人教版高中数学必修三 学业分层测评9 简单随机抽样
2014年人教A版高中数学必修三 2.1.3 《分层抽样》

入的家庭280个,低收入的家庭95个,为了了解生活购买力的
某项指标,要从中抽取一个容量为100的样本
(C)从1 000名工人中,抽取100名调查上班途中所用时间
(D)从生产流水线上,抽取样本检查产品质量
2.分层抽样又称为类型抽样,即将相似的个体归入一类(层), 然后每层各抽若干个个体构成样本,所以分层抽样为保证每个
(3)采用系统抽样时,当总体容量N能被样本容量n整除时,
抽样间隔为 k
N 当总体容量不能被样本容量整除时,先用 ; n
简单随机抽样剔除多余个体,抽样间隔为 k N .
n
【典例训练】
1.(2012·浏阳高一检测)①学校为了了解高一学生的情况,
从每班抽2人进行座谈;②一次数学竞赛中,某班有10人的成 绩在110分以上,10人的成绩在100~110分,30人的成绩在 90~100分,12人的成绩低于90分,现在从中抽取12人了解有 关情况;③运动会服务人员为参加400 m决赛的6名同学安排跑 道.就这三件事,合适的抽样方法为( )
2.1.3 分层抽样
1.理解分层抽样的概念.
2.掌握分层抽样的一般步骤. 3.区分简单随机抽样、系统抽样和分层抽样,并选择适当的方 法进行抽样.
1.本节重点是正确理解分层抽样的定义和步骤. 2.本节难点是灵活应用分层抽样抽取样本,并恰当地选择三种 抽样方法解决现实生活中的抽样问题.
分层抽样的有关概念
分层抽样的设计 【技法点拨】 分层抽样的操作步骤
第一步,计算样本容量与总体的个体数之比.
第二步,将总体分成互不交叉的层,按比例确定各层要抽取的
个体数.
第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的 个体. 第四步,将各层抽取的个体合在一起,就得到所取样本.
高中数学必修3概率统计常考题型:简单随机抽样

【知识梳理】1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.抽签法把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.3.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.【常考题型】题型一、简单随机抽样的概念【例1】下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【类题通法】简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.【对点训练】下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.题型二、抽签法及其应用【例2】(1)下列抽样实验中,适合用抽签法的有()A.从某厂生产3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[解析]A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.[答案] B(2)某大学为了选拔世博会志愿者,现从报告的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.[解]第一步,将18名同学编号,号码是01,02, (18)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,所得号码对应的同学就是志愿小组的成员.【类题通法】1.抽签法的适用条件一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当总体容量和样本容量都较小时适宜用抽签法.2.应用抽签法的关注点(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.(4)要逐一不放回抽取.【对点训练】现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.解:总体和样本数目较小,可采用抽签法进行:①先将30本书进行编号,从1编到30;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.题型三、随机数表法的应用【例3】(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号____________________.(下面抽取了随机数表第1行至第5行.)03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 9597 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 7316 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30[解析]从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.[答案]227,665,650,267(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[解]第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)【类题通法】利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同?需先调整到一致两再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.【对点训练】现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.【练习反馈】1.为了了解一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量解析:选C200个零件的长度是从总体中抽出的个体所组成的集合,所以是总体的一个样本.故选C.2.抽签法中确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体“搅拌均匀”,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2.答案:0.24.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,395.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.。
2023年人教版高中数学第九章统计考点题型与解题方法

(名师选题)2023年人教版高中数学第九章统计考点题型与解题方法单选题1、下列抽样方法是简单随机抽样的是()A.某医院从200名医生中,挑选出50名最优秀的医生去参加抗疫活动B.从10个手机中逐个不放回地随机抽取2个进行质量检验C.从空间直角坐标系中抽取10个点作为样本D.饮料公司从仓库中的500箱饮料中一次性抽取前10箱进行质量检查答案:B分析:根据简单随机抽样的特点逐项判断可得答案.对于A,某医院从200名医生中,挑选出50名最优秀的医生去参加抗疫活动,每个人被抽到的机会不相等,故错误;对于B,从10个手机中逐个不放回地随机抽取2个进行质量检验,是简单随机抽样,故正确;对于C,从空间直角坐标系中抽取10个点作为样本,由于被抽取的样本的总体个数是无限的,所以不是简单随机抽样,故错误;对于D,饮料公司从仓库中的500箱饮料中一次性抽取前10箱进行质量检查,不是逐个抽取,所以不是简单随机抽样,故错误.故选:B.2、为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:①样本数据落在区间[300,500)的频率为0.45;②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;③样本的中位数为480万元.其中正确结论的个数为A.0B.1C.2D.3答案:D解析:根据直方图求出a=0.0025,求出[300,500)的频率,可判断①;求出[200,500)的频率,可判断②;根据中位数是从左到右频率为0.5的分界点,先确定在哪个区间,再求出占该区间的比例,求出中位数,判断③.由(0.001+0.0015+0,002+0.0005+2a)×100=1,a=0.0025,[300,500)的频率为(0.002+0.0025)×100=0.45,①正确;[200,500)的频率为(0.0015+0.002+0.0025)×100=0.55,②正确;[200,400)的频率为0.3,[200,500)的频率为0.55,中位数在[400,500)且占该组的4,5×100=480,③正确.故中位数为400+0.5−0.30.25故选:D.小提示:本题考查补全直方图,由直方图求频率和平均数,属于基础题3、某射击运动员6次的训练成绩分别为:88,91,89,88,86,85,则这6次成绩的第70百分位数为()A.89B.89.5C.90D.90.5答案:A分析:先将数据按从小到大的顺序排列,计算6×70%=4.2不是整数,则所求的是从小到大排列的第5位数6次考试数学成绩从小到大为:85,86,88,88,89,91,6×70%=4.2,∴这名学生6次训练成绩的第70百分位数为89 .故选:A4、数据x1,x2,x3,…,x m的平均数为x,数据y1,y2,y3,…,y n的平均数为y,则数据x1,x2,x3,…,x m,y1,y2,y3,…,y n的平均数为()A.xn +ymB.xm+ynC.nx+mym+n D.mx+nym+n答案:D分析:利用平均数的计算公式计算.由题意得:x1+x2+x3+⋯+x m=mx,y1+y2+y3+⋯+y n=ny,所以x1+x2+x3+⋯+x m+y1+y2+y3+⋯+y nm+n =mx+nym+n故选:D5、人口普查是世界各国所广泛采用的搜集人口资料的一种科学方法,是提供全国基本人口数据的主要来源.根据人口普查的基本情况,可以科学的研究制定社会、经济、科教等各项发展政策,是国家科学决策的重要基础工作,人口普查资料是制定人口政策的依据和前提.截止2020年10月10日,我国共进行了六次人口普查,下图是这六次人口普查的人数和增幅情况,下列说法正确的是()A.人口数逐次增加,第二次增幅最大B.第六次普查人数最多,第四次增幅最小C.第六次普查人数最多,第三次增幅最大D.人口数逐次增加,从第二次开始增幅减小答案:C分析:人口数由柱状图判断,增幅由折线图判断.A.人口数逐次增加,第三次增幅最大,故错误;B.第六次普查人数最多,第六次增幅最小,故错误;C.第六次普查人数最多,第三次增幅最大,故正确;D.人口数逐次增加,从第三次开始增幅减小,故错误;故选:C6、新冠肺炎疫情的发生,我国的三大产业均受到不同程度的影响,其中第三产业中的各个行业都面临着很大的营收压力.2020年7月国家统计局发布了我国上半年国内经济数据,如图所示:图1为国内三大产业比重,图2为第三产业中各行业比重.以下关于我国上半年经济数据的说法正确的是()A.第一产业的生产总值与第三产业中“租赁和商务服务业”的生产总值基本持平B.第一产业的生产总值超过第三产业中“房地产业”的生产总值C.若“住宿餐饮业”生产总值为7500亿元,则“金融业”生产总值为32500亿元D.若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元答案:D分析:利用扇形统计图和第三产业中各行业比重统计图的数据即可求解.对于A,57%×6%=3.42%<6%,错误;对于B,57%×13%=7.41%>6%,错误;对于C,75003%×16%=4000(亿),错误;对于D,根据题意,第二产业生产总值为4104016%×57%×37%=166500亿元,正确.故选:D.7、已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为x,方差为s2,则()A.x=5,s2=2B.x=5,s2=1.6C.x=4.9,s2=1.6D.x=5.1,s2=2答案:B分析:设这10个数据分别为:x1,x2,⋯,x7,x8=4,x9=5,x10=6,进而根据题意求出x1+x2+⋯+x7和(x1−5)2+(x2−5)2+⋯+(x7−5)2,进而再根据平均数和方差的定义求得答案.设这10个数据分别为:x1,x2,⋯,x7,x8=4,x9=5,x10=6,根据题意x1+x2+⋯+x77=5⇒x1+x2+⋯+x7=35,(x1−5)2+(x2−5)2+⋯+(x7−5)27=2⇒(x1−5)2+(x2−5)2+⋯+(x7−5)2=14,所以x=x1+x2+⋯+x1010=35+4+5+610=5,s2=(x1−5)2+(x2−5)2+⋯+(x10−5)210=14+(4−5)2+(5−5)2+⋯+(6−5)210=1.6.故选:B.8、中国营养学会把走路称为“最简单、最优良的锻炼方式”,它不仅可以帮助减肥,还可以增强心肺功能、血管弹性、肌肉力量等.下图为甲、乙两人在同一星期内日步数的折线统计图:则下列结论中不正确的是()A.这一星期内甲的日步数的中位数为11600B.乙的日步数星期四比星期三增加了1倍以上C.这一星期内甲的日步数的平均值大于乙D.这一星期内甲的日步数的方差大于乙答案:B分析:对于A:直接求出中位数;对于B:求出乙的星期三和星期四步数,计算可得;对于C:分别计算出甲、乙平均数,即可判断;对于D:分别计算出甲、乙方差,即可判断;对于A:甲的步数:16000,7965,12700,2435,16800,9500,11600.从小到大排列为:2435,7965,9500,11600,12700,16000,16800.中位数是11600.故A正确;对于B:乙的星期三步数7030,星期四步数12970.因为129707030≈1.84<2,所以没有增加1倍上.故B不正确;对于C:x甲=17(16000+7965+12700+2435+16800+9500+11600)=11000,x乙=17(14200+12300+7030+12970+5340+11600+10060)=10500.所以x甲>x乙.故C正确;对于D:s甲2=17[(16000−11000)2+(7965−11000)2+(12700−11000)2+(2435−11000)2+(16800−11000)2+(9500−11000)2+(11600−11000)2]≈20958636s乙2=17[(14200−10500)2+(12300−10500)2+(7030−10500)2+(12970−10500)2+(5340−10500)2+(11600−10500)2+(10060−10500)2]≈9014429所以s甲2>s乙2.故D正确;故选:B.9、某老师为了解某班50名同学在家学习的情况,决定将本班学生依次编号为01,02,⋅⋅⋅,50.利用下面的随机数表选取10名学生调查,选取方法是从下面随机数表的第1行第2列开始由左到右依次读取两个数字,则选出来的第4名学生的编号为()7 2 5 6 0 8 1 3 0 2 5 8 3 2 4 9 8 7 0 2 4 8 1 2 9 7 2 8 0 19 8 3 1 0 4 9 2 3 1 4 9 3 5 8 2 0 9 3 6 2 4 4 8 6 9 6 9 3 87 4 8 1A.25B.24C.29D.19答案:C分析:利用随机表法从第1行第2列开始由左到右依次读取两个数字,超过50的跳过,重复的只取一个即可求解.从题中随机数表的第1行第2列开始由左到右依次读取两个数字,超过50的跳过,重复的只取一个可得:25 ,30 ,24,2 9,19,10 ,49 ,23,14,20,故选出来的第4名学生的编号为29.故选:C.10、下列调查方式较为合适的是()A.为了了解灯管的使用寿命,采用普查的方式B.为了了解我市中学生的视力状况,采用抽样调查的方式C.调查一万张面值为100元的人民币中有无假币,采用抽样调查的方式D.调查当今中学生喜欢什么体育活动,采用普查的方式答案:B分析:根据实际情况选择合适的调查方式即可判断.对A,为了了解灯管的使用寿命,应采用抽样调查的方式,故A错误;对B,为了了解我市中学生的视力状况,采用抽样调查的方式,故B正确;对C,调查一万张面值为100元的人民币中有无假币,采用抽样普查的方式,故C错误;对D,调查当今中学生喜欢什么体育活动,采用抽样普查的方式,故D错误.故选:B.11、某高中为了解学生课外知识的积累情况,随机抽取200名同学参加课外知识测试,测试共5道题,每答对一题得20分,答错得0分.已知每名同学至少能答对2道题,得分不少于60分记为及格,不少于80分记为优秀,测试成绩百分比分布图如图所示,则下列说法正确的是()A.该次课外知识测试及格率为90%B.该次课外知识测试得满分的同学有30名C.该次测试成绩的中位数大于测试成绩的平均数D.若该校共有3000名学生,则课外知识测试成绩能得优秀的同学大约有1440名答案:C分析:由百分比图知,成绩为100分、80分、60分、40分的百分比分别为12%, 48%, 32%, 8%,结合各项的描述即可判断其正误.由图知,及格率为1−8%=92%,故A错误.该测试满分同学的百分比为1−8%−32%−48%=12%,即有12%×200=24名,B错误.由图知,中位数为80分,平均数为40×8%+60×32%+80×48%+100×12%=72.8分,故C正确.由题意,3000名学生成绩能得优秀的同学有3000×(48%+12%)=1800,故D错误.故选:C12、为了了解全校240名高一学生的身高情况,从中随机抽取40名高一学生进行测量,在这个问题中,样本指的是()A.240名高一学生的身高B.抽取的40名高一学生的身高C.40名高一学生D.每名高一学生的身高答案:B分析:找出考查的对象是某校高一学生的身高,得到样本是抽取的40名高一学生的身高.总体是240名高一学生的身高情况,则个体是每个学生的身高情况,故样本是40名学生的身高情况.故选:B.小提示:本题考查的抽样相关概念的理解,注意区分总体、个体、样本、样本容量这四个概念,属于基础题. 双空题13、一组数据:7,6,3,2,8,3,5,6,9,7的中位数是___________;85%分位数是___________.答案:68分析:首先将数据从小到大排列,即可求出中位数与85%分位数;解:将数据从小到大排列为:2、3、3、5、6、6、7、7、8、9,故中位数为6,又10×85%=8.5,故这一组数据的85%为第9个数为8;所以答案是:6;8;14、设样本数据x1、x2、…、x10的均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,⋯,10),则y1、y2、⋯、y10的均值和方差分别为________,_________.答案:1+a4解析:由题意得出110∑x i10i=1=1,110∑(x i−1)210i=1=4,然后利用平均数和方差的计算公式可计算出数据y1、y2、⋯、y10的均值和方差.由题意可得110∑x i10i=1=1,110∑(x i−1)210i=1=4,则y1、y2、⋯、y10的均值为y=110∑y i10i=1=110∑(x i+a)10i=1=110(∑x i10i=1+10a)=110∑x i10i=1+a=1+a,方差为s2=110∑(y i−y)210i=1=110∑[(x i+a)−(1+a)]210i=1=110∑(x i−1)210i=1=4.所以答案是:1+a;4.小提示:本题考查平均数和方差的计算,灵活利用平均数和方差公式计算是解答的关键,考查计算能力,属于基础题.15、某校高一年级三个班共有学生120名,这三个班的男女生人数如下表所示,已知在全年级中随机抽取1名学生,抽到二班女生的概率是0.2,则x=_________.现用分层抽样的方法在全年级抽取30名学生,则应在三班抽取的学生人数为________.答案: 24 9分析:由于每个个体被抽到的概率都相等,由x120=0.2,可得得x的值.先求出三班总人数为 36,用分层抽样的方法在全年级抽取30名学生,求出每个学生被抽到的概率为30120,用三班总人数乘以此概率,即得所求.由题意可得x120=0.2,解得x=24.三班总人数为120−20−20−24−20=36,用分层抽样的方法在全年级抽取30名学生,每个学生被抽到的概率为30120=14,故应从三班抽取的人数为36×14=9,所以答案是: 24; 9.小提示:本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.16、下表记录了某地区一年之内的月降水量.根据上述统计表,该地区月降水量的中位数是______;80%分位数是_________.答案: 56 64分析:根据中位数和百分位数求解数据按从小到大排序得:46,48,51,53,53,56,56,56,58,64,66,71,它的中位数为56;80%×12=9.6,第10个数是64所以答案是:56,6417、要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.宜采用的抽样方法依次为________、________.答案:分层抽样简单随机抽样解析:根据分层抽样和简单随机抽样的定义直接判断即可.解析:①各层间差距较大,宜用分层抽样;②总体较少,宜用简单随机抽样.所以答案是:分层抽样,简单随机抽样.小提示:本题考查抽样方法,旨在考查学生对概念的掌握程度,考查阅读能力.解答题18、某市为了了解人们对“中国梦”的伟大构想的认知程度,针对本市不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有m(m>20)人,按年龄分成5组,其中第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45],得到如图所示的频率分布直方图.(1)根据频率分布直方图,估计这m人的平均年龄和第80百分位数;(2)现从以上各组中采用分层随机抽样的方法抽取20人,担任本市的宣传使者.若第四组宣传使者的年龄的平,第五组宣传使者的年龄的平均数与方差分别为43和1,求这m人中35~45岁所有人均数与方差分别为37和52的年龄的方差.答案:(1)平均年龄32.25岁,第80百分位数为37.5;(2)10.分析:(1)直接根据频率分布直方图计算平均数和百分位数;(2)由分层抽样得第四组和第五组分别抽取4人和2人,进而设第四组、第五组的宣传使者的年龄的平均数分别为x4,x5,方差分别为s42,s52,第四组和第五组所有宣传使者的年龄平均数为z,方差为s2,进而根据方差{4×[s42+(x4−z)2]+2×[s52+(x5−z)2]},代入计算即可得答案.公式有s2=16解:(1)设这m人的平均年龄为x,则x=22.5×0.05+27.5×0.35+32.5×0.3+37.5×0.2+42.5×0.1=32.25.设第80百分位数为a,由5×0.02+(40−a)×0.04=0.2,解得a=37.5.(2)由频率分布直方图得各组人数之比为1:7:6:4:2,故各组中采用分层随机抽样的方法抽取20人,第四组和第五组分别抽取4人和2人,设第四组、第五组的宣传使者的年龄的平均数分别为x4,x5,方差分别为s42,s52,,s52=1,则x4=37,x5=43,s42=52设第四组和第五组所有宣传使者的年龄平均数为z,方差为s2.=39,则z=4x4+2x56{4×[s42+(x4−z)2]+2×[s52+(x5−z)2]}=10,s2=16因此,第四组和第五组所有宣传使者的年龄方差为10,据此,可估计这m人中年龄在35~45岁的所有人的年龄方差约为10.19、为了推进分级诊疗,实现“基层首诊、双向转诊、急慢分治、上下联动”的诊疗模式,某城市自2020年起全面推行家庭医生签约服务.已知该城市居民约为1000万,从0岁到100岁的居民年龄结构的频率分布直方图如图1所示.为了解各年龄段居民签约家庭医生的情况,现调查了1000名年满18周岁的居民,各年龄段被访者签约率如图2所示.(1)估计该城市年龄在50岁以上且已签约家庭医生的居民人数;(2)据统计,该城市被访者的签约率约为44%.为把该城市年满18周岁居民的签约率提高到55%以上,应着重提高图2中哪个年龄段的签约率?并根据已有数据陈述理由.答案:(1)195.99万;(2)应着重提高30-50这个年龄段的签约率,理由见解析.解析:(1)根据题中频率分布直方图与各年龄段被访者的签约率,分别计算50岁以上各年龄段的居民人数,再求和,即可得出结果;(2)根据题中条件,先确定年龄在18-30岁的人数,年龄在30-50岁的人数,以及年龄在50岁以上的人数,即可确定结果.(1)该城市年龄在50-60岁的签约人数为:1000×0.015×10×55.7%=83.55万;在60-70岁的签约人数为:1000×0.010×10×61.7%=61.7万;在70-80岁的签约人数为:1000×0.004×10×70.0%=28万;在80岁以上的签约人数为:1000×0.003×10×75.8%=22.74万;故该城市年龄在50岁以上且已签约家庭医生的居民人数为:83.55+61.7+28+22 .74=195.99万;(2)年龄在10-20岁的人数为:1000×0.005×10=50万;年龄在20-30岁的人数为:1000×0.018×10=180万.所以,年龄在18-30岁的人数大于180万,小于230万,签约率为30.3%;年龄在30-50岁的人数为1000×0.037×10=370万,签约率为37.1%.年龄在50岁以上的人数为:1000×0.032×10=320万,签约率超过55%,上升空间不大.故由以上数据可知这个城市在30-50岁这个年龄段的人数为370万,基数较其他年龄段是最大的,且签约率非常低,所以为把该地区满18周岁居民的签约率提高到以上,应着重提高30-50这个年龄段的签约率.20、某服装公司计划今年夏天在其下属实体店销售一男款衬衫,上市之前拟在该公司的线上旗舰店进行连续20天的试销,定价为260元/件.试销结束后统计得到该线上专营店这20天的日销售量(单位:件)的数据如图.(1)若该线上专营店试销期间每件衬衫的进价为200元,求试销期间该衬衫日销售总利润高于9500元的频率.(2)试销结束后,这款衬衫正式在实体店销售,每件衬衫定价为360元,但公司对实体店经销商不零售,只提供衬衫的整箱批发,大箱每箱有70件,批发价为160元/件;小箱每箱有60件,批发价为165元/件.某实体店决定每天批发大小相同的2箱衬衫,根据公司规定,当天没销售出的衬衫按批发价的8折转给另一家实体店.根据往年的销售经验,该实体店的销售量为线上专营店销售量的80%,以线上专营店这20天的试销量估计该实体店连续20天的销售量.以该实体店连续20天销售该款衬衫的总利润作为决策,试问该实体店每天应该批发2大箱衬衫还是2小箱衬衫?答案:(1)0.55;(2)该实体店应该每天批发2大箱衬衫.分析:(1)先利用不等式性质求得要使得日销售总利润高于9500元时日销售衬衫的件数的取值范围,然后根据频数分布图计算对应的天数,从而求得响应频率;.(2)由题可知,该实体店20天的日销售量情况为3天日销售量为48件,6天日销售量为80件,7天日销售量为128件,4天日销售量为160件.分别就选择批发2小箱时和2大箱时各种情况下的日利润列举计算,并求得相应的总利润,进行比较大小即可做出判断.解:(1)因为试销期间每件衬衫的利润为260−200=60元,≈158.3,所以要使得日销售总利润高于9500元,则日销售衬衫的件数大于950060=0.55.故所求频率为7+420(2)由题可知,该实体店20天的日销售量情况为3天日销售量为48件,6天日销售量为80件,7天日销售量为128件,4天日销售量为160件.若选择批发2小箱,则批发成本为60×2×165=19800元,当日销售量为48件时,当日利润为48×360+0.8×(120−48)×165−19800=6984元;当日销售量为80件时,当日利润为48×360+0.8×(120−80)×165−19800=14280;当日销量为128件或160件时,当日利润为120×360−19800=23400元.所以这20天销售这款衬衫的总利润为6984×3+14280×6+23400×11=364032元.若选择批发2大箱,则批发成本为70×2×160=22400元,当日销售量为48件时,当日利润为48×360+0.8×(140−48)×160−22400=6656元;当日销售量为80件时,当日利润为80×360+0.8×(140−80)×160−22400=14080元;当日销量为128件时,当日利润为128×360+0.8×(140−128)×160−22400=25216元.当日销售量为160件时,当日利润为140×360−22400=28000元.所以这20天销售这款衬衫的总利润为6656×3+14080×6+25216×7+28000×4=392960元. 因为392960>364032,所以该实体店应该每天批发2大箱衬衫.。
高中数学必修三习题:第二章2.1-2.1.1简单随机抽样含答案

第二章统计2.1 随机抽样2.1.1 简单随机抽样A级基础巩固一、选择题1.下面抽样方法是简单随机抽样的是( )A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)解析:A中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.答案:D2.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是( )A.总体是240名B.个体是每一个学生C.样本是40名学生D.样本容量是40解析:在这个问题中,总体是240名学生的身高,个体是每个学生的身高,样本是40名学生的身高,样本容量是40.答案:D3.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为( )A.36% B.72%C.90% D.25%解析:3640×100%=90%.答案:C4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310解析:根据简单随机抽样的定义知个体a两次被抽到的可能性相等,均为110.答案:A5.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )A.①②B.①③C.②③D.③解析:根据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.答案:C二、填空题6.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.解析:由抽签法的步骤知,正确顺序为④①③②⑤.答案:④①③②⑤7.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的30个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.解析:30个小球相当于号签,搅拌均匀后逐个不放回地抽取,是典型的抽签法.答案:抽签法8.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是___________________________________________________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 3281 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 3596 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 3216 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 7080 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 4982 96 59 26 94 66 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,39三、解答题9.某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.解:方案如下:第一步,将18名志愿者编号,号码为01,02,03, (18)第二步,符号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.B 级 能力提升1.(2015·湖北卷)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:254粒和1 534石中夹谷的百分比含量是大致相同的,可据此估计这批米内夹谷的数量.设1 534石米内夹谷x 石,则由题意知x 1 534=28254,解得x ≈169.故这批米内夹谷约为169石.答案:B2.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N =________.解析:依题意有30N=25%,解得N =120. 答案:1203.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解:第一步:先确定艺人:(1)将30名内地艺人从01~30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1~20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
《简单随机抽样》教学设计

《简单随机抽样》教学设计一、教学内容与内容解析1.内容:统计,简单随机抽样,抽签法,随机数表法。
2.内容解析:本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。
本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量X i与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,X n为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。
人教版高中数学必修3第二章统计-《2.1.3分层抽样》教案(10)

2.1.3分层抽样学习目标:1、知识与技能:(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。
3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。
4、重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。
【探究新知】一、分层抽样的定义。
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。
【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。
(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。
二、分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分。
(2)按比例确定每层抽取个体的个数。
(3)各层分别按简单随机抽样的方法抽取。
(4)综合每层抽样,组成样本。
【说明】(1)分层需遵循不重复、不遗漏的原则。
(2)抽取比例由每层个体占总体的比例确定。
(3)各层抽样按简单随机抽样进行。
探究交流(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )A 、每层等可能抽样B 、每层不等可能抽样C 、所有层按同一抽样比等可能抽样(2)如果采用分层抽样,从个体数为N 的总体中抽取一个容量为n样本,那么每个个体被抽到的可能性为 ( )A .N 1B.n 1C.N nD.N n 点拨:(1)保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选C 。
人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测
人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。
高中数学必修3 抽样方法(学案)
2.1随机抽样(学案)学习目标:1.理解简单随机抽样,会用简单随机抽样从总体中抽取样本; 2.理解系统抽样,会用系统抽样从总体中抽取样本; 3.理解分层抽样,会用分层抽样从总体中抽取样本; 学法指导:自学课本50页—53页,通过对课本例题的分析研究,弄清楚简单随机抽样、系统抽..........样、分层抽样......的概念和抽样方法,并完成以下检测题,时间15分钟。
检测题:1.下列抽样试验中,用抽签法方便的是( )A .从某厂生产的5000件产品中抽取500件进行质量检验B .从某厂生产的1箱(15件)产品中抽取3件进行质量检验C .从某厂生产的1000件产品中抽取12件进行质量检验D .从某厂的生产线上每隔10分钟抽取一件产品进行检验 2.用随机数表法进行抽样有以下几个步骤①将总体中的个体编号;②获取样本号码;③决定开始的数字和方向; 这些步骤先后顺序应为( )A .①②③ B. ①③② C.③②① D. ③①② 3. 在含有30个个体的总体中,抽取一个容量为5的样本,则个体A 被抽到的概率为( )A301 B 61 C 51 D 654.为了了解参加一次知识竞赛的1252名学生的学习成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么(1)总体中应随机剔除的个体的数目是( )A. 2B. 4C. 5D. 6(2)剔除的方法可以采用( )A.抽签法B.随机数表法C.去掉部分差成绩和部分优秀成绩D.去掉部分中间成绩(3)分段的间隔k 为( )A.20B.25C.35D.50(4)在第一段抽取起始数采用的抽样方法是 ;(5)每个个体被抽到的可能性为( )A501 B 62625 C 12521 D 2515.某单位有老年人21人,中年人50人,青年人80人,为了调查他们的身体状况,从他们中抽取容量为15的样本(1)最适合抽取样本的方法是( )A .简单随机抽样-抽签法 B. 简单随机抽样-随机数表法 C.系统抽样 D.分层抽样(2)若采用分层抽样的方法,应该先从 人中剔除 人;(3)若采用分层抽样的方法,抽取的比例为 ,每层抽取的人数为 , , ;(4)若采用分层抽样的方法,在每一层中采用的抽样方法是 ;(5) 每个老年人被抽到的可能性为( );每个青年人被抽到的可能性为( )A.211 B. 15115 C. 801 D. 151806.请选出简单随机抽样、系统抽样、分层抽样各属于哪种类型抽样?简单随机抽样( ),系统抽样( ),分层抽样( ) A .有放回抽样 B. 不放回抽样课堂总结:2.简单随机抽样的两种方法:3.系统抽样的步骤:4.分层抽样的步骤:班级:姓名:学号:当堂训练:(15分钟)1.说出下列抽样比较适宜采用的方法。
课件_人教版高中数学必修三分层抽样PPT课件_优秀版
1.分层抽样是当总体由差异明显的几部分组成时采用的抽样 方法,进行分层抽样时应注意以下几点:
①分层抽样中分多少层、如何分层要视具体情况而定,
总的原则是,层内样本的差异要小,各层之间的样本差 异要大,且互不重叠。
系解统该抽 机(1样关)法对分,政分府层层机抽构样:改法革按的已某将,种要从特中抽征取2将0人用总下 体分成若干部分;
工的比例为5:3:2,从所有职工中抽取一个样本容量为400
(2)按比例确定每层抽取个体的个数; 在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和销后服务等情况,记这项调查为②.
则完成①、②这两项调查采用的抽样方法依次是( ) 分层抽样的抽样比为n/36,求得工程师、技术员、技工的人数分别为n/6,n/3,n/2,所以n应是6的倍数,36的约数,即n=6,12,18.
职工为400×=200(人);青年职工为400×=120(人); (1)分层:按某种特征将总体分成若干部分;
A.系统抽样 B.简单随机抽样 C.分层抽样 D.随机数表法
【例2 】某企业共有3200名职工,其中,中,青,老年职
工的比例为5:3:2,从所有职工中抽取一个样本容量为400 人的样本,应采用哪种抽样方法更合理?中,青,老年职 ③在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样。
掌握分层抽样的一般步骤。 当样本容量为n时,系统抽样间隔为36/n∈N.
一、分层抽样的定义:
一般地,在抽样时,将总体分成互不交叉的层,然后按 照一定的比例,从各层独立地抽取一定数量的个体,将各层取 出的个体合在一起作为样本,这种抽样的方法叫分层抽样。
9.1.1简单随机抽样-【新教材】人教A版(2019)高中数学必修第二册课前检测(含解析)
人教A版9.1.1简单随机抽样课前检测一、单选题1.对于简单随机抽样,每个个体每次被抽到的机会()A.相等B.不相等C.无法确定D.与抽取的次数有关2.天气预报说,在今后的三天中,每天下雨的概率都为60%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:用1,2,3,4,5,6表示下雨,从下列随机数表的第1行第3列的1开始读取,直到读取了10组数据,18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 1055 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24据此估计,这三天中恰有两天下雨的概率近似为()A.35B.25C.12D.7103.用简单随机抽样方法从含有10个个体的总体中, 抽取一个容量为3的样本, 其中个体甲被第三次抽到的可能性为().A.13B.19C.310D.1104.福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表(如下)第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为()A.23 B.09 C.02 D.175.总体由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行第6列的数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.12 B.07 C.15 D.166.某班有40位同学,座位号记为01,02,,40,用下面的随机数表选取5组数作为参加青年志愿者活动的5位同学的座位号.4954 4454 8217 3793 2378 8735 2096 4384 2634 91645724 5506 8877 0474 4767 2176 3350 2583 9212 0767 5086选取方法是从随机数表第一行的第11列和第12列数字开始,由左到右依次选取两个数字,则选出来的第5个志愿者的座位号是( )A.09 B.20 C.37 D.387.下列抽样方法是简单随机抽样的是( )A.坛子中有1个大球,4个小球,搅拌均匀后,从中随机摸出一个球B.在校园里随意选三名同学进行调查C.在剧院里抽取三名观众调查,将所有座号写在同样的纸片上,放入箱子搅匀后逐个抽取,共取三张D.买彩票时随手写几组号8.下列4个抽样中,简单随机抽样的个数是( )①一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签. A.0 B.1 C.2 D.39.某班对一次实验成绩进行分析,利用随机数表法抽取样本时,先将50个同学按01,02.03,…50进行编号,然后从随机数表第9行第11列的数开始向右读,则选出的第6个个体是()(注:表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 3815 51 00 13 42 99 66 02 79 54A.00 B.13 C.42 D.4410.下列抽样方法是简单随机抽样的是()A.从100个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中逐个抽取10个做奇偶性分析D.运动员从8个跑道中随机选取一个跑道二、填空题11.一个总体数为60的个体编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第7~8列的22开始,依次向下,到最后一行后,再从下两列的上边开始,继续向下读,直到取足样本,则抽取样本的号码是______.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 6012.某中学高二年级甲班的学生共有25名女生和35名男生,现以简单随机抽样的方法从甲班全班同学中推选5名学生代表甲班参加全校演讲比赛,则甲班中某女生被抽到的概率是________.13.2020年抗击新冠肺炎疫情期间,为不影响学生的学习生活,学校实行停课不停学.为督促学生按时学习,某校要求所有学生每天打卡,全校学生的总人数为1200人.某日随机抽查200人,发现因各种原因未及时打卡的学生数为12,估计该日这个学校未及时打卡的学生数为______.14.某工厂共有n名工人,为了调查工人的健康情况,从中随机抽取20名工人作为调查对象,若每位工人被抽到的可能性为15,则n ________.三、解答题15.已知总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5个数字开始,由左到右依次选取两个数字,写出选取的5个个体编号.7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 748116.某单位拟从40名员工中选1人赠送电影票,可采用下面两种选法:选法一:将这40名员工按1~40进行编号,并相应地制作号码为1〜40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的员工幸运入选;选法二:将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名员工逐一从中摸取一个球,则摸到红球的员工幸运入选.试问:(1)这两种选法是否都是抽签法,为什么?(2)这两种选法中每名员工被选中的可能性是否相等?参考答案1.A【分析】根据简单随机抽样的概念,直接选出正确选项.【详解】根据简单随机抽样的概念可知,每个个体每次被抽到的机会相等,故选A.【点睛】本小题主要考查简单随机抽要的概念,属于基础题.2.B【分析】由题意知模拟三天恰有两天下雨的结果,观察经随机模拟产生的数据,用列举法找出表示三天中恰有两天下雨的数据,再由古典概型的概率公式即可求解.【详解】由题意知模拟三天恰有两天下雨的结果,观察经随机模拟产生的数据可得,表示三天中恰有两天下雨的数据有:4 17,3 86,19 6,2 06,共4组数据,所以这三天中恰有两天下雨的概率42 P105 ==.【点睛】本题主要考查模拟方法估计概率,属于基础题型.3.D【解析】分析:由随机抽样的特点可得,在抽样过程中每个个体在一次抽取中被抽中的概率是相等的,结合已知中的总体容量可得答案.详解:在抽样过程中,个体甲每一次被抽中的概率是相等的,由于总体容量为10,所以“个体甲被第三次抽到的可能性为110”.故选D.点睛:简单随机抽样的特点是等可能抽样,即在抽样过程中每个个体被抽到的概率是相等的,本题考查学生对抽样特点的理解和应用.4.C从随机数表第1行的第6列数字开始由左到右依次选取两个数字,如果在01和33之间就取出来,如果不在该区间,就不取,以此类推得到选出来的第6个红色球的编号.【详解】从随机数表第1行的第6列数字开始由左到右依次选取两个数字,除去大于33以及重复数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.故答案为C.【点睛】本题主要考查随机数表,意在考查学生对该知识的掌握水平和分析推理能力.5.C【分析】根据随机数表的选数方法进行判断即可.【详解】按照随机数表法的方法取数为03,07,12,16,15,所以第5个个体的编号为15.故选:C【点睛】本题考查了随机数表的方法,属于基础题.6.B【分析】根据随机数表法的方法进行,每次选两个数字,选过的两个数字不要,即可选出正确答案. 【详解】解析:由题意结合随机数表可得由左到右依次选取的两个数字为17,37,23,35,20,故选出来的第5个志愿者的座位号是20.故选:B【点睛】本题考查了随机数表的作用方法,属于基础题.7.C【分析】根据简单随机抽样的定义直接判断即可.解析:A不是,因为球大小不同,造成不公平.B,D不是,因为“随意选”“随手写”并不说明对每个个体机会均等.C符合随机抽样的定义,是简单随机抽样.【点睛】本题考查了简单随机抽样的定义,属于基础题.8.B【分析】根据简单随机抽样的特点逐个判断即可.【详解】①:不是简单随机抽样.因为一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件,它不是“逐个抽取”.②:不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”③:不是简单随机抽样.因为50名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.④:是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的、等可能的抽样.综上,只有④是简单随机抽样.故选:B【点睛】本题考查了简单抽样的定义,属于基础题.9.B【分析】根据随机数表抽取原则按序得到所抽取的个体即可得到结果.【详解】第9行第11列开始读取,依次得到的编号为:78(舍)、64(舍)、56(舍)、07、82(舍)、52(舍)、42、07(重复,舍)、44、38、15、51(舍)、00(舍)、13即第6个个体为13故选:B【点睛】本题考查简单随机抽样方法中的随机数表法,关键是明确随机数表抽取时,超出所给编号范围和重复抽取的编号需去除.10.D【分析】根据简单随机抽样的四个特征:①有限性;②逐个抽取;③不放回;④等可能性,进行判断. 【详解】解:选项A错在“一次性”抽取;选项B错在“有放回”抽取;选项C错在总体容量无限;选项D符合,故选:D.【点睛】本题考查简单随机抽样的特征,是基础题.11.22,25,00,32,39,38,18【分析】根据题目中的规则在编号范围内取数即可得解.【详解】先选取22,向下69不符合要求,下面选取25,向下87,79不符合要求,再从下两列的上边开始,继续向下读,00、32、39、38、18,因此,抽取的样本的号码是22,25,00,32,39,38,18.故答案为:22,25,00,32,39,38,18.【点睛】本题考查了随机数表法,属于基础题.12.1 12【分析】根据简单随机抽样的特点可直接选出答案.【详解】全班共有253560+=名学生,抽取5人,以简单随机抽样的方法,甲班中某女生被抽到的概率是51 6012=.故答案为:1 12【点睛】本题考查的是简单随机抽样,较简单. 13.72【分析】根据所占比例可得答案.【详解】由题意得12120072200⨯=,所以该日这个学校未及时打卡的学生数为72.故答案为:72.【点睛】本题考查由部分估计总体,属于基础题.14.100【分析】抽取人数除以总人数,即得每位工人被抽到的概率,结合已知,得到关于n的方程,求解即得.【详解】解:∵该工厂共有n名工人,随机抽取20名,∴每名工人被抽到的概率为20n,∴2015n=,解得100n=,故答案为:100.【点睛】本题考查简单随机抽样中事件的概率,等可能事件的概率问题,属基础题.15.08,02,14,07,01.【分析】根据随机数表,依次进行选择即可得到结论.【详解】解:从随机数表的第一行得第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次选是08,02,14,07,,02,01等,其中02出现两次,所以依次选取的5个个体编号依次是08,02,14,07,01.【点睛】本题主要考查简单随机抽样的应用,正确理解随机数法是解决本题的关键,比较基础.16.(1)见解析;(2)这两种选法中每名员工被选中的可能性相等,均为1 40.【分析】(1)根据抽签法的特征判断即可得到结论;(2)每名员工被选中的可能性均为140,可知可能性相同.【详解】(1)选法一:满足抽签法的特征,是抽签法;选法二:不是抽签法抽签法要求所有的号签编号互不相同,而选法二中的39个白球无法相互区分(2)这两种选法中每名员工被选中的可能性相等,均为1 40【点睛】本题考查抽签法的判断与等可能事件的判断,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学业分层测评(九)简单随机抽样
(建议用时:45分钟)
[学业达标]
一、选择题
1.下列抽取样本的方式属于简单随机抽样的个数有()
(1)盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.
(2)从20件玩具中一次性抽取3件进行质量检验.
(3)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.
A.3B.2
C.1 D.0
【解析】①②③中都不是简单随机抽样,这是因为:①是放回抽样,②中是“一次性”抽取,而不是“逐个”抽取,③中“指定个子最高的5名同学”,不存在随机性,不是等可能抽样.
【答案】 D
2.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是()
A.1
10,1
10B.
3
10,
1
5
C.15,310 D .310,310
【解析】 根据简单随机抽样的定义知选A.
【答案】 A
3.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是( )
A.1100
B .125 C.15 D .14
【解析】 简单随机抽样是等可能性抽样,每个个体被抽到的机率都是20100=15.故选C.
【答案】 C
4.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则应编号为( )
A .1,2,3,4,5,6,7,8,9,10
B .-5,-4,-3,-2,-1,0,1,2,3,4
C .10,20,30,40,50,60,70,80,90,100
D .0,1,2,3,4,5,6,7,8,9
【解析】 利用随机数表法抽样时,必须保证所编号码的位数一致.
【答案】 D
5.某工厂的质检人员对生产的100件产品,采用随机数表法抽
取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是()
A.①②B.①③
C.②③D.③
【解析】根据随机数表的要求,只有编号时数字位数相同,才能达到随机等可能抽样.
【答案】 C
二、填空题
6.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.
【解析】由抽签法的步骤知,正确顺序为④①③②⑤.
【答案】④①③②⑤
7.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.
①2 000名运动员是总体;
②每个运动员是个体;
③所抽取的20名运动员是一个样本;
④样本容量为20;
⑤这个抽样方法可采用随机数法抽样;
⑥每个运动员被抽到的机会相等.
【解析】①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.
【答案】④⑤⑥
8.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=________.
【解析】30
N=25%,因此N=120.
【答案】120
三、解答题
9.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?【导学号:28750028】
【解】第一步,将元件的编号调整为010,011,012, (099)
100, (600)
第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.
第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.
第四步,与以上这6个号码对应的6个元件就是所要抽取的对象.10.天津某大学为了支持东亚运动会,从报名的60名大三学生
中选10人组成志愿小组,请用抽签法和随机数法设计抽样方案.【解】抽签法:
第一步:将60名大学生编号,编号为1,2,3, (60)
第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;
第三步:将60个号签放入一个不透明的盒子中,充分搅匀;
第四步:从盒子中逐个抽取10个号签,并记录上面的编号;
第五步:所得号码对应的学生,就是志愿小组的成员.
随机数法:
第一步:将60名学生编号,编号为01,02,03, (60)
第二步:在随机数表中任选一数开始,按某一确定方向读数;
第三步:凡不在01~60中的数或已读过的数,都跳过去不作记录,依次记录下10个得数;
第四步:找出号码与记录的数相同的学生组成志愿小组.
[能力提升]
1.下列说法中正确的是()
A.要考察总体情况,一定要把总体中每个个体都考察一遍
B.随机数表中每个位置出现各数字的可能性相同,因而随机数表是唯一的
C.当总体容量较大时,也可用简单随机抽样方法抽取样本,但是比较麻烦
D.因为利用随机数表法抽样时,开始数是人为约定的,所以抽
样不公平
【解析】 A 中,从节约费用等方面考虑,一般是通过样本去估计总体;B 中,随机数表不是唯一的,只要能保证每个位置各数字出现的可能性相等就是一张随机数表;D 中,由于约定开始数的时候是任意的,因此保证了抽样的公平性.
【答案】 C
2.从一群游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )
A.kn m
B .k +m -n C.km n D .不能估计
【解析】 设参加游戏的小孩有x 人,则k x =n m ,
因此x =km n .
【答案】 C
3.某中学高一年级有400人,高二年级有320人,高三年级有280人,以每人被抽取的可能性均为0.2,从该中学抽取一个容量为n 的样本,则n =________.
【解析】 ∵n 400+320+280
=0.2, ∴n =200.
【答案】 200
4.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.
【解】第一步:先确定艺人
(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;
(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.
第二步:确定演出顺序
确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。