrastructure network, can meet the needs of the development of the electric car industry, to meet the needs of users, realize high interaction of electric vehicles and power grid.(6) realize high utilization and whole grid assets life cycle management.Can realize electric grid system of the whole life cycle management plan.Through smart grid scheduling and demand side management, power grid assets utilization hours, power grid assets efficiency improvedsignificantly.(7) to realize power convenient interaction between the user and the grid.Will form a smart electricity interactive platform, improving the demand side management, to provide users with high-quality electric power service.At the same time, the comprehensive utilization of the grid can be distributed power supply, intelli gent watt-hour meter, time-sharing electricity price policy and the electric vehicle charging and discharging mechanism, effectively balance electric load, reduce the peak valley load difference, reduce the power grid and power construction costs.(8)grid management informatization and the lean.Covering power grid will each link of communication network system, realize the power grid operation maintenance integrated regulation, data management, information grid spatial information services, and production and scheduling application integration, and other functions, to realize all-sided management informatization and the lean.(9) grid infrastructure of value-added service potential into full play.In power at the same time, the national strategy of "triple play" of services, to provide users with community advertising, network television, voice and other integrated services, such as water supply, heating, gas industry informatization, interactive platform support, expand the range of value-added services and improve the grid infrastructure and capacity, vigorously promote the development of smart city.(10)Gridto promote the rapid development of related industries.Electric power industry belongsto the capital-intensive and technology-intensive industry, has the characteristics of huge investment, long industrial chain.Construction of smart grid, which is beneficial to promote equipment manufacturing information and communication industry technology upgrade, for our country to occupy the high ground to lay the foundation in the field of electric power equipment manufacturing.Important significanceLife is convenientThe construction of strong smart grid, will promote the development of intelligent community, smart city, improve people's quality of life.(1) to make life more convenient.Home intelligent power system can not onlyrealize the real-time control of intelligent home appliances such as air conditioning, water heater and remote control;And can provide telecommunication network, Internet, radio and television network access services;Through intelligent watt-hour meter will also be able to achieve au tomatic meter reading and automatic transfer fee, and other functions.(2) to make life more low carbon.Smart grid can access to the small family unit such as wind power and photovoltaic roof, pushing forward the large-scale application of electric cars, so as to raise the proportion of clean energy consumption, reduce the pollution of the city.(3) to make life more economical.The smart grid can promote power user role transformation, both electricity and sell electricity twofold properties;To build a family for the user electricity integrated services platform, to help users choose the way of electricity, save energy, reduce the energy expense.Produce benefitThe development of a strong smart grid, the grid function gradually extended to promote the optim al allocation of energy resources, guarantee the safe and stable operation of power system, providing multiple open power service, promote the development of strategic emerging industries, and many other aspects.As China's important energy delivery and configuration platform, strong and smart grid from the investment construction to the operation of production process will be for the national economic development, energy production and use, environmental protection bring great benefits.(1)in power system.Can save system effective capacity;Reducing the system total power generation fuel cost;Improving the efficiency of grid equipment, reduce construction investment;Ascension grid transmission efficiency, reduce the line loss.(2)in terms of power customers.Can realize the bidirectional interaction, to provide convenient services;Improving terminal energy efficiency, save power consumption;To improve power supply reliability, and improve power quality.(3) in the aspect of energy saving and environment.Can improve the efficiency of energy utilization, energy conservation and emissions reduction benefit.To promote clean energy development, realize the alternative reductionbenefits;Promote the overall utilization of land resources, saving land usage.(4) other aspects.Can promote the economic development, jobs;To ensure the safety of energy supply;Coal for power transmission and improve the efficiency of energy conversion, reducing the transportation pressure.Propulsion system(1) can effectively improve t he security of power system and power supply e of strong smart grid "self-healing" function, can accurately and quickly isolate the fault components, and in the case of less manual intervention make the system quickly returned to normal, so as to improve the security and reliability of power supply system.(2) the power grid to realize the sustainable development.Strong smart grid technology innovation can promote the power grid construction, implementation technology, equipment, operation an d management of all aspects of ascension, to adapt to the electric power market demand, promote the scientific and sustainable development of power grid.(3) reduce the effective ing the power load characteristics in different regions of the ch aracteristics of big differences through the unification of the intelligent dispatching, the peakand peak shaving, such as networking benefit;At the same time through the time-sharing electricity price mechanism, and guide customers low power, reduce the peak load, so as to reduce the effective capacity.(4) to reduce the system power generation fuel costs.Construction of strong smart grid, which can meet the intensive development of coal base, optimization of power distribution in our country, thereby red ucing fuel transportation cost;At the same time, by reducing the peak valley load difference, can improve the efficiency of thermal power unit, reduce the coal consumption, reduce the cost.(5)improve the utilization efficiency of grid equipment.First of all, by improving the power load curve, reduce the peak valley is poor, improve the utilization efficiency of grid equipment;Second, by self diagnosis, extend the life of the grid infrastructure.(6) reduce the line loss.On the important basis of uhv transmission technology of strong smart grid, will greatly reduce the loss rate in the electric power transmission;Intelligent scheduling system, flexible transmission technology and real-time two-way interaction with customers, can optimize the tide distribut ion, reducing line loss;At the same time, the construction and application of distributed power supply, also reduce the network loss of power transmission over a long distance.Allocation of resourcesEnergy resources and energy demand in the reverse distribution in our country, more than 80% of the coal, water power and wind power resource distribution in the west, north, and more than 75% of the energy demand is concentrated in the eastern and central regions.Energy resources and energy demand unbalance d distribution of basic national conditions, demand of energy needs to be implemented nationwide resource optimizing configuration.The construction of strong smart grid, for optimal allocation of energy resources provides a good platform.Strong smart grid is completed, will form a strong structure and sending by the end of the power grid power grid, power capacity significantly strengthened, and the formation of the intensity, stiffness of uhv power transmission network, realize the big water and electricit y, coal, nuclear power, large-scale renewable energy across regions, long distance, large capacity, low loss, high efficiency transport capacity significantly increased power a wide range of energy resources optimization.Energy developmentThe development and utilization of clean energy such as wind power and solar energy to produce electricity is given priority to, in the form of the construction of strong smart grid can significantly improve the grid's ability to access, given and adjust clean energy, vigorously promote the development of clean energy.(1) smart grid, the application of advanced control technology and energy storage technology, perfect the grid-connected clean energy technology standards, improve the clean energy acceptance ability.Clean energy base, (2) the smart grid, rational planning of large-scale space truss structure and sending the power structure, application of uhv, flexible transmission technology, meet the requirements of the large-scale clean energy electricitytransmission.(3) the smart grid for large-scale intermittent clean energy to carry on the reasonable and economic operation, improve the operation performance of clean energy production.(4) intelligent with electric equipment, can achieve acceptance and coordinated cont rol of distributed energy, realize the friendly interaction with the user, the user to enjoy the advantages of new energy power.Energy conservation and emissions reductionStrong smart grid construction to promote energy conservation and emissions reduc tion,development of low carbon economy is of great significance: (1) to support large-scale clean energy unit net, accelerate the development of clean energy, promote our country the optimization of energy structure adjustment;(2) to guide users reasonable arrangement of electricity, reducing peak load, stable thermal power unit output, reduce power generation coal consumption;(3) promote ultra-high voltage, flexible transmission, promotion and application of advanced technology such as economic operation, reduce the transmission loss, improve power grid operation efficiency;(4) to realize the power grid to interact with users effectively, promote intelligent power technology, improve the efficiency of electricity;(5) to promote the electric car of large-scale application, promote the development of low-carbon economy, achieve emission reduction benefits.There are three milestones of the concept of smart grid development:The first is 2006, the United States "smart grid" put forward by the IBM solution.IBM smart grid is mainly to solve, improve reliability and safety of power grid from its release in China, the construction of the smart grid operations management innovation - the new train of thought on the development of China's power "the white paper can be seen that the scheme provides a larger framework, through to the electric power production, transmission, the optimization of all aspects of retail management, for the relevant enterprises to improve operation efficiency and reliability, reduce cost dep icts a blueprint.IBM is a marketing strategy.The second is the energy plan put forward by the Obama took office, in addition to the published plan, the United States will also focus on cost $120 billion a year circuit。
外文翻译中英文对照

Strengths优势All these private sector banks hold strong position on CRM part, they have professional, dedicated and well-trained employees.所以这些私人银行在客户管理部分都持支持态度,他们拥有专业的、细致的、训练有素的员工。
Private sector banks offer a wide range of banking and financial products and financial services to corporate and retail customers through a variety of delivery channels such as ATMs, Internet-banking, mobile-banking, etc. 私有银行通过许多传递通道(如自动取款机、网上银行、手机银行等)提供大范围的银行和金融产品、金融服务进行合作并向客户零售。
The area could be Investment management banking, life and non-life insurance, venture capital and asset management, retail loans such as home loans, personal loans, educational loans, car loans, consumer durable loans, credit cards, etc. 涉及的领域包括投资管理银行、生命和非生命保险、风险投资与资产管理、零售贷款(如家庭贷款、个人贷款、教育贷款、汽车贷款、耐用消费品贷款、信用卡等)。
Private sector banks focus on customization of products that are designed to meet the specific needs of customers. 私人银行主要致力于为一些特殊需求的客户进行设计和产品定制。
文献综述外文翻译写作规范及要求

文献综述外文翻译写作规范及要求
文献综述是对已经发表的学术文献进行系统的综合分析和评价的一种
学术写作形式。
在撰写文献综述的过程中,外文翻译是不可或缺的一部分。
下面是一些关于外文翻译的写作规范和要求。
1.准确:外文翻译要准确无误地表达原文的意思。
翻译过程中应注意
遵守语法规则、掌握专业术语以及正确理解上下文。
2.逻辑清晰:翻译后的中文句子要符合中文语法和表达习惯,并保持
逻辑上的连贯。
避免使用过于生硬或拗口的句子结构。
3.简洁明了:文献综述注重对已有文献的概括和总结,因此翻译过程
中应力求简洁明了,避免翻译过多的细节和废话。
4.专业术语准确翻译:外文翻译中的专业术语在翻译过程中要保持准
确性。
可以参考已有的专业词典、论文翻译表格等工具来确保专业术语的
正确翻译。
5.文体和语气恰当:根据不同的文献类型和句子语境,选择合适的文
体和语气进行翻译。
可以参考论文综述的写作规范和范例,避免过于口语
化或过于正式的翻译。
在撰写文献综述的过程中,准确和恰当的外文翻译是非常重要的。
只
有通过准确和规范的翻译,才能保证文献综述的质量和可信度。
因此,应
该注重提升外文翻译的能力并积极学习相关的写作规范和要求。
毕业论文外文翻译格式【范本模板】

因为学校对毕业论文中的外文翻译并无规定,为统一起见,特做以下要求:1、每篇字数为1500字左右,共两篇;2、每篇由两部分组成:译文+原文.3 附件中是一篇范本,具体字号、字体已标注。
外文翻译(包含原文)(宋体四号加粗)外文翻译一(宋体四号加粗)作者:(宋体小四号加粗)Kim Mee Hyun Director, Policy Research & Development Team,Korean Film Council(小四号)出处:(宋体小四号加粗)Korean Cinema from Origins to Renaissance(P358~P340) 韩国电影的发展及前景(标题:宋体四号加粗)1996~现在数量上的增长(正文:宋体小四)在过去的十年间,韩国电影经历了难以置信的增长。
上个世纪60年代,韩国电影迅速崛起,然而很快便陷入停滞状态,直到90年代以后,韩国电影又重新进入繁盛时期。
在这个时期,韩国电影在数量上并没有大幅的增长,但多部电影的观影人数达到了上千万人次。
1996年,韩国本土电影的市场占有量只有23.1%。
但是到了1998年,市场占有量增长到35。
8%,到2001年更是达到了50%。
虽然从1996年开始,韩国电影一直处在不断上升的过程中,但是直到1999年姜帝圭导演的《生死谍变》的成功才诞生了韩国电影的又一个高峰。
虽然《生死谍变》创造了韩国电影史上的最高电影票房纪录,但是1999年以后最高票房纪录几乎每年都会被刷新。
当人们都在津津乐道所谓的“韩国大片”时,2000年朴赞郁导演的《共同警备区JSA》和2001年郭暻泽导演的《朋友》均成功刷新了韩国电影最高票房纪录.2003年康佑硕导演的《实尾岛》和2004年姜帝圭导演的又一部力作《太极旗飘扬》开创了观影人数上千万人次的时代。
姜帝圭和康佑硕导演在韩国电影票房史上扮演了十分重要的角色。
从1993年的《特警冤家》到2003年的《实尾岛》,康佑硕导演了多部成功的电影。
外文翻译原文

DOI: 10.1111/j.1475-679X.2010.00367.xJournal of Accounting ResearchVol. 48 No. 2 May 2010Printed in U.S.A.Discussion ofChief Executive Officer EquityIncentives and AccountingIrregularitiesJOHN E. CORE∗1. IntroductionIn an interesting and important paper, Armstrong, Jagolinzer, and Lar-cker (AJL) re-examine the question of whether CEO equity incentives cause accounting irregularities. As the authors note, this question is already much studied in the literature with a variety of methods and samples. Broadly speaking, the prior literature hypothesizes that equity incentives cause man-agers to manipulate accounting information, and generally finds a positive relation or no relation between equity incentives and proxies for manipula-tion. AJL add to this literature a larger sample that includes smaller firms (a beginning sample of roughly 4,000 firms a year versus roughly 1,500 firmsa year used in ExecuComp). In addition, they introduce a novel method (propensity score matching) that is robust to misspecification of functional form (―overt bias‖) and that provides an assessment of correlated omitted variables bias (―hidden bias‖).In contrast to prior research that generally examines pre–Sarbanes-Oxley data (2001 and before), AJL’s sample runs from 2001 to 2005.∗ The Wharton School, University of Pennsylvania. This discussion has benefited from, andreflects the comments of, participants at the 2009 Journal of Accounting Research conference. I gratefully acknowledge helpful comments from Wayne Guay and Greg Miller, and the financial support of the Wharton School. Any errors are the sole responsibility of the author.273Copyright C, University of Chicago on behalf of the Accounting Research Center, 2010274J. E. COREUsing this later sample, AJL find no evidence of a positive relation between CEO equity incentives and their proxies for accounting irregular-ities. As proxies for accounting irregularities, they use restatements, share-holder lawsuits, and U.S. Securities and Exchange Commission Account-ing and Auditing Enforcement Releases (AAERs). Using ―partial match‖logistic regressions similar to those used by some prior researchers, AJLfind no relation between incentives and accounting manipulation. Us-ing propensity score matching, the authors generally find no relation be-tween incentives and accounting manipulation, although there is some ev-idence of a negative relation between incentives and lawsuits. However,the negative relation with lawsuits does not appear to be robust to po-tential correlated omitted variables bias. The authors note that their re-sults are similar if they examine their later accounting irregularities us-ing the sample of ExecuComp firms generally used by prior research. Finally, the authors also show results using the earlier sample used by Erickson, Hanlon, and Maydew [2006]. In a ―partial match‖ conditional lo-gistic regression, AJL find a positive relation between incentives and fraud that is consistent with Johnson, Ryan, and Tian [2009] and in contrastto Erickson, Hanlon, and Maydew [2006]. However, in the better speci-fied, full-sample propensity-score model, AJL find no relation between in-centives and accounting manipulation, consistent with the full-sample lo-gistic regression in Erickson, Hanlon, and Maydew [2006]. In summary, the propensity score method shows no relation between incentives and ac-counting irregularities in the late sample, and no relation between incen-tives and accounting irregularities in the early sample. Overall, AJL’s result s suggest no relation between incentives and accounting irregularities. These results are important in that they add to a growing body of evidence that shows that, when empirical tests are correctly specified, there is no evidence of a relation between incentives and accounting irregularities.The remainder of this discussion is as follows. In section 2, I briefly out-line the hypotheses and method of the prior literature and those of AJL. In section 3, I discuss AJL’s results. Much of the discussion in the conference was on understanding propensity-score methods and whether and to what extent these methods should be used in accounting research, and I address these issues in section 4. In the final section, I conclude.2. Summary of Prior Literature—Hypotheses and Method2.1HYPOTHESESAs noted in AJL’s introduction, the basic hypothesis in prior literature is that equity incentives motivate executives to manipulate accounting infor-mation for personal gain. For this to be the case, executives need to believe that they can increase the stock price by manipulating earnings. In addi-tion, as discussed by participants and tested by, for example, Bergstresser and Philippon [2006] and Erickson, Hanlon, and Maydew [2006], if executives are rational when they manipulate earnings in an attempt toCHIEF EXECUTIVE OFFICER EQUITY INCENTIVES275 increase the value of their holdings, they will do so when they expect tobe able to benefit by selling equity. Thus, one expects vested options andstock holdings to predict rational manipulation; it would be irrational foran executive to manipulate if all his or her options and stock holdings were unvested.Participants noted that the underlying ―more equity is worse‖ story in this literature is similar to the story in an earlier and ongoing literature that―more equity is better‖ (e.g., Morck, Shleifer, and Vishny [1988]). In boththese literatures, how results are interpreted depend crucially on whetherequity incentives are assumed to be exogenous or endogenous (Demsetzand Lehn [1985]). Equity holdings in theory are chosen by boards to max-imize firm value and by managers to maximize private value, but for the―more equity is worse‖ and ―more equity is better‖ stories to go through,these choices need to have a substantial random (exogenous) component.The ―more equity is worse‖ story is causal if there is a substantial randomcomponent to the way that boards grant and require equity ownership, andif equity ownership has gotten to be too large on average. If boards do not understand equity compensation, but continue to grant it, it is conceivablethat equity incentives are random and too large.On the other hand, there are other explanations that involve maximiz-ing, nonrandom behavior. AJL give the example of risk-aversion: CEOs withlow risk aversion may hold more incentives and may be more likely to com-mit fraud. Another is monitoring difficulty. Firms with greater monitoringdifficulty may use more incentives, but their greater monitoring difficultyallows more accounting manipulation. Another possible link is CEO power.Suppose that powerful CEOs overpay themselves using equity, and have tohold this equity to camouflage their excess pay. Then if powerful CEOs aremore likely to commit fraud, there may appear to be a link between equityincentives and fraud.Whether there are perverse effects of equity incentives is a very important question. As discussed earlier and as demonstrated by Hribar and Nichols[2007], tests using equity incentives as an independent variable appear tobe readily confounded by endogeneity and correlated omitted variablesproblems.1 Thus, techniques that readily assess the sensitivity of results tocorrelated omitted variables seem not only worthwhile but also necessary.2.2METHODPrior work tests the hypothesis that incentives cause accounting irregu-larities using versions of the following regression model:Accounting Irregularity = β X + γ Equity Incentives + ε.(1) In this model, the ―treatment‖ or variable of interest is Equity Incentives, andthe dependent variable is some type of accounting irregularity or earnings1Note that endogeneity is fundamentally a correlated omitted variables problem. If onecould observe the part of an endogenous regressor that was correlated with the error term,one could include this omitted variable, and the regression would be correctly specified.276J. E. COREmanagement, and X are controls for determinants of Accounting Irregularity and/or Equity Incentives.As illustrated in AJL’s table 1, the prior literature uses a variety of prox-ies for incentives and accounting irregularities. Dependent variables exam-ined by the prior literature include: (1) AAERs (e.g., Erickson, Hanlon, and Maydew [2006]); (2) restatements (e.g., Burns and Kedia [2006]); and (3) accruals (e.g., Begstresser and Philippon [2006]). Perhaps reflecting the uncertainty discussed earlier about how to measure incentives to manage earnings, the prior literature has used a variety of proxies for equity incen-tives including: (1) total portfolio equity incentives (e.g., Erickson, Hanlon, and Maydew [2006]); (2) vested incentives (e.g., Erickson, Hanlon, and Maydew [2006] and Burns and Kedia [2006]); and (3) option compensa-tion as a percentage of total compensation (e.g., Burns and Kedia [2006]). In addition, studies differ as to whose incentives are measured: Most stud-ies use (1) CEO incentives, but some studies (e.g., Erickson, Hanlon, and Maydew [2006], Johnson, Ryan, and Tian [2009]) use (2) incentives for the top five executives.。
(完整版)外文翻译

外文文献原稿和译文原稿logistics distribution center location factors:(1) the goods distribution and quantity. This is the distribution center and distribution of the object, such as goods source and the future of distribution, history and current and future forecast and development, etc. Distribution center should as far as possible and producer form in the area and distribution short optimization. The quantity of goods is along with the growth of the size distribution and constant growth. Goods higher growth rate, the more demand distribution center location is reasonable and reducing conveying process unnecessary waste.(2) transportation conditions. The location of logistics distribution center should be close to the transportation hub, and to form the logistics distribution center in the process of a proper nodes. In the conditional, distribution center should be as close to the railway station, port and highway.(3) land conditions. Logistics distribution center covers an area of land in increasingly expensive problem today is more and more important. Is the use of the existing land or land again? Land price? Whether to conform to the requirements of the plan for the government, and so on, in the construction distribution center have considered.(4) commodities flow. Enterprise production of consumer goods as the population shift and change, should according to enterprise's better distribution system positioning. Meanwhile, industrial products market will transfer change, in order to determine the raw materials and semi-finished products of commodities such as change of flow in the location of logistics distribution center should be considered when the flow of the specific conditions of the relevant goods.(5) other factors. Such as labor, transportation and service convenience degree, investment restrictions, etc.How to reduce logistics cost,enhance the adaptive capacity and strain capacity of distribution center is a key research question of agricultural product logistics distribution center.At present,most of the research on logistics cost concentrates off theoretical analysis of direct factors of logistics cost, and solves the problem of over-high logistics Cost mainly by direct channel solution.This research stresses on the view of how to loeate distribution center, analyzes the influence of locating distribution center on logistics cost.and finds one kind of simple and easy location method by carrying on the location analysis of distribution center through computer modeling and the application of Exeel.So the location of agricultural product logistics distribution center can be achieved scientifically and reasonably, which will attain the goal of reducing logistics cost, and have a decision.making support function to the logisties facilities and planning of agricultural product.The agricultural product logistics distribution center deals with dozens and even hundreds of clients every day, and transactions are made in high-frequency. If the distribution center is far away from other distribution points,the moving and transporting of materials and the collecting of operational data is inconvenient and costly. costly.The modernization of agricultural product logistics s distribution center is a complex engineering system,not only involves logistics technology, information technology, but also logistics management ideas and its methods,in particular the specifying of strategic location and business model is essential for the constructing of distribution center. How to reduce logistics cost,enhance the adaptive capacity and strain capacity of distribution center is a key research question of agricultural product logistics distribution center. The so—called logistics costs refers to the expenditure summation of manpower, material and financial resources in the moving process of the goods.such as loading and unloading,conveying,transport,storage,circulating,processing, information processing and other segments. In a word。
外文翻译原文

IntroductionLatvian legislation for forest protection belts Latvian legislation demands that forest protection belts are established around all cities and towns. The concept of protection belts originates from the Soviet Era and is maintained in Latvian legislation despite the radical changes to the political system after regaining indepen-dence in 1991. The legal background for the establish-ment of protection belts is as follows:•Law on Protection Belts (1997, 2002)•Forest Law (2000)•Law on Planning of Territorial Development (1998).Designating a greenbelt around the city of Riga, LatviaJanis DonisLatvian State Forestry Research Institute ‘Silava’, Salaspils, LatviaAbstract: Latvian legislation demands that forest protection belts are established around all cities and towns. The main goal of a protection belt is to provide suitable opportuni-ties for recreation to urban dwellers and to minimise any negative impacts caused by urban areas on the surrounding environment. Legislation states the main principles to be adopted, which include the maximum area of protection belts, their integration in terri-torial development plans and restrictions placed on forest management activities. The largest part of the forest area around Riga is owned by the municipality of Riga, which, as a result, has two competing interests: to satisfy the recreational needs of the inhabitants of Riga, and to maximise the income from its property. In order to compile sufficient background information to solve this problem, the Board of Forests of Riga Municipality initiated the preparation of a proposal for the designation of a new protection belt.The proposal was based on the development and application of a theoretical framework developed during the 1980s. The analysis of the recreational value of the forest (5 class-es of attractiveness) was carried out based on categories of forest type, dominant tree species, dominant age, stand density, distance from urban areas and the presence of at-tractive objects. Information was derived from forest inventory databases, digital forest maps and topographic maps. Additional information was digitised and processed using ArcView GIS 3.2. Local foresters were asked about the recreation factors unique to differ-ent locations, such as the number of visitors and the main recreation activities. From a recreational point of view and taking into account legal restrictions and development plans for the Riga region, it was proposed to create three types of zones in the forest: a protection belt, visually sensitive areas and non-restricted areas.Key words:greenbelt forest, recreational value, GIS, zoningThe Law on Protection Belts states that protection belts around cities (with forests as part of a green zone)have to be established (a) to provide suitable conditions for recreation and the improvement of the health of urban dwellers, and (b) to minimise the negative im-pact of urban areas on the surrounding environment.Urban For.Urban Green.2 (2003):031–0391618-8667/03/02/01-031 $ 15.00/0Address for correspondence:Latvian State Forestry Re-search Institute ‘Silava’, Rı¯gas iela 111, Salaspils, LV-2169,Latvia. E-mail: donis@silava.lv© Urban & Fischer Verlaghttp://www.urbanfischer.de/journals/ufugRegulation nr 263 (19.06.2001) on the ‘Methodology for the establishment of forest protection belts around towns’issued by the Cabinet of Ministers (CM) states: (a) The area of a protection belt depends on the numberof inhabitants in the town: towns with up to 10,000 inhabitants should have a maximum of 100 ha of protection belt, those with between 10,000 and 100,000 inhabitants a maximum of 1,500 ha, and towns with more than 100,000 inhabitants a maxi-mum of 15,000 ha;(b) the borders of protection belts have to be able to beidentifiable on the ground, using features such as roads, ditches, power lines, and so forth;(c) protection belts have to be recorded in the territorialplans of regions adjacent to the town or city; and (d) establishment of protection belts has to be agreedupon by local municipalities.According to law, protection belts should be man-aged using adapted silvicultural measures. Clear-cut-ting, for example, is prohibited in a protection belt to mitigate any negative impacts of the city on the sur-rounding environment. The Forest Law of 2000 and subsequent regulations including the Regulation on Cutting of Trees, and the Regulation on Nature Conser-vation in Forestry define clear-cuts as felled areas larg-er than 0.1 ha where the basal area is reduced below a critical level in one year. These regulations also state the permitted intensity and periodicity of selective cut-ting (30–50%, at least 5 years between entries).The third element of the legal framework relevant for protection belts in Latvia is the Law on Planning of Territorial Development (1998). It defines:(a) Principles and responsibilities of the different or-ganisations involved;(b) the contents of territorial plans;(c) the procedures for public hearing; and(d) the procedures for the acceptance of plans.The law also states that protection belts around towns have to be designated in territorial plans. Thus, the legislation gives very detailed descriptions of the restrictions to maximum area, activities and guidelines for delineation and so forth, while there are no ‘rules’for the choice of what areas are to be included in pro-tection belts. It is up to territorial planners to propose what areas to include and for negotiation among mu-nicipalities to approve the selection.Protection belt for the city of RigaRiga and the Riga region are situated in the Coastal Lowland of Latvia within the Gulf of Riga. The main landform types are the Baltic Ice Lake plain, the Litto-rina Sea plain and the Limnoglacial plain and bog plain. The total area of the administrative area of the City of Riga covers 307.2 km2, and that of the Riga re-gion 3,059 km2. In 2000 the city of Riga had 815,000 inhabitants, while an additional 145,000 people resided in the greater Riga region. During the last decade the number of inhabitants in Riga decreased by 10.5%and in Riga region by 5.3%. In the mid-1990s the main types of industry in Riga were food processing, timber and wood processing, metal fabricating and engineer-ing, while in the region agriculture and forestry, wood processing, pharmaceuticals, and the power industry were the main activities. Due to reduced industrial ac-tivities today, the main sources of pollution in Riga re-gion are road transport and households.The greater part of the Riga region is covered by for-est, i.e. 1,642 km2or 53%. About 26% of the land is used for agriculture, 4% is covered by bogs, and 4% by water. The Riga region also has a coastal dune zone of some 30 km along the Gulf of Riga. The main tree species to be found in the Riga region are Scots pine (Pinus sylvestris L.),birch (Betula spp.) and Norway spruce (Picea abies (L.) Karsten) (see Table 1). In the administrative area of the city of Riga, 57 km2 or about 19% of the land area is forest. Scots pine is the domi-nant species, covering approx. 46.9 km2(i.e. 88% of the total forest area).According to the legislation described before, a pro-tection belt around Riga city, with a maximum size of 15,000 ha, could be designated. Moreover, any propos-al has to be agreed upon among 24 local municipalities. The Riga region is divided into 24 administrative units: 7 towns and 17 pagasts or ‘parishes’.Riga municipality currently owns more than 55,600 ha of forests. Most are situated in the vicinity of Riga. Four forest administrative districts lie completely with-in Riga region and close to Riga city (see Fig. 1). The total area of these districts is 44,158 ha out of which forest stands cover 36,064 ha (82%). Thus the Riga municipality forests of those 4 districts cover only 17% of the total forest area of the Region. The dominant tree species in the municipally owned forests are Scots32J.Donis:Designating a greenbelt around the city of Riga,LatviaUrban For.Urban Green.2 (2003)Table 1.Tree species composition in the Riga region Dominant tree Area covered, ha Average age, years species––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––Total Municipa-Total Municipa-lity*lity* Scots pine95,27627,3718581 Norway spruce20,8493,0175139Birch30,5585,1246056 Other10,438552––Total157,12136,0647369*Data only for the 4 forest districts of the Riga city munici-pality that are entirely situated within the Riga region.pine, birch and Norway spruce. These cover 76%, re-spectively 14% and 8% of the forest area. Other species cover less than 2% of the area.Until the re-establishment of Latvian independence almost all forestland was owned by the state but since then many areas have been returned to their former owners and are now privately owned. Current regula-tions state that until the designation of new boundaries for protection belts has been agreed upon, all forests of the previously existing and protected green zone have to remain protected whatever their functional role or ownership status. Consequently almost all forests of the Riga municipality located in the Riga region have management restrictions placed on them, and the same can be said for forests of other owners within the previ-ously existing green zone. Currently, therefore, on the one hand significant recreation opportunities for urban dwellers are provided, while on the other hand forest owners’rights to obtain income from timber harvest in the suburban areas continue to be restricted. Suburban municipalities also lose income because of reduced land taxes from land with management restrictions.The board of Forests of the Municipality of Riga there-fore initiated the preparation of a proposal to designate a new protection belt.Study to support protection belt designation The main objective of the study presented here has been to obtain background information in preparation for further discussions with local municipalities. Stud-ies in Latvia as well as elsewhere have revealed that recreational values of forests depend mainly on forest characteristics, location and level of pollution (Emsis et al. 1979; Emsis 1989; Holgen et al. 2000; Lindhagen & Hörnsten 2000; Rieps ˇas 1994; Su ¯na 1973, 1979). A very important aspect is the distance to the forest from places where people live (e.g. Rieps ˇas 1994). The abil-ity of a forest stand to purify the air by filtering or ab-sorbing dust, micro-organisms, and noxious gases de-pends on tree and shrub species composition, age, tree size and stand density (Emsis 1989). Stands purify the air most effectively at the time of maximum current an-nual volume increment, usually between 30 to 60 years of age in Latvian conditions, depending on species.Recreational value, on the other hand, increases with age (and tree size) and reaches its maximum consider-ably later. Taking into account the peculiarities of the dispersal of pollution as described by Laivin ‚s ˇ et al.(1993) and Za ¯lı¯tis (1993), selective cutting is prefer-able in the vicinity of a pollution source, especially ifJ.Donis:Designating a greenbelt around the city of Riga,Latvia 33Urban For.Urban Green.2 (2003)Fig. 1.Location ofthe Riga municipali-ty forests in the Riga region.the forest consists of a narrow strip between the pollu-tion source and housing. If the distance between a pol-lution source and housing exceeds several kilometres, a patch clear-cut system with stands of different ages is sufficient to provide a reduction in the negative impact of urban areas. Taking into account the fact that closer to residential areas it is more important to consider the visual qualities of the forest (e.g. Tyrväinen et al. 2003), this purification ability can generally be ignored when planning protection belts.MethodsThis study to support the designating of the Riga pro-tection belt used the following data sources for analysis (see Fig. 2): forest inventory databases, digital forest maps of the Riga municipal forests which are situated outside the administrative borders of the city (55,600 ha of which 44,158 ha located in the Riga region) (see Fig. 1), and corresponding topographic maps.The study and its developed proposal are based on an application of a theoretical approach developed during the 1980s by the Latvian State Forestry Research Insti-tute ‘Silava’(Emsis 1989) and the Lithuanian Forestry Research Institute (Riepsˇas 1994). According to the methodology developed by Emsis (1989), the first step in the process is to evaluate the recreational potential of the forest stands. This is carried out by analysing the following factors:• The tolerance of the forest ecosystem to different lev-els of anthropogenic (recreation) loading;• the status of forest ecosystems in terms of the damage or degradation as a result of recreational use;•the suitability of the landscape for non-utilitarian recreation (recreational value); and• the existing and potential levels of recreational loads.The second step involves evaluating the existing andexpected functional roles of the forest.The tolerance of the forest ecosystem to different levels of anthropogenic impact or loading is evaluated using a framework based on a combination of forest type, dominant tree species, dominant age group, soil type and relief, according to the stability of ecosystem. All stands are classified into one of five tolerance classes. The highest score is given to mature deciduous forests on mesotrophic and mesic soils on flat topogra-phy, while the lowest score is given to young pine stands on oligotrophic soils on steep slopes (forests on dunes).In this study ecosystem tolerance could not be evalu-ated, as it was primarily a desk using existing databas-es, and topographic relief maps were not available in digital form. The status of the forest ecosystem in rela-tion to damage or degradation was evaluated in terms of the degree of change in vegetation cover, under-growth, tree root exposure of the and level of littering, classified into three classes.Assessment of the recreational value of the forest stands was calculated using a formula developed by Riepsˇas (1994):Recreational value VR= (VS*kW*kS+VA)*kPWhere VSis stand suitability based on key internal at-tributes of the stand, such as species, age, stand densityand forest type. VSvalues range from 0 for young, high-density grey alder (Alnus incana L.) on wet peat soils, to 100 for average density mature pine stands ondry mineral soils. kwis a coefficient depending on the distance of the stand from watercourses, ranging from0.1 for stands further than 2 km from watercourses to1.0 for stands up to 500 m from watercourses. kSis a coefficient depending on the distance of the stand from urban areas, ranging from 0.1 for stands further than34J.Donis:Designating a greenbelt around the city of Riga,LatviaUrban For.Urban Green.2 (2003)Fig. 2.Structure of data sources used in data ana-lysis.80 km from Riga to 1.0 for stands within 30 km ofRiga. VA is an additional value depending on the pres-ence of attractive features, for example, 25 for forest stands up to 500 m from settlements, including summer cottages, or for areas intensively used for recreation ac-cording to information of local foresters. kP is a coeffi-cient depending on the level of environmental pollu-tion. Its value is 0 if the actual pollution level exceeds limit values, 0.5 if the level of environment pollution is between 50% and 100% of limit values, and 1 if the level of actual pollution is less than 50% of the limit values. In this study a coefficient of 1.0 was used, be-cause SO2and O3concentrations measured by Rigabackground measuring stations did not exceed 50% of the limit values (Fammler et al. 2000).The division of stands into classes of stand suitabili-ty is based on studies of visitors’preferences. Coeffi-cients kw, ksand VAare based on visitors’spatial distri-bution and show the ratio of the number of visitors in different zones. The evaluation of existing and expect-ed recreational loads was carried out by local foresters. They marked existing and potential recreation places on forest maps, including:•Small areas or sites for activities such as swimming, barbecuing, and so forth.•Recreation territories, defined as areas of 20 ha or more where people stay longer periods for walking, jogging, skiing or other forms of both active and pas-sive recreation.•Traditionally popular places for the collection of berries and mushrooms.•Recreational routes, including routes from public transport stops to recreation sites or recreation terri-tories, and between recreation sites and territories. For each recreation site and recreation territory data on the main seasons of use, the periods of use (week-days, weekends), and the average number of people in ‘rush-hours’during good weather conditions was col-lected or estimated.Data processing was carried out using ArcView GIS3.2a, Visual Fox pro and Microsoft Excel. VS values foreach stand were calculated from information in the for-est database using Visual Fox pro. Information collect-ed at a later stage from local foresters was digitised using separate themes (layers) in ArcView GIS 3.2a. Buffer zones along watercourses and water bodies, as well as residential areas, recreation sites and territoriesand recreation routes were created to get kW ,kSand VAvalues for each stand. Then VR values were calculatedfor each stand.A selection of recreation sites and territories was vis-ited by members of the project team in order to evalu-ate the state of the ecosystem with respect to wear and tear arising from different levels of recreational use. An evaluation of the existing functional role of each forest stand was carried out using the existing categories offorest protection. The anticipated future functional role was evaluated by annalysing the recreational value of stands, known expectations in terms of territorial de-velopment, and existing legal restrictions in order to find a compromise between recreation possibilities and other services of the forest. Next, a first draft of the protection belt was drawn according to experts’judge-ment. This draft included forests with high recreational value adjacent to residential areas and summer cot-tages, and larger tracts intensively used for recreation with medium to high recreational value.ResultsAccording to the original forest classification 65% of the total forest land area was designated as a commer-cial greenbelt forest, for which the main management goals are timber production and environmental consid-erations. The remaining 35% were designated as pro-tected (see Table 2). With regards to protected areas in Latvia: the main management goals of nature parks are nature conservation and recreation, including some ed-ucation. The goal for nature reserves is nature conser-vation, while that of the protected greenbelt forests is recreation.While interviewing local foresters it was revealed that they find it difficult to evaluate dispersed recreation loads (for example collection of berries, mushrooms). The assessments of foresters varied greatly and were considered to be unreliable. It was therefore decided to map only the places important for recreation, but not to use the inaccurate estimates of visitor numbers.In Latvia, special investigations have to be carried out in order to develop management objectives and principles for protected forests as part of the preparation of management plans. Pilot studies and visits to some of the recreation areas have revealed that the evaluation of the state of the forest ecosystem is useful only when de-veloping the detailed management plan. Even then, this is only the case for places identified by local foresters as recreation sites or territories, because otherwise it is too time consuming to carry out fieldwork which provides little useful additional information.Calculated VSvalues show that on average the forests studied have a medium suitability value for recreation (average score 47) (see Table 2). There are considerable differences between districts, with aver-age value ranging from 32 points in Olaine to 66 points in the Garkalne district. This indicates that the average stands in the Garkalne district are more suitable for recreation than those in other districts. If other aspects are taken into account, such as distance from wherepeople live, and VRvalues are calculated it can be seenJ.Donis:Designating a greenbelt around the city of Riga,Latvia35Urban For.Urban Green.2 (2003)that the districts are still ranked as follows: Garkalne,Jugla, Tireli and Olaine.Only 10% of the forest owned by Riga municipality within the Riga region were evaluated as having a high or very high recreational value. 12% had medium recreational value, while large areas used for the col-lection of berries and mushrooms were evaluated as having low or very low recreational value (60% of the total forest area) (see Table 3).More than 16% of the area is covered by bogs, for which according to the used methodology, recreational value was not evaluated at all. Some areas were recorded by the local foresters as important places for the collec-tion of berries. However, more valuable from a recre-ational point of view were those forests situated east and north-east of the city (Garkalne and Jugla districts),while the forests to the south (Olaine and Tireli districts)were found to have a lower recreational value (V R ).36J.Donis:Designating a greenbelt around the city of Riga,LatviaUrban For.Urban Green.2 (2003)Table 2.Distribution of forest by forest categories according to the original functional role Forest districtDataFormer forest category Total–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––Commercial Nature Nature Protected greenbelt forests parks reserves greenbelt forestsGarkalneArea, ha521.27,698.78,219.9Average of V S *61.966.566.2Average of V R **59.350.751.4JuglaArea, ha 8,376.74,098.812,475.4Average of V S 45.656.949.1Average of V R 22.034.025.7OlaineArea, ha 11,765.4707.512,473.0Average of V S 31.941.032.6Average of V R 8.527.410.0TireliArea, ha 8,689.5257.91,025.01,016.910,989.3Average of V S 40.666.710.059.342.3Average of V R 17.055.3 1.044.920.6TotalArea, ha 28,831.6779.11,025.013,522.044,157.6Average of V S 39.863.510.061.647.1Average of V R16.357.91.043.725.9* V S Suitability value – based on stand parameters (0–100 points).** V R Recreation value (0–125 points) based on stand parameters, distance to the residential areas, water and other attractive objects.Table 3.Distribution of forest areas by classes of attractiveness and by designated functional role Designated zoneDataClass of attractiveness Total –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––n.a.Very low Low Medium High Very high 0<2525,1–5051–7575–100100<Protection belt Area, ha76.7560.12,266.42,222.7850.5743.66719.9Average of V R *0.012.036.063.390.0125.053.4Visually sensitive Area, ha 447.64,150.54,157.7853.4847.1179.810636.1Average of V R 0.07.837.460.996.7125.028.5Non-restricted Area, ha 6,664.715,389.12,548.61,090.5874.8234.026801.7Average of V R 0.0 5.234.761.197.2125.015.8TotalArea, ha 7,189.020,099.88,972.74,166.52,572.31,157.344157.6Average of V R0.06.236.362.294.6125.025.9*V R Recreation value (0–125 points) based on stand parameters, distance to the residential areas, water and other attractive objects.Areas along main roads and railways are known to be visually sensitive, because of the large number of peo-ple who can see them during travel. The same is true for forest in the vicinity of small villages. Taking into ac-count the fact that legislation prohibits clear-cuts in pro-tection belts – which is not always necessary in order to maintain the visual quality of the landscape – it was proposed, as part of the zoning strategy, to create so called visually sensitive areas. In these areas the forest owner (Riga municipality) is recommended to use more detailed landscape-planning techniques and to pay more attention to visual aspects during management.As a result of the study, seen from a recreational point of view and taking into account legal restrictions and so forth, it has been proposed to create three zoning categories: (1) protection belts, (2) visually-sensitive areas, and (3) non-restricted areas (see Fig. 3). The protection belt should include:• Forest with high recreational value adjacent to residen-tial areas and summer cottages, to form a 200–500 m wide belt.• Larger tracts of forestland intensively used for recre-ation.The zone of visually-sensitive areas should include:• Forests within the administrative borders of Riga mu-nicipality and in the vicinity of villages (up to 200–500 m distance).• Forests along roads of national and regional impor-tance, railways, watercourses and streams as a protec-tion belt of 100–300 m wide.• Places used for mushroom and berry collection in the original restricted protection belt.• Places that could become important for recreation in the near future.J.Donis:Designating a greenbelt around the city of Riga,Latvia 37Urban For.Urban Green.2 (2003)Table 4.Proposed distribution of forest categories in designated zones (in hectares)Designated zoneFormer forest category Grand Total––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––Commercial Nature Nature Protected greenbelt forests parks reserves greenbelt forests Protection belt355.2779.15,585.76,719.9Visually sensitive areas 3,503.97,132.110,636.1Non-restricted areas 24,972.51,025.0*804.226,801.7Total 28,831.6779.11,025.013,522.044,157.6*Forests within nature reserves are not intended for recreation; their primary management goal is nature conservation.Fig. 3.Proposal for zon-ing of the Riga municipalforests in Riga region.The remaining areas should consequently be classi-fied as non-restricted areas.A revision of the first draft plan was made taking into account the known prospective development plans of Riga and Riga region. As a result, for forests owned by Riga municipality and located in Riga region the pro-posal is to include 6,720 ha in the protection belt (see Table 3). Moreover, it has been suggested to designate 10,636 ha as visually-sensitive areas, but to omit the re-maining 26,802 ha from zoning, as these do not need special management from a recreation point of view. Average recreational values of stands in this area range from 53 (medium), through 28 (low) to 15 points (very low) respectively.As a result, the major part of the forest remains in the same functional category as in the original allocation (see Table 4). As was mentioned above, the classifica-tion described here is only based on recreational as-pects, thus forests in nature reserves are misleadingly shown as non-restricted forests. Only 5,586 ha out of the 13,500 thousand ha of the originally protected greenbelt forests are proposed to be included in the protection belt, while 355 ha of the previous commer-cial greenbelt forests are proposed to be placed under stronger protection.DiscussionForests owned by Riga municipality within the Riga re-gion are divided over 13 rural municipalities. Accord-ing to legislation, revised draft proposals for zoning Riga city forests have to be accepted by Riga munici-pality, while the final decision is up to Riga and the sur-rounding municipalities. The study presented here has provided a tentative estimate of the recreational value and suitability of the forests for recreation and can be used as a starting point for political discussions. At the very beginning the intention was to divide the forests in two categories: the protection belt and the remainder of the forest. During the study it was concluded, however, that a third category would be needed, that of visually sensitive areas. Within this category more attention would have to be paid to the amenity of the landscape, but there would be no need to drastically restrict com-mercial forest management. As nature parks are also designated for recreation, it has been proposed to in-clude all forests of nature parks in the protection belt. It has to be noted that all the forests within the adminis-trative borders of cities, and as such not included in this study, are designated as protected. As a consequence, the forest area available for recreation to the inhabi-tants of Riga would increase to 12,500 ha.Unlike many other European cities, where timber ex-traction is of small importance (Konijnendijk 1999),Riga municipal forests have a considerable economic role. It is estimated that the allowable annual cut in suburban forests amounts to 169,800 m3or 81% of the annual increment (Dubrovskis et al. 2002). It should be kept in mind that income from logging is used for for-est regeneration and tending, forest fire protection and maintenance of recreation facilities.The objective of this study was not to evaluate the precision of the method nor possible errors occurring when applying it. This study revealed, however, the in-completeness of the methodology used. Bogs, which are very sensitive to recreation loads, are ascribed quite a high level of attractiveness from a recreation point of view (for the collection of wild berries), but according to the methodology they are not evaluated at all. All watercourses were assumed to be attractive sites, while the preliminary evaluation of recreation loads showed this not to be true. The use of watercourses is very vari-able and obviously depends on water quality and vege-tation structure of the edges or banks. Another aspect which was not taken into account was that amenity of a forest is not simply the sum of the amenity values of forest stands (Pukkala et al. 1995).It seems that the evaluation based on dominant species is appropriate for screening areas, but for more detailed management plans, species mixture, the number of forest layers, and principles of landscape architecture also have to be taken into account (Bell 1999; Bell & Nikodemus 2000). Various studies have shown that people prefer uneven-aged forests (e.g. Melluma et al. 1982) and uneven-aged stands (e.g. Riepsˇas 1994). The impacts of the screening effect show that there are, even in the visually-sensitive and commercial zones, considerable areas with high and very high recreational value. This is mainly because delineation of zonal boundaries is carried out using easily distinguishable natural lines, and often it is not worth including single stands of high recreational value in the protection belt if, as a consequence, re-strictions on management would be placed over whole compartments of 50 ha.For the preparation of specific management guide-lines detailed field inventories have to be carried out. This has not been done in this study, where more re-liance was placed on the experience of local foresters and existing databases. Detailed economical calcula-tions have yet to be carried out in order to evaluate the direct and indirect value of the forest. These will also assist in obtaining more background information to be used as part of a holistic approach and for development of a decision support system to resolve contradictions between different interest groups.After acceptance of the draft plan by the municipali-ty of Riga, the process of negotiation between Riga and its surrounding municipalities is currently ongoing.38J.Donis:Designating a greenbelt around the city of Riga,Latvia Urban For.Urban Green.2 (2003)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮阴工学院毕业设计(论文)外文资料翻译学院:交通工程学院专业:物流工程专业姓名:周骏学号:1091508130外文出处:Institute of Electrical and Electronics Engineers(用外文写)附件: 1.外文资料翻译译文;2.外文原文。
指导教师评语:选材适当,符合毕业设计(论文)大纲要求,翻译语句基本通顺,译义与原文基本相符,个别词语及语句翻译不够贴切。
翻译基本正确。
签名:2013 年 3 月 6 日附件1:外文资料翻译译文电子商务环境下的逆向物流分析Qunli Wu, Shengcai liuDepartment of Business ManagementNorth China Electric Power University, Baoding071003, ChinaLiushengcai2003@摘要:随着全球可持续发展战略的进一步研究,越来越多的企业已经确定的经济和生态环境之间的和谐发展。
在这样的背景下,出现逆向物流。
逆向物流是在物流管理中的一个新的领域,在圈内的业务和理论吸引了越来越多的关注。
它有很多的优势,降低生产成本,提高客户的满意度和增强企业竞争力的,这是对我们的业务实践具有十分重要的意义。
逆向物流的作用和其在国外的发展情况。
从分析电子商务环境下的逆向物流的过程和特点,本文逆向物流的电子商务模式进行了详细的分析,然后提出了三种形式,支持实施逆向物流的逆向物流和建议。
企业可以通过使用逆向物流,实现可持续发展的目标,并帮助他们在自己的行业竞争,尤其是在面对激烈的竞争和利润率低。
关键词逆向物流电子商务模式1介绍根据理事会的物流管理协会(CLM )的定义,逆向物流是一个过程,在该过程中的生产系统接受以前发运的产品或消费部分从点可能的循环再利用,再制造或出售。
它已经收到了极大的关注,从运营经理和公司高管。
它包括几个关键环节,如:恢复,检查过程中,分区和后处理和丢弃策略,已被许多研究人员调查的问题。
越来越多的,严格的环境和包装的法规,迫使企业更加负责的最终产品,不久后,他们销售的产品。
近年来,逆向物流的发展是相当迅速的,尤其是在发达国家。
美国,日本和其他欧洲发达国家逆向物流实践已经远远领先于中国。
逆向物流管理在中国还是在恶劣的环境下,在上一个世纪的美国,逆向物流提出了美国物流专家的高度重视,所有的物流成本占美国经济总量的10.7%。
逆向物流成本是所有物流的4%左右。
在美国,超过30 %的企业注重出售他们的产品。
逆向物流的实施是非常重要的,特别是在汽车公司,电子产品制造业,出版业和目录销售。
据估计,节省原料,通过再制造的汽车零部件再制造协会可以填补155,000货车,这是相当于1100英里火车。
因此,经济效益是相当可观的。
最近,许多字著名的IT企业把逆向物流战略作为竞争优势的主要手段。
例如,Sun Microsystems 公司拥有一个国际金融中心的组件和部件的改造,再次从亚洲或拉丁美洲的部分地区,达到最新的设计;惠普经常使用的更新或改进的组件,然后转售产品以不同的方式;汤姆逊的家电公司,运输的可收回部分到墨西哥,然后再改造这些零件。
2逆向物流的运作模式逆向物流,资源短缺和环境的污染的有效手段,已被广泛应用在许多企业中。
在实施逆向物流的过程中,企业应在地面上的实际情况选择合适的经营模式。
主要有以下几种运作模式如下:自营模型、联营模型、外包模式等,企业应该选择最适合的模式,基于各种模型的优势和劣势的完全理解,因此他们可以采取有效的逆向物流管理策略。
下面是简单的三种模型介绍。
2.1自营模式根据其定义,企业构建独立的逆向物流系统,管理恢复和回收报废产品本身。
在这种情况下,企业不仅重点生产,销售和售后的服务(包括恢复管理),但也回收和废物处理材料和包装材料。
企业建立逆向物流网络遍布全国所有地区的销售,以反向品的回收和处理。
2.2联营模式在此模型中,同行业公司相互配合建立共同的逆向物流系统的形式合资企业(包括回收网络),并提供合作企业的服务,甚至非合作企业,如运输、采购、销售等。
2.3外包模式在第三个模型,外包模式,企业给部分或全部业务的特定公司的形式付出。
该模型是适用于最的情况下,无论是恢复和维修或回收浪费的产品。
小型和中型的企业往往喜欢外包,让他们减少运转成本。
在大企业外包专业化经营的最重要的手段提升核心竞争力。
3逆向物流的电子商务模式伴随着全球经济的快速发展,不断提升电子商务已成为企业间竞争的焦点。
在电子商务的快速发展,扭转物流成为一个重要环节。
企业应实现一体化的管理系统和电子商务是非常重要的,如果他们要占用大量市场上的一部分。
本章提出提出了电子商务的逆向物流模式。
电子模型的框架是如下面的图,这是适合逆向物流。
目前,主要有三种形式支持的逆向物流模型。
网络营销是使用最广泛的,这是应用到新产品和旧产品。
第二个电子商务模式的过程是做一笔交易使用过的产品或再制造设备与互联网;第三个是整合,选择,再利用和转售,然后提供逆向物流与电子商务完整的解决方案计划。
该模型充分体现了节能环保。
3.1网络营销它的主要属性是在服用该产品为重点交易活动,一切旧的东西在电子市场分布。
潜在客户可以购买在电子市场的产品,表达自己的购买意愿,从事的潜在购买活动。
网络营销的概念随不同的因素,如服务器的位置、主交易产品领域、访问权限、价格机制、客户满意度等,然后我们从分析以下几个方面。
从服务器的位置看,当前的E-营销主要是在发达国家,特别是在美国。
目前,这些电子市场是非常广泛的。
虽然电子市场覆盖了整个空间,北美市场仍然起着主要的作用。
此外,国产化www.particulier.nl克服障碍之间文化,物流,语言和货币交易不同的国家。
最近,中国还开始参加这些电子市场,如,它提供了一个很好的逆向物流电子商务平台和环境。
根据视图的访问权限,电子市场的目标只是在以前的合作伙伴经济主体向市场推出。
然而,对于大多数电子拍卖,所有贸易伙伴潜在的买家。
卖家在网络营销需要注册并支付相应的费用。
价格确定通过交易或通信。
客户满意度,一些基本规则和法规框架可以应用到电子市场。
例如,日本AUCNET株式会社提供质量评价体系的标准化体系第二,商品的交易。
此外,建立销售状况,产品质量保证和解决方案的贸易纠纷中要考虑顾客的关键因素满意度。
3.2 第二物资和设备供应模式复制部件或设备的推广不同于在其专注于新产品的推广前者更多的需求驱动和的驱动力、后者供应商的驱动。
对于供应第二货物和设备,供应商实现了详细的需求从需求方的商品。
在这种情况下,电子商务模式有两个显着特点,首先,供应二手部件或设备会被限制在特定的地理区域,如,这是只限于美国市场;其次,产品标识的关键成功的电子商务,这意味着双方必须在能够相互联系,并建立一个共同的、独特的,就交易的产品或部件的明确的框架。
为了解决这个问题,除了到列表这样的产品,它是有可能找到潜在商品有大量的搜索引擎。
这类产品的鉴定,也可以进一步加强通过口服了解某些关键问题通信和互联网。
与再制造有关的一个问题是预防和事先重型工业设备的维护,它的操作往往是地理上遥远和时间紧迫性。
工业设备的重放是通常是一个闭环的业务流程。
换言之,用户提交他们的工业设备;一段时间后,重新采集复制设备。
严格时间限制和生产中的质量保证重要的因素。
对于这个问题,电子商务起到一个显着的作用。
图1 逆向物流电子商务模式3.3完整的解决方案RL该模型构建了一个全新的业务活动和运作模式。
出于这个原因,该模型是不太常见。
完整的解决方案反向物流特别是产业组织和经营全面的逆向物流活动。
在此模式中,客户有两种选择:他们描述功能的恢复和从事物流活动基地的报价和商定的价格,另一种选择是,他们设置的逆向物流流程。
4 企业逆向物流的建议逆向物流在国外的发展很快;但是逆向物流在中国的发展慢。
出现这样或那样的问题而开展逆向物流。
以下是相应的对策。
4.1每个企业都应该建立反向在整个供应链的物流系统在物流,逆向物流是一个相当新的概念和供应链管理。
随着产品更新迅速,产品生命周期不断的短,逆向物流成本已上升,出现了新的分销渠道(电视购物,电子商务等)导致高回报率,并带来了巨大的压力,供应链管理和宽松的恢复策略,使恢复数量上升和等。
鉴于上述因素,企业应更加重视逆向物流。
4.2完善的产品和包装设计首先,企业应减少资源消耗的产品和包装设计。
因此,一个好的设计会减少的资源量,它是基本的手段来控制反向量。
此外,在包装和设计的过程中,他们不应该使用有害物质。
同时,他们要体现环保概念,并减少对人类健康和环境的污染,尽快损坏。
其次,他们必须考虑包装回收设计。
回收的废旧物资是企业的根据政府的监管责任。
在此外,包装材料的回收再利用,这符合四点要求:材料消耗低、再用、回收及循环再造。
4.3 适当的回收及循环再造的政策回收物流、严格的政策,可能会降低成本恢复和风险。
但是,在激烈的市场竞争,政策将面临巨大的挑战,因为客户满意度上升。
因此,使用严格的宽松的货币政策,不仅取决于回收成本但也受到市场竞争中,品牌形象企业,产品性能和分销渠道等。
如果返回值是相当高的,复苏的政策是非常松动。
相反,政策是比较严格的。
4.4 建立返回中心和管理回流产品中心恢复中心的集中管理是逆向物流运行在高品质的物质基础和前提。
回收中心的建立,使恢复具有规模优势,更有效地治疗。
这将有利于快速的检查和治疗。
企业应建立独立的逆向物流与传统物流之间的冲突,处理中心或独立的操作系统,即使使用相同的设施。
5 结论逆向物流在物流和供应链管理是一个相当新的概念,但据报道,它被广泛应用在越来越多的行业。
它是一种有效的装置,用于解决全球资源短缺,污染环境等问题。
不幸的是,在这一领域的理论研究及其工程应用的滞后。
它提供了具有深远的成本和战略优势,在竞争激烈的行业。
有效地利用逆向物流可以帮助公司在同行业竞争,尤其是在面对激烈的竞争和利润率低。
同时,由于越来越多的关注,对环境和资源的支付,可以预见,企业将自己设置障碍,因为不重视逆向物流管理。
据专家估计,逆向物流将发挥重要的作用,为企业的战略规划。
当然,逆向物流存在的另一个重要原因是,企业取得了良好的经济效益和社会效益。
因此,逆向物流的整体观点是必不可少的一个有利可图的和持续的业务策略,为企业实施逆向物流是迫在眉睫。
参考文献[1] 宋华,电子商务物流,电子供应链管理[M],中国人民大学出版社.[2] 汪爱华,专业英语物流及供应供应链管理[M],北京理工大学出版社.[3] 曾月红,企业物流运作模型的研究[J],当今科学与技术,2007(2):36-37.[4] 李坚,企业物流运作模式的分析[M],商场现代化,2006(487):140.[5] 宋岩,梁刚建,蓝小婷。