二项分布及其应用题型总结

合集下载

高考数学一轮复习6 第6讲 二项分布及其应用

高考数学一轮复习6 第6讲 二项分布及其应用

第6讲二项分布及其应用最新考纲考向预测1.结合古典概型,了解条件概率,能计算简单随机事件的条件概率,了解条件概率与独立性的关系.2.通过具体实例,了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的实际问题.命题趋势条件概率、相互独立事件同时发生的概率、独立重复事件、二项分布和正态分布仍是高考考查的热点,三种题型均有可能出现.核心素养数据分析、数学建模1.条件概率(1)定义设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率.(2)性质①条件概率具有一般概率的性质,即0≤P(B|A)≤1;②如果B,C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.事件的相互独立性(1)定义设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)性质①若事件A与B相互独立,则P(B|A)=P(B),P(A|B)=P(A),P(AB)=P(A)P(B).②如果事件A与B相互独立,那么A与B,A与B,A与B也相互独立.3.独立重复试验与二项分布独立重复试验二项分布定义在相同条件下重复做的n在n次独立重复试验中,用X表示事件A次试验称为n次独立重复试验发生的次数,设每次试验中事件A发生的概率是p,此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率计算公式用A i(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…A n) =P(A1)P(A2)…P(A n)在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Ck n p k(1-p)n-k(k=0,1,2,…,n)常用结论1.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B),互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).2.两个概率公式(1)在事件B发生的条件下A发生的概率为P(A|B)=P(AB)P(B).注意其与P(B|A)的不同.(2)若事件A1,A2,…,A n相互独立,则P(A1A2…A n)=P(A1)P(A2)…P(A n).常见误区运用公式P(AB)=P(A)P(B)时,一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.1.判断正误(正确的打“√”,错误的打“×”)(1)条件概率一定不等于它的非条件概率.()(2)相互独立事件就是互斥事件.()(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.()(4)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b=1-p.()(5)P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B 同时发生的概率.()答案:(1)× (2)× (3)× (4)× (5)√2.(易错题)天气预报,在元旦假期甲地降雨的概率是0.2,乙地降雨的概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为( )A .0.2B .0.3C .0.38D .0.56解析:选C.设甲地降雨为事件A ,乙地降雨为事件B , 则两地恰有一地降雨为A B -+A -B , 所以P (A B -+A -B )=P (A B -)+P (A -B ) =P (A )P (B -)+P (A -)P (B ) =0.2×0.7+0.8×0.3 =0.38.3.先后掷一枚质地均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数,且x ≠y ”,则概率P (B |A )=( )A.13B.14C.15D.16解析:选A.因为P (A )=2×3×336=12,P (AB )=3×236=16,所以P (B |A )=1612=13.4.设随机变量X ~B ⎝⎛⎭⎪⎫6,12,则P (X =3)=________.解析:因为X ~B ⎝ ⎛⎭⎪⎫6,12,所以P (X =3)=C36⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-123=516. 答案:5165.(2020·高考天津卷)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.解析:依题意得,甲、乙两球都落入盒子的概率为12×13=16,甲、乙两球都不落入盒子的概率为(1-12)×(1-13)=13,则甲、乙两球至少有一个落入盒子的概率为1-13=23.答案:16 23条件概率(1)某道数学试题含有两问,当第一问正确做对时,才能做第二问,为了解该题的难度,调查了100名学生的做题情况,做对第一问的学生有80人,既做对第一问又做对第二问的学生有72人,以做对试题的频率近似作为做对试题的概率,已知某个学生已经做对第一问,则该学生做对第二问的概率为( )A .0.9B .0.8C .0.72D .0.576(2)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12【解析】 (1)做对第一问的学生有80人,则做对第一问的频率为80100=0.8.既做对第一问又做对第二问的学生有72人,则两问都做对的频率为72100=0.72.设“做对第一问”为事件A ,“做对第二问”为事件B ,则P (A )=0.8,P (AB )=0.72,某个学生已经做对第一问,则该学生做对第二问的概率P(B|A)=P(AB)P(A)=0.720.8=0.9,故选A.(2)P(A )=C23+C22C25=410=25,P(AB)=C22C25=110,由条件概率公式,得P(B|A)=P(AB)P(A)=11025=14.【答案】(1)A(2)B【引申探究】(变条件)将本例(2)中的“和”改为“积”,求P(B|A).解:事件A:“取到的2个数之积为偶数”所包含的基本事件有:(1,2),(3,2),(4,2),(5,2),(4,1),(4,3),(4,5),所以P(A)=710.事件B:“取到的2个数均为偶数”所包含的基本事件有(2,4),所以P(AB)=110,所以P(B|A)=P(AB)P(A)=110710=17.条件概率的两种求解方法1.(2021·云南师大附中月考)小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为0.4,在第二个路口遇到红灯的概率为0.5,在两个路口连续遇到红灯的概率是0.2.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是()A.0.2 B.0.3C.0.4 D.0.5解析:选 D.记“小明在第一个路口遇到红灯”为事件A ,“小明在第二个路口遇到红灯”为事件B ,“小明在第一个路口遇到了红灯,在第二个路口也遇到红灯”为事件C ,则P (A )=0.4,P (B )=0.5,P (AB )=0.2,则P (B |A )=P (AB )P (A )=0.20.4=0.5.故选D.2.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传四个项目,每人限报其中一项,记事件A 为“4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则P (A |B )的值为( )A.14B.34C.29D.59解析:选C.因为P (B )=3344,P (AB )=A3344,所以P (A |B )=P (AB )P (B )=29.相互独立事件的概率(2020·高考全国卷Ⅰ)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下: 累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.【解】 (1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况: 甲连胜四场的概率为116; 乙连胜四场的概率为116; 丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为1-116-116-18=34. (3)丙最终获胜,有两种情况: 比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为18+116+18+18=716.利用相互独立事件求复杂事件概率的解题思路(1)将待求复杂事件转化为几个彼此互斥简单事件的和.(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.(3)代入概率的积、和公式求解.1.两个实习生每人加工一个零件,加工成一等品的概率分别为23和34,两个零件能否被加工成一等品相互独立,则这两个零件中恰好有一个一等品的概率为( )A.12B.512C.14D.16解析:选 B.因为两人加工零件成一等品的概率分别为23和34,且相互独立,所以两个零件中恰好有一个一等品的概率P =23×14+13×34=512.2.(2021·沈阳市教学质量检测(一))在2019年女排世界杯中,中国女子排球队以11连胜的优异战绩成功夺冠,为祖国母亲七十华诞献上了一份厚礼.排球比赛采用5局3胜制,前4局比赛采用25分制,每个队只有赢得至少25分,并超过对方2分时,才胜1局;在决胜局(第5局)采用15分制,每个队只有赢得至少15分,并超过对方2分为胜.在每局比赛中,发球方赢得此球后可得1分,并获得下一球的发球权,否则交换发球权,并且对方得1分.现有甲、乙两支球队进行排球比赛:(1)若前3局比赛中甲已经赢2局,乙赢1局,接下来两队赢得每局比赛的概率均为12,求甲队最后赢得整场比赛的概率.(2)若前4局比赛中甲、乙两队已经各赢2局,在决胜局(第5局)中,两队当前的得分为甲、乙各14分,且甲已获得下一球的发球权.若甲发球时甲赢1分的概率为25,乙发球时甲赢1分的概率为35,得分者获得下一球的发球权.设两队打了x (x ≤4)个球后甲赢得整场比赛,求x 的取值及相应的概率P (x ).解:(1)依题意,若甲队赢得整场比赛,则甲队将以3∶1或3∶2的比分赢得比赛.若甲队以3∶1的比分赢得比赛,则第4局甲赢,若甲队以3∶2的比分赢得比赛,则第4局乙赢,第5局甲赢. 故甲队最后赢得整场比赛的概率为12+12×12=34.(2)依题意,每次发球,发球队得分的概率为25,接球队得分的概率为35.甲接下来可以以16∶14或17∶15赢得比赛,故x 的取值为2或4.若甲、乙比分为16∶14,则x 的取值为2,其赢球顺序为“甲甲”,对应发球顺序为“甲甲”,所以P (x =2)=25×25=425.若甲、乙比分为17∶15,则x 的取值为4,其赢球顺序为“甲乙甲甲”或“乙甲甲甲”,对应发球顺序为“甲甲乙甲”和“甲乙甲甲”,所以P (x =4)=25×35×35×25+35×35×25×25=72625.独立重复试验与二项分布(2021·合肥第一次教学检测)“大湖名城,创新高地”的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生“研学游”的理想之地.为了将来更好地推进“研学游”项目,某旅游学校一位实习生,在某旅行社实习期间,把“研学游”分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生“研学游”学校中,随机抽取了100所学校,统计如下:研学游类型 科技体验游民俗人文游自然风光游学校数404020校,并以统计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响).(1)若这3所学校选择的研学游类型是“科技体验游”和“自然风光游”,求这两种类型都有学校选择的概率;(2)设这3所学校中选择“科技体验游”的学校数为随机变量X ,求X 的分布列. 【解】 (1)依题意,学校选择“科技体验游”的概率为25,选择“自然风光游”的概率为15,若这3所学校选择研学游类型为“科技体验游”和“自然风光游”,则这两种类型都有学校选择的概率为P =C23⎝ ⎛⎭⎪⎫252×15+C23⎝ ⎛⎭⎪⎫152×25=18125.(2)X 的可能取值为0,1,2,3.则P (X =0)=C03⎝ ⎛⎭⎪⎫353=27125,P (X =1)=C13×25×⎝ ⎛⎭⎪⎫352=54125,P (X =2)=C23⎝ ⎛⎭⎪⎫252×35=36125,P (X =3)=C33⎝ ⎛⎭⎪⎫253=8125,所以X 的分布列为X 0 1 2 3 P 2712554125361258125(1)独立重复试验的特点①每次试验中,事件发生的概率是相同的;②每次试验中的事件是相互独立的,其实质是相互独立事件的特例. (2)判断随机变量X 服从二项分布的条件(X ~B (n ,p )) ①X 的取值为0,1,2,…,n ;②P (X =k )=Ck n p k (1-p )n -k (k =0,1,2,…,n ,p 为试验成功的概率). [提醒] 在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布.为了拓展网络市场,某公司为手机客户端用户推出了多款APP 应用 ,如“农场”“音乐”“读书”等.市场调查表明,手机用户在选择以上三种应用时,选择农场、音乐、读书的概率分别为12,13,16.现有甲、乙、丙三位手机客户端用户独立任意选择以上三种应用中的一种进行添加.(1)求三人所选择的应用互不相同的概率;(2)记ξ为三人中选择的应用是农场与音乐的人数,求ξ的分布列.解:记第i 名用户选择的应用是农场、音乐、读书分别为事件A i .B i ,C i ,i =1,2,3.由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3且i ,j ,k 互不相同)相互独立,且P (A i )=12,P (B i )=13,P (C i )=16.(1)他们选择的应用互不相同的概率P =3!·P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3)=16.(2)设3位用户选择的应用是“读书”的人数是η,由已知得η~B ⎝⎛⎭⎪⎫3,16,且ξ=3-η,所以P (ξ=0)=P (η=3)=C33×⎝ ⎛⎭⎪⎫163=1216,P (ξ=1)=P (η=2)=C23×⎝ ⎛⎭⎪⎫162×56=15216=572, P (ξ=2)=P (η=1)=C13×16×⎝ ⎛⎭⎪⎫562=75216=2572,P (ξ=3)=P (η=0)=C03×⎝ ⎛⎭⎪⎫563=125216.故ξ的分布列为 ξ 0 1 2 3 P12165722572125216[A 级 基础练]1.先后抛掷硬币三次,则至少一次正面向上的概率是( ) A.18 B.38 C.58D.78解析:选D.硬币正面向上的次数服从二项分布,即X ~B ⎝⎛⎭⎪⎫3,12,由二项分布概率公式知,三次均反面向上的概率是⎝ ⎛⎭⎪⎫123=18,所以至少一次正面向上的概率是1-18=78.故选D 项.2.一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为( )A.23B.512C.59D.79解析:选C.记“第i (i =1,2)支晶体管是好的”为事件A i (其中i =1,2),依题意知,要求的概率为P (A 2|A 1).由P (A 1)=35,P (A 1A 2)=6×510×9=13, 所以P (A 2|A 1)=P (A1A2)P (A1)=1335=59.3.(2021·山东烟台第一中学联考)首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为12,13,14,且三家企业的购买结果相互之间没有影响,则三家企业中恰有一家购买该机床设备的概率是( )A.2324B.524C.1124D.124解析:选 C.记“甲企业购买该机床设备”为事件A ,“乙企业购买该机床设备”为事件B ,“丙企业购买该机床设备”为事件C ,则P (A )=12,P (B )=13,P (C )=14,所以P (A -)=1-P (A )=12,P (B -)=1-P (B )=23,P (C -)=1-P (C )=34.记“三家企业中恰有一家购买该机床设备”为事件D ,则P (D )=P (A B -C -)+P (A -B C -)+P (A -B -C )=12×23×34+12×13×34+12×23×14=1124.故选C.4.(多选)(2020·山东潍坊临朐模拟)下列说法正确的是( )A.⎝ ⎛⎭⎪⎫12x -2y 5的展开式中含x 2y 3项的二项式系数为20B .事件A ∪B 为必然事件,则事件A 、B 是互为对立事件C .am 2>bm 2是a >b 的充分不必要条件D .甲、乙、丙、丁4个人到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点各不相同”,事件B =“甲独自去一个景点”,则P (A |B )=29解析:选CD.A.⎝ ⎛⎭⎪⎫12x -2y 5的展开式的通项为T k +1=Ck 5·⎝ ⎛⎭⎪⎫12x 5-k·(-2y )k ,要求含x 2y 3项的二项式系数,则k =3,所求二项式系数为C35=10,故A 错误;B.事件A ∪B 为必然事件无法说明事件A 、B 是互为对立事件,缺少A ∩B 为不可能事件的条件,故B 错误;C.因为am 2>bm 2,所以a >b ,但a >b 且m =0时有am 2=bm 2,所以a >b 时,am 2>bm 2不一定成立,故C 正确.D.P (A )=4!44=332,P (B )=4×3344=2764,P (AB )=4×3!44=332,则P (A |B )=P (AB )P (B )=29,故D 正确.5.(2021·江西五校联考)非洲成员代表团团长及相关的人员参加了中非合作论坛北京峰会,会后某记者在场地外随机进行采访,假设第一次采访到的人恰好是参会的代表团团长的概率为0.7,连续两次采访到的人都是代表团团长的概率为0.6,则在第一次采访到的人是代表团团长的条件下,第二次采访到的也是代表团团长的概率为________.解析:记“第一次采访到的人是代表团团长”为事件A ,“第二次采访到的人是代表团团长”为事件B ,则P (A )=0.7,P (AB )=0.6,则P (B |A )=P (AB )P (A )=67.答案:676.一个口袋内有n (n >3)个大小相同的球,其中3个红球和(n -3)个白球,已知从口袋中随机取出1个球是红球的概率为p ,6p ∈N ,若有放回地从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大于827,则n =________.解析:由题设知,C24p 2(1-p )2>827,因为p (1-p )>0,所以不等式化为p (1-p )>29,解得13<p <23,故2<6p <4.又因为6p ∈N ,所以6p =3,即p =12,由3n =12,得n =6.答案:67.为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2019年该市某中学的某新生想通过考核选拔进入该校的“电影社”和“心理社”,已知该同学通过考核选拔进入这两个社团成功与否相互独立.根据报名情况和他本人的才艺能力,两个社团都能进入的概率为124,至少进入一个社团的概率为38,并且进入“电影社”的概率小于进入“心理社”的概率.(1)求该同学分别通过选拔进入“电影社”的概率p 1和进入“心理社”的概率p 2; (2)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分,求该同学在社团方面获得校本选修课学分分数不低于1分的概率.解:(1)根据题意得⎩⎪⎨⎪⎧p1p2=124,1-(1-p1)(1-p2)=38,p1<p2,所以p 1=16,p 2=14.(2)设该同学在社团方面获得校本选修课学分分数为ξ,则P (ξ=1)=⎝⎛⎭⎪⎫1-14×16=18,P (ξ=1.5)=14×16=124,所以该同学在社团方面获得校本选修课学分分数不低于1分的概率为P =18+124=16.8.(2021·湖北省部分重点中学10月联考)某中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,才能取得参加数学竞赛复赛培训的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学的这四门课程考试是否合格相互独立,每门课程考试合格的概率均相同(见下表),且各个同学每一门课程考试是否合格相互独立.(2)记ξ表示三位同学中取得参加数学竞赛培训的资格的人数,求ξ的分布列. 解:(1)分别记甲初等代数课程、初等几何课程、初等数论课程、微积分初步课程考试合格为事件A ,B ,C ,D ,则“甲能取得参加数学竞赛复赛培训的资格”的概率为P (ABCD )+P (ABC D -)+P (AB C -D ),事件A ,B ,C ,D 相互独立,故P (ABCD )+P (ABC D -)+P (AB C -D )=34×23×23×12+34×23×23×12+34×23×13×12=512. (2)ξ的所有可能取值为0,1,2,3.由(1)可得,每位同学取得参加数学竞赛复赛培训资格的概率为512,且ξ~B ⎝ ⎛⎭⎪⎫3,512,P (ξ=0)=⎝ ⎛⎭⎪⎫7123=3431 728,P (ξ=1)=C13×512×⎝ ⎛⎭⎪⎫7122=245576,P (ξ=2)=C23×⎝ ⎛⎭⎪⎫5122×712=175576,P (ξ=3)=⎝ ⎛⎭⎪⎫5123=1251 728.因此,ξ的分布列为9.博彩公司曾经对当年NBA 总决赛做了大胆地预测和分析,预测西部冠军是老辣的马刺队,东部冠军是拥有詹姆斯的年轻的骑士队,总决赛采取7场4胜制,每场必须分出胜负,场与场之间的结果互不影响,只要有一队获胜4场就结束比赛,前4场,马刺队胜利的概率为12,第5,6场马刺队因为平均年龄大,体能下降厉害,所以胜利的概率降为25,第7场,马刺队因为有多次打第7场的经验,所以胜利的概率为35.(1)分别求马刺队以4∶0,4∶1,4∶2,4∶3胜利的概率及总决赛马刺队获得冠军的概率;(2)随机变量X 为分出总冠军时比赛的场数,求随机变量X 的分布列.解:(1)设“马刺队以4∶0胜利”为事件A ,“马刺队以4∶1胜利”为事件B ,“马刺队以4∶2胜利”为事件C ,“马刺队以4∶3胜利”为事件D ,“总决赛马刺队获得冠军”为事件E ,则P (A )=⎝ ⎛⎭⎪⎫124=116,P (B )=C34×⎝ ⎛⎭⎪⎫124×25=110,P (C )=C34×⎝ ⎛⎭⎪⎫124×35×25+C24×⎝ ⎛⎭⎪⎫124×⎝ ⎛⎭⎪⎫252=325,P (D )=C34×⎝ ⎛⎭⎪⎫124×⎝ ⎛⎭⎪⎫353+C24×⎝ ⎛⎭⎪⎫124×C12×25×35×35+C14×⎝ ⎛⎭⎪⎫124×25×25×35=93500.所以P (E )=P (A )+P (B )+P (C )+P (D )=9372 000.(2)随机变量X 的可能取值为4,5,6,7,P (X =4)=⎝ ⎛⎭⎪⎫124×2=18,P (X =5)=C34×⎝ ⎛⎭⎪⎫124×⎝ ⎛⎭⎪⎫25+35=14,P (X =6)=2C34×⎝ ⎛⎭⎪⎫124×25×35+C24×⎝ ⎛⎭⎪⎫124×⎝ ⎛⎭⎪⎫425+925=63200,P (X =7)=1-P (X =4)-P (X =5)-P (X =6)=31100.所以随机变量X 的分布列为地区中心城市,它不仅有着深厚的历史积淀与丰富的民俗文化,更有着众多旅游景点,每年来武汉参观旅游的人数不胜数,其中黄鹤楼与东湖被称为两张名片.为合理配置旅游资源,现对已游览黄鹤楼景点的游客进行随机问卷调查,若不游玩东湖记1分,若继续游玩东湖记2分,每位游客选择是否游览东湖景点的概率均为12,游客之间选择意愿相互独立.(1)从游客中随机抽取3人,记总得分为随机变量X ,求X 的分布列;(2)(i)若从游客中随机抽取m 人,记总得分恰为m 的概率为A m ,求数列{A m }的前10项和;(ii)在对所有游客进行随机问卷调查过程中,记已调查过的累计得分恰为n 的概率为B n ,探讨B n 与B n -1之间的关系,并求数列{B n }的通项公式.解:(1)X 的可能取值为3,4,5,6.P (X =3)=⎝ ⎛⎭⎪⎫123=18,P (X =4)=C13⎝ ⎛⎭⎪⎫123=38,P (X =5)=C23⎝ ⎛⎭⎪⎫123=38,P (X =6)=C33⎝ ⎛⎭⎪⎫123=18.所以X 的分布列为(2)(i)总得分恰为m 的概率A m =⎝ ⎛⎭⎪⎫12,所以数列{A m }是首项为12,公比为12的等比数列, 前10项和S 10=12×⎝ ⎛⎭⎪⎫1-12101-12=1 0231 024. (ii)已调查过的累计得分恰为n 的概率为B n ,得不到n 分的情况只有先得(n -1)分,再得2分,概率为12B n -1,B 1=12.所以1-B n =12B n -1,即B n =-12B n -1+1, 所以B n -23=-12⎝ ⎛⎭⎪⎫Bn -1-23.所以B n -23=⎝ ⎛⎭⎪⎫B2-1-23·⎝ ⎛⎭⎪⎫-12n -1,所以B n =23-16⎝ ⎛⎭⎪⎫-12n -1=23+13⎝ ⎛⎭⎪⎫-12n.[C 级 创新练]11.(2020·武汉部分学校质量检测)同时抛掷两个质地均匀的四面分别标有1,2,3,4的正四面体一次,记事件A ={第一个四面体向下的一面出现偶数};事件B ={第二个四面体向下的一面出现奇数};事件C ={两个四面体向下的一面或者同时出现奇数,或者同时出现偶数}.给出下列说法:①P (A )=P (B )=P (C );②P (AB )=P (AC )=P (BC );③P (ABC )=18;④P (A )P (B )P (C )=18.其中正确的有( )A .0个B .1个C .2个D .3个解析:选D.由古典概型的概率计算公式,得P (A )=P (B )=24=12,P (C )=84×4=12,所以P (A )=P (B )=P (C )=12,①正确;P (A )P (B )P (C )=18,④正确;而事件A ,B ,C 不可能同时发生,故P (ABC )=0,所以③不正确;又P (AB )=2×24×4=14,P (AC )=2×24×4=14,P (BC )=2×24×4=14,所以P (AB )=P (AC )=P (BC ),②正确.故选D.12.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为23,13,求小球落入A 袋中的概率.解:方法一:由题意知,小球落入A 袋中的概率为:P (A )=1-P (B )=1-⎝ ⎛⎭⎪⎫13×13×13+23×23×23=23. 方法二:因为小球每次遇到障碍物时有一次向左和两次向右或两次向左和一次向右下落时,小球将落入A 袋,所以小球落入A 袋中的概率为C13·23·⎝ ⎛⎭⎪⎫132+C23·⎝ ⎛⎭⎪⎫232·13=23.。

二项分布及其应用

二项分布及其应用
(2) 根据二项分布的分布规律,计算 P 值。
本例0=0.01,n=400,x=1,根据题意需求最多有1例染
色体异常的概率,按二项分布的概率函数得
(3) 做出推断结论: P >0.05,按 =0.05检验水准不拒绝H0,尚 不能认为该地新生儿染色体异常率低于一般。
1、样本率与已知总体率的比较:
(2) 正态近似法: 当 n0 和 n(1-0) 均大于5时,
用n=20和x=8查附表7.2百分率的可信区间得该 法近期有效率的95%可信区间为19%64%。
由于附表7百分率的可信区间中值只列出了x n/2的部分,当x>n/2时,应以n -x查表,再从100
中减去查得的数值即为所求可信区间。
2、总体率的区间估计
三、二项分布的应用
(2)正态近似法
当样本含量足够大,且样本率p和 1-p均不太小,一般 np与 n(1-p)均大于5时,样本率的抽样分布近似正态分布,即
此时, 总体率的可信区间可按下式进行估计:
其中,
布的应用
(二)假设 检验1、样本率与已知总体率的比较:
(1)直接计算概率法: 例1 根据以往长期的实践,证明某常用药的治 愈率为65%。现在某种新药的临床试验中,随机观 察了10名用该新药的患者,治愈8人。问该新药的 疗效是否比传统的常用药好?
(1)建立假设,确定检验水准。
(2) 计算检验统计量 。
B( , n )。
例 抛硬币(正/反),患者治疗后的结局(治愈/未愈),实验 动物染毒后结局(生存/死亡),……。
一、二项分布的概念及应用条件
2、应用条件:
① n次试验相互独立 ( n 个观察单位相互独立)。 ② 每次试验只有两种可能结果中的某一种(适用

高考数学二轮复习考点知识与题型专题讲解与训练67 二项分布及其应用

高考数学二轮复习考点知识与题型专题讲解与训练67 二项分布及其应用

高考数学二轮复习考点知识与题型专题讲解与训练专题67二项分布及其应用考点知识要点1.了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布.3.能解决一些简单的实际问题.基础知识融会贯通1.条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=P ABP A(P(A)>0).在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=n ABn A.(2)条件概率具有的性质①0≤P(B|A)≤1;②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件(1)对于事件A,B,若事件A的发生与事件B的发生互不影响,则称事件A,B是相互独立事件.(2)若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)P(A)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.重点难点突破【题型一】条件概率【典型例题】某班组织由甲,乙,丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为()A.B.C.D.【再练一题】在由直线x=1,y=x和x轴围成的三角形内任取一点(x,y),记事件A为y>x3,B为y>x2,则P(B|A)=()A.B.C.D.思维升华(1)利用定义,分别求P(A)和P(AB),得P(B|A)=P ABP A,这是通用的求条件概率的方法.(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数,即n(AB),得P(B|A)=n ABn A.【题型二】相互独立事件的概率【典型例题】为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为,若他前一球投不进则后一球投进的概率为.若他第1球投进的概率为,则他第2球投进的概率为()A.B.C.D.【再练一题】在某段时间内,甲地不下雨的概率为P1(0<P1<1),乙地不下雨的概率为P2(0<P2<1),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为()A.P1P2B.1﹣P1P2C.P1(1﹣P2)D.(1﹣P1)(1﹣P2)思维升华求相互独立事件同时发生的概率的方法(1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法①利用相互独立事件的概率乘法公式直接求解;【题型三】独立重复试验与二项分布命题点1根据独立重复试验求概率【典型例题】将一枚质地均匀的硬币抛掷三次,则出现“2次正面朝上,1次反面朝上”的概率为()A.B.C.D.【再练一题】某射手每次射击击中目标的概率是,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.命题点2根据独立重复试验求二项分布【典型例题】设有3个投球手,其中一人命中率为q,剩下的两人水平相当且命中率均为p(p,q∈(0,1)),每位投球手均独立投球一次,记投球命中的总次数为随机变量为ξ.(1)当p=q时,求数学期望E(ξ)及方差V(ξ);(2)当p+q=1时,将ξ的数学期望E(ξ)用p表示.【再练一题】一个盒子里有2个黑球和m个白球(m≥2,且m∈N*).现举行摸奖活动:从盒中取球,每次取2个,记录颜色后放回.若取出2球的颜色相同则为中奖,否则不中.(Ⅰ)求每次中奖的概率p(用m表示);(Ⅱ)若m=3,求三次摸奖恰有一次中奖的概率;(Ⅲ)记三次摸奖恰有一次中奖的概率为f(p),当m为何值时,f(p)取得最大值?思维升华独立重复试验与二项分布问题的常见类型及解题策略(1)在求n次独立重复试验中事件恰好发生k次的概率时,首先要确定好n和k的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n和变量的概率,求得概率.基础知识训练1.已知袋子内有7个球,其中4个红球,3个白球,从中不放回地依次抽取2个球,那么在已知第一次抽到红球的条件下,第二次也抽到红球的概率是( ) A .13 B .37 C .16 D .122.科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为( ) A .164 B .12131344C ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭C .21231344C ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭D .364 3.甲骑自行车从A 地到B 地,途中要经过4个十字路口,已知甲在每个十字路口遇到红灯的概率都是13,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是( ) A .13 B .427 C .49 D .1274.甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为( ) A .0.42 B .0.28 C .0.18 D .0.12 5.设随机变量X 服从二项分布,则函数存在零点的概率是()A .B .C .D .6.设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则D(η)=( ) A . B . C . D .7.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,A 学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为X 分,B 学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为Y 分,则()()D Y D X -的值为( ) A .12512 B .3512 C .274 D .2348.若10件产品中包含8件一等品,在其中任取2件,则在已知取出的2件中有1件不是一等品的条件下,另1件是一等品的概率为()A.1213B.1415C.1617D.18199.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( )A.0.15B.0.105C.0.045D.0.2110.在体育选修课排球模块基本功(发球)测试中,计分规则如下(满分为10分):①每人可发球7次,每成功一次记1分;②若连续两次发球成功加0.5分,连续三次发球成功加1分,连续四次发球成功加1.5分,以此类推, ,连续七次发球成功加3分.假设某同学每次发球成功的概率为23,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是( )A.6523B.5523C.6623D.562311.假定某人在规定区域投篮命中的概率为,现他在某个投篮游戏中,共投篮3次.(1)求连续命中2次的概率;(2)设命中的次数为X,求X的分布列和数学期望.12.为了调查高中生的数学成绩与学生自主学习时间之间的相关关系,新苗中学数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学成绩不足120分的占8,统计成绩后,得到如下的22⨯列联表:分数大于等于120分分数不足120分合计周做题时间不少于15小时419周做题时间不足15小时合计45(1)请完成上面的22⨯列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”.(2)(i)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数为X,求X的分布列(概率用组合数算式表示).(ii )若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.附:()()()()()22n ad bc K a b c d a c b d -=++++()20P k k ≥ 0.050 0.010 0.0010k3.841 6.635 10.82813.生蚝即牡蛎(oyster),是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产蚝.蚝乃软体有壳,依附寄生的动物,咸淡水交界所产尤为肥美,因此生蚝成为了一年四季不可或缺的一类美食.某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到的结果如下表所示. 质量(g )[)5,15[)15,25[)25,35[)35,45[)45,55数量 6101284(1)若购进这批生蚝500kg ,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[)5,25间的生蚝的个数为X ,求X 的分布列及数学期望.14.某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:注:尺寸数据在内的零件为合格品,频率作为概率.(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?15.为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:阶梯级别第一阶梯水量第二阶梯水量第三阶梯水量月用水量范围(单位:立方米)从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X 的分布列与数学期望; (Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.能力提升训练1.若已知随机变量,则____.2.某工厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,写出其中次品ξ的概率分布.ξ0 1 2P3.设随机变量1~,4X B n ⎛⎫ ⎪⎝⎭,且()34D X =,则事件“2X =”的概率为_____(用数字作答) 4.如图,在小地图中,一机器人从点()0,0A 出发,每秒向上或向右移动1格到达相应点,已知每次向上移动1格的概率是23,向右移动1格的概率是13,则该机器人6秒后到达点()4,2B 的概率为__________.5.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,若X 表示抽到的二等品件数,则()V X =_________.6.设随机变量(2,)B p ξ,(4,)B p η,若2()3E ξ=,则(3)P η≥=______. 7.为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过分时,按元/分计费;超过分时,超出部分按元/分计费.已知王先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间(分)是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示:时间(分)频数2 18 20 10将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式; (2)若王先生一次开车时间不超过40分为“路段畅通”,设表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求的分布列和期望;(3)若公司每月给1000元的车补,请估计王先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)8.甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;(2)设总决赛中获得的门票总收入为,求的分布列和数学期望.9.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.10.为了解市民对某项政策的态度,随机抽取了男性市民25人,女性市民75人进行调查,得到以下的列联表:支持不支持合计男性20525女性403575合计6040100(1)根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?(2)将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为,求的分布列及数学期望。

二项分布及其应用理

二项分布及其应用理

[思路点拨]
[课堂笔记] (1)任选1名下岗人员,设“该人参加过财会培 训”为事件A,“该人参加过计算机培训”为事件B,由题设知, 事件A与B互独立,且P(A)=0、6,P(B)=0、75、 法一:任选1名下岗人员,该人没有参加过培训得概率就是 P1=P( )=P( )·P( )=0、4×0、25=0、1、 所以该人参加过培训得概率就是P2=1-P1=1-0、1=0 、9、
4、二项分布 在n次独立重复试验中,设事件A发生得次数为X,在每 次试验中事件A发生得概率为p,那么在n次独立重复试 验中,事件A恰好发生k次得概率为P(X=k)= pk(1-p)n-k (k=0,1,2,…,n)、 此时称随机变量X服从二项分布,记作 X~B(n,p) ,并 称 p 为成功概率、
[课堂笔记] 记事件A:最后从2号箱中取出得就是红球;
事件B:从1号箱中取出得就是红球、
则P(B)=
,P( )=1-P(B)= ,
P(A|B)=
,P(A| )=
,ห้องสมุดไป่ตู้
从而P(A)=P(AB)+P(A )
=P(A|B)P(B)+P(A| )P( )
1、相互独立事件就是指两个试验中,两事件发生得概率 互
【解】 (1)依题意知X~B(4, ),即X得分布列为
X0
1
2
3
4
┄┄┄(6分)
P
(2)设Ai表示事件“第一次击中目标时,击中第i部 分”,i=1,2、
Bi表示事件“第二次击中目标时,击中第i部分”,i =1,2、依题意知P(A1)=P(B1)=0、1,P(A2)=P(B2)=0、 3,A=A1 ∪ B1∪A1B1∪A2B2,┄┄┄┄┄┄(9分)
故所求得概率为 P(A)=P(A1 )+P( B1)+P(A1B1)+P(A2B2) =P(A1)P( )+P( )P(B1)+P(A1)P(B1)+P(A2)P(B2) =0、1×0、9+0、9×0、1+0、1×0、1+0、3×0、3 =0、28、┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(12分)

高中二项分布归纳总结

高中二项分布归纳总结

高中二项分布归纳总结
哎呀,二项分布这东西,一开始我真是觉得头都大啦!就好像在黑暗中找路,完全摸不着头脑。

你想想啊,咱们抛硬币,正面朝上或者反面朝上,这是不是很简单?但二项分布就把这种简单的事儿变得复杂起来。

比如说,咱们抛10 次硬币,想知道出现5 次正面朝上的概率是多少。

这时候二项分布就派上用场啦!它能帮咱们算出来。

二项分布里有个n ,还有个p 。

n 就好比咱们抛硬币的次数,p 呢,就是每次抛硬币正面朝上的概率。

那怎么算呢?就好像搭积木一样,一块一块地来。

先确定n 和p ,然后根据公式去算。

老师在讲台上讲得唾沫横飞,我在下面听得云里雾里。

我就想:“这到底是啥呀?怎么这么难理解!”
我旁边的同学也直挠头,小声跟我说:“这也太难了,感觉比登天还难!”
后来,老师举了好多例子,比如抽奖,有多少个奖,每次抽奖中奖的概率是多少,要算抽多少次能中几个奖的概率。

慢慢地,我好像有点开窍了。

原来二项分布就是在算这种类似的事情呀!
再后来,做练习题的时候,一开始我还是错得一塌糊涂。

我就着急呀,“怎么还是不会呢?” 但是我没放弃,不停地问老师,问同学。

终于,我能做出一些题目啦!这感觉,就像在黑暗中走了好久,突然看到了一丝光亮。

你说,学习新知识不就像爬山嘛,一开始觉得山好高好难爬,但是只要坚持,一步一步往上走,总会爬到山顶,看到美丽的风景!
所以啊,我觉得二项分布虽然一开始很难,但只要我们用心学,多练习,就一定能掌握它!。

(完整版)二项分布、超几何分布、正态分布总结归纳及练习

(完整版)二项分布、超几何分布、正态分布总结归纳及练习

二项分布与超几何分布辨析二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;333141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C PY C ===.因此,Y 的分布列为辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布二项分布、超几何分布、正态分布一、选择题1.设随机变量ξ~B ⎝⎛⎭⎫6,12,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.7162.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )A.13B.59C.827D.19273.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582B .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582·38C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389·⎝⎛⎭⎫582 4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.(用数值作答) 答案:151287.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.8.某厂生产的圆柱形零件的外径ε1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________. 答案:不合格三、解答题9.一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.10.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.参考答案1、解析:P (ξ=3)=C 36⎝⎛⎭⎫123⎝⎛⎭⎫1-123=516. 答案:A2、解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =13 ,∴P (η≥1) =C 13⎝⎛⎭⎫13⎝⎛⎭⎫232+C 23⎝⎛⎭⎫132⎝⎛⎭⎫23+C 33⎝⎛⎭⎫133=1927,故选D.3、解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·⎝⎛⎭⎫389⎝⎛⎭⎫582×38. 答案:B4、解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p ,∴p ≥0.4.又∵p <1,∴0.4≤p <15、解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0)=P (ξ>4)=1-0.84=0.16.故选A.6、解析:由题意知所求概率P =C 310⎝⎛⎭⎫123⎝⎛⎭⎫127=15128. 7、解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02C 25=0.3,分布列如下表:8、解析:根据3σ原则,在4-3×0.5=2.5~4+3×0.5=5.5之外为异常,所以这批零件不合格. 9、解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”,i =1,2. B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”,i =1,2. C 表示事件“一次抽检后,设备不需要调整”. 则C =A 1·A 2+A 1·B 2+B 1·A 2.由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2) =0.92+2×0.9×0.05=0.9.(2)由(1)知一次抽检后,设备需要调整的概率为p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为10、解析:(1)P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415.因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P ()A ·P ()B =⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P()A ·B =1-145=4445.答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B+P ()A ·B +P ()A ·B =23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445。

二项式分布应用题

二项式分布应用题二项式分布是概率论中非常重要的一个分布,常常被应用在各种实际问题的解决中。

在现实生活中,我们经常会遇到一些与二项式分布相关的问题,例如某项产品的合格率、某种药物的疗效、某次考试的及格率等等。

本文将结合几个具体的实例,来说明二项式分布在实际问题中的应用。

首先,假设某公司生产的某批产品合格率为0.9,如果从这批产品中随机抽取10个样本进行检验,那么其中有几个样本是合格的呢?我们可以利用二项式分布来计算这个问题。

设随机变量X表示抽取的样本中合格品的数量,X服从二项分布B(10,0.9)。

利用二项式分布的概率公式,可以计算出其中有多少个样本是合格品。

其次,考虑某种新药的疗效问题。

某药厂研发出一种新药,宣称其治愈率为0.8,为验证其疗效,需要进行一次实验。

假设随机选取10名病人接受治疗,其中有几个病人可以治愈呢?同样可以利用二项式分布来解决这一问题。

设随机变量Y表示随机选取的10名病人中治愈的数量,Y服从二项分布B(10,0.8),通过计算可以得出有多少病人可以治愈。

最后,考虑某次考试的及格率问题。

某班级进行一次考试,知识点涉及10个题目,已知学生的答对率为0.7,那么考试后有多少学生可以及格呢?假设随机取出10名学生进行测验,设随机变量Z表示其中有多少名学生可以及格,Z服从二项分布B(10,0.7)。

通过二项式分布的计算,可以得出及格人数的期望值。

综上所述,二项式分布在实际问题中有着广泛的应用。

通过计算二项式分布,可以得出各种概率问题的解答,帮助我们更好地理解和分析实际问题,为决策提供参考依据。

在解决问题时,我们需要根据具体情况建立相应的模型,正确运用二项式分布的性质,得出准确的结果。

希望通过本文的介绍,读者能更深入地了解二项式分布的应用,提升自己的问题解决能力。

随机变量及其分布--二项分布及其应用

二项分布及其应用知识点一、条件概率1.一般的,设A,B 为两个事件,且0)(>A P ,则称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。

)|(A B P 读作:A 发生的条件下B 发生的概率。

2.条件概率的性质: (1)1)|(0≤≤A B P ;(2)必然事件的条件概率为1;不可能事件的条件概率为0. (3)若事件B 与C 互斥,)|()|()|(A C P A B P A C B P += 二、相互独立事件1.设A ,B 为两个事件,若)()()(B P A P AB P =,则称事件A 与事件B 相互独立。

2.条件概率的性质:(1)若事件A 与B 相互独立,则)()|(B P A B P =,)()|(A P B A P =,)()()(B P A P AB P =。

(2)如果事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 三、独立重复试验与二项分布 1.独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。

2.二项分布:一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则n k p p C k X P k n kk n ,,2,1,0,)1()( =-==-。

此时称随机变量X 服从二项分布,记作),(~p n B X题型一 条件概率【例1】已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.115【例2】抛掷一枚质地均匀的骰子所得点数的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于 ( ) A.25 B.12 C.35D.45【例3】任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间⎝⎛⎭⎫0,13内的概率是多少? (2)在(1)的条件下,求该点落在⎝⎛⎭⎫15,1内的概率.【过关练习】1.电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10 000次后还能继续使用的概率是0.80,开关了1 5 000次后还能继续使用的概率是0.60,则已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率是( ) A .0.75 B .0.60 C .0.48D .0.202.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________. 3.如图,EFGH 是以O 为圆心,半径为1的圆内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.4.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2个球使用,在第一次摸出新的条件下,第二次也取到新球的概率为( ) A.35 B.110 C.59D.255.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率.题型二 独立事件的概率【例1】把标有1,2的两张卡片随机地分给甲、乙;把标有3,4的两张卡片随机地分给丙、丁,每人一张,事件“甲得1号纸片”与“丙得4号纸片”是( ) A .互斥但非对立事件 B .对立事件 C .相互独立事件D .以上答案都不对【例2】在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是( )A.18B.38C.14D.78【例3】甲、乙两名学生通过某种听力测试的概率分别为12和13,两人同时参加测试,其中有且只有一人能通过的概率是( ) A.13 B.23 C.12D .1【例4】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级 摸出红、蓝球个数获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级. (1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列.【过关练习】1.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( ) A.29 B.118 C.13 D.232.某条道路的A ,B ,C 三处设有交通灯,这三盏灯在一分钟内平均开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是________.3.某天上午,李明要参加“青年文明号”活动.为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.4.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是________.5.从一副除去大小王的扑克牌(52张)中任取一张,设事件A 为“抽得K ”,事件B 为“抽得红牌”,事件A 与B 是否相互独立?是否互斥?是否对立?为什么?题型三 二项分布及其应用【例1】某一试验中事件A 发生的概率为p ,则在n 次独立重复试验中,A 发生k 次的概率为( ) A .1-p k B .(1-p )k p n -kC .(1-p )kD .C k n (1-p )k pn -k【例2】甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( ) A .0.216 B .0.36 C .0.432D .0.648【例3】若随机变量ξ~B ⎝⎛⎭⎫5,13,则P (ξ=k )最大时,k 的值为( ) A .5 B .1或2 C .2或3D .3或4【例4】甲、乙两人各射击一次击中目标的概率分别是23和34,假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间也没有影响. (1)求甲射击4次,至少1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.【过关练习】1.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( ) A .6 B .5 C .4D .32.连续掷一枚硬币5次,恰好有3次正面向上的概率为________.4.甲、乙两人投篮命中的概率分别为p 、q ,他们各投两次,若p =12,且甲比乙投中次数多的概率恰好等于736,则q 的值为________.5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两位有效数字)课后练习【补救练习】1.为考察某种药物预防疾病的效果,科研人员进行了动物试验,结果如下表:A.35B.37C.911D.11152.某种动物活到20岁的概率是0.8,活到25岁的概率是0.4,则现龄20岁的这种动物活到25岁的概率是( ) A .0.32 B .0.5 C .0.4D .0.83.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512 C.14D.164.某人参加一次考试,4道题中答对3道为及格,已知他的解题正确率为0.4,则他能及格的概率约为( ) A .0.18 B .0.28 C .0.37D .0.485.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.【巩固练习】1.分别用集合M ={}2,4,5,6,7,8,11,12中的任意两个元素作分子与分母构成真分数,已知取出的一个元素是12,则取出的另一个元素与之构成可约分数的概率是( ) A.712 B.512 C.47D.1122.国庆节放假,甲,乙,丙去北京旅游的概率分别为13,14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35 C.12D.1603.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12且从两个袋中摸球相互之间不受影响,从两袋中各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放在验钞机上检验发现是假钞,则第2张也是假钞的概率为________.5.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是多少?6.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.7.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是________.8.设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05.甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.则求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为________,________,________.9.甲、乙、丙三人在同一办公室工作,办公室内只有一部电话机,经该机打进的电话是打给甲、乙、丙的概率分别是12,14,14,在一段时间内共打进三个电话,且各个电话之间相互独立,则这三个电话中恰有两个是打给乙的概率是________.10.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是________.11.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多有两人当选的概率.12.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率. (2)这名学生在上学路上因遇到红灯停留的总时间至多是4 min 的概率.【拔高练习】1.10个球中有一个红球,有放回的抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ) A .(110)2(910)n -kB .(110)k (910)n -kC .C k -1n -1(110)k (910)n -kD .C k -1n -1(110)k -1(910)n -k2.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动5次后位于点(2,3)的概率是( )A .(12)5B .C 25(12)5C .C 35(12)3D .C 25C 35(12)53.在某次考试中,要从20道题中随机地抽出6道题,考生能答对其中的4道题即可通过;能答对其中5道题就获得优秀.已知某考生能答对其中的10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.4.某公司招聘员工,指定三门考试课程,有两种考试方案: 方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率; (2)求该应聘者用方案二通过的概率.5.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{}a n :a n =⎩⎪⎨⎪⎧-1, 第n 次摸到红球,1, 第n 次摸到白球,如果S n 为数列{}a n 的前n 项和,求S 7=3的概率.。

高二数学二项分布及其应用

k n
事 件 A发 生 的 概 率
k n- k
Pn ( k ) C p (1 - p )
实验总次数 事件 A 发生的次数
(其中k = 0,1,2,· · · ,n )
例3 有10台同样的机器,每台机器的 故障率为3%,各台机器独立工作, 今配有2名维修工人,一般情况下, 1台机器出故障,1人维修即可,问 机器出故障无人维修的概率为多少?
; https:/// 配资平台
抱她回院子,可是他根本就不想跟她有任何瓜葛,壹丝壹毫都不想有!因此,他壹定要确保她不出任何意外,才能保证不需要他出手相助, 才能够保证他可以躲得她远远的。第壹卷 第182章 心事冰凝猛然听到声响,立即转过头来:天啊,居然是爷到咯!于是她赶快起身行咯 礼。王爷面无表情、不动声色地问道:“在给谁祈福呢?”“回爷,是宝光寺。”“噢?为啥啊?”“宝光寺去年遭咯灾,不知道现在怎 么样咯,妾身甚为惦念,特来祈福。”“你怎么知道宝光寺遭咯灾?”“妾身也是听旁人所说才知道的。”冰凝不想多说!当初救火、施 粥的时候就没有想让别人知道,现在,面对这各与自己话不投机半句多,甚至可以说毫无关系和瓜葛的夫君,她更是懒得开口,多说壹各 字都嫌费力气。这是她心中的故事,不需要与人分享。王爷却是在心中思忖着:听说?哼,是听玉盈姑娘说的吧。壹想到玉盈姑娘,他的 心壹下子就揪在咯壹起。写咯那么多的信,全都是鸿雁壹去别无消息,但是他仍然坚持不懈地遥寄去他的思念。玉盈不可能没有收到信, 她只是不敢回复罢咯,也许是不愿意回?就是因为担心她的妹妹吗?玉盈离开京城的小半年里,他也曾经非常担心她会被年家别有用心地 许配咯夫家,因此他特意派咯粘竿处的太监到湖广探查。结果却是让他万分欣慰,年府根本没有为玉盈姑娘托过媒!可是,玉盈已经十六 岁咯,年家怎么会连媒人都没有托请呢?难道是?从佛堂回到怡然居,冰凝的心终于踏实下来。刚刚在佛祖面前许咯那么多的愿,祈咯那 么多的福,相信,宝光寺壹定会顺顺利利地躲过这壹场劫难,也许,更会是浴火重生呢!壹想到这里,她的心情总算是好转过来。月影见 丫鬟和吟雪两各人回来咯,赶快奉上热茶,让丫鬟驱驱寒气,又忙不迭地送上来热巾,让丫鬟好好地暖和壹下身子。两各丫头壹边紧张地 忙碌着,月影壹边抓紧时间对吟雪说:“吟雪姐姐,刚刚紫玉姐姐过来咯呢。”“这么晚咯,紫玉过来干啥啊?她不用当差吗?”“今天 正好不是她当差,以为这么晚咯,你也不用当差咯,就找你来闲说会儿话。”“噢,福晋回来咯,她也只有大晚上才能出来咯。”“是啊! 不过,她看你没有在,就跟我闲聊咯壹会儿呢。”“呵,又有啥啊好消息?不会是说福晋也被诊出喜脉来咯吧?”“哈哈,吟雪姐姐,你 太,太有意思咯,要是那样的话,咱们王府可是三喜临门咯!”“月影,你这死丫头还有心思笑呢,你怎么这么吃里扒外的,丫鬟真是白 心疼你,白对咱们这么好咯!”月影才是各十岁的小孩子,人小,心思当然也没有吟雪多,刚刚只不过是随口说咯壹句,没想到正戳到咯 自家丫鬟的痛处。虽然挨咯吟雪的说,月影也觉得吟雪说得对,自己

二项分布及其应用

第4讲二项分布及其应用A 组一、选择题1.某人投篮一次投进的概率为32,现在他连续投篮6次,且每次投篮相互之间没有影响,那么他投进的次数ξ服从参数为(6,32)的二项分布,记为ξ~)32,6(B ,计算 ==)2(ξP ( ) A.24320 B. 2438 C. 7294D. 274【答案】A 【解析】由题意得,根据二项分布概率的计算可得==)2(ξP 22462220()(1)33243C -=,故选A . 2.已知离散型随机变量X 服从二项分布X ~(,)B n p 且()12,()4E X D X ==,则n 与p 的值分别为 A .218,3 B .118,3 C .212,3 D .112,3【答案】A【解析】由二项分布的数学期望和方差公式可得⎩⎨⎧=-=4)1(12p np np ,解之得32,18==p n ,故应选A.3.随机变量ξ服从二项分布(),B n p ξ ,且300,200E D ξξ==,则p 等于( ) A .23 B .13C .1D .0 【答案】B 【解析】由题意可得()3001200E np D np p ξξ==⎧⎪⎨=-=⎪⎩,解得1900,3n p ==,故选B.4.若随机变量,且()3E X =,则()1P X =的值是( )A .420.4⨯ B .520.4⨯ C .430.4⨯ D .430.6⨯ 【答案】C【解析】由题意().063E X n ==,5n =,1445(1)0.60.430.4P X C ==⨯⨯=⨯.故选C .5.随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( ) A.32B. 31C. 1D. 0【答案】B【解析】由,200,300==ξξD E 可知()1300,12003np np p p =-=∴= 6.已知随机变量X 服从二项分布1(6,)3X B ,则(2)P X ==( ) A .316 B .4243 C .13243 D .80243【答案】D 【解析】由题意得,随机变量X服从二项分布1(6,)3X B ,则22461180(2)()(1)33243P X C ==-=,故选D . 二、填空题7.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子至少有2粒发芽的概率是 . (请用分数表示结果) 【答案】608625【解析】由对立事件可知所求概率为0413014444446081115555625P C C ⎛⎫⎛⎫⎛⎫⎛⎫=----=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭8.李老师从课本上抄录一个随机变量ξ的概率分布如下表:请小王同学计算ξ的数学期望,尽管“?”处完全无法看清,且两个“!”处字迹模糊,但能断定这两个“!”处的数值相同.据此,小王给出了正确答案E ξ=________. 【答案】2【解析】设!,?x y ==,则21x y +=,()42222E x y x y ξ=+=+=. 9.设随机变量2~(10,)5B ξ,则D ξ= . 【答案】125【解析】:∵随机变量ξ服从二项分布,且2~(10,)5B ξ,∴D ξ=10×25×(1-25)=125,故答案为:125三、解答题10.某食品企业一个月内被消费者投诉的次数用ξ表示,椐统计,随机变量ξ的概率分布如下:(Ⅰ)求a 的值和ξ的数学期望;(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率. 【解析】(1)由概率分布的性质有0.10.321a a +++=,解得0.2a =, ∴ξ的概率分布为∴00.110.320.430.2 1.7E ξ=⨯+⨯+⨯+⨯=.(2)设事件A 表示“两个月内共被投诉2次”事件A 1表示“两个月内有一个月被投诉2次,另外一个月被投诉0次”;事件A 2表示“两个月内每月均被投诉1次”,则由事件的独立性得112()(2)(0)20.40.10.08P A C P P ξξ====⨯⨯=,222()[(1)]0.30.09P A P ξ====,∴12()()()0.080.090.17P A P A P A =+=+=,故该企业在这两个月内共被消费者投诉2次的概率为0.17.11.某校举行中学生“珍爱地球·保护家园”的环保知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者(Ⅰ)求选手甲进入复赛的概率;(Ⅱ)设选手甲在初赛中答题的个数为X ,试求X 的分布列和数学期望. 【解析】(Ⅰ)设“选手甲进入复赛”为事件A ,则选手甲答了3题都对进入复赛概率为:或选手甲答了4个题,前3个2对1或选手甲答了5个题,前4个2对2,∴(Ⅱ)X的可能取值为3,,,对应X的每个取值,选手甲被淘汰或进入复赛的概率∴12.甲、乙两人破译一密码,它们能破译的概率分别为13和14,试求:(1)两人都能破译的概率;(2)两人都不能破译的概率;(3)恰有一人能破译的概率;(4)至多有一人能破译的概率;(5)若要使破译的概率为99%,至少需要多少乙这样的人?【解析】设事件A为“甲能译出”,事件B为“乙能译出”,则A、B相互独立,从而A与B、A 与B、A与B均相互独立.(1)“两人都能译出”为事件AB,则P(AB)=P(A)P(B)=13×14=112.(2)“两人都不能译出”为事件A B,则P(A B)=P(A)P(B)=[1-P(A)][1-P(B)]=113⎛⎫-⎪⎝⎭114⎛⎫-⎪⎝⎭=12.(3)“恰有一人能译出”为事件A B+A B,又A B与A B互斥,则P(A B+A B)=P(A B)+P(A B)=P(A)P(B)+P(A)P(B)=13×114⎛⎫-⎪⎝⎭+113⎛⎫-⎪⎝⎭×14=512.(4)“至多一人能译出”为事件A B+A B+A B,且A B、A B、A B互斥,故P(A B+A B+A B)=P(A)P(B)+P(A)P(B)+P(A)P(B)=13×114⎛⎫-⎪⎝⎭+113⎛⎫-⎪⎝⎭×14+113⎛⎫-⎪⎝⎭×114⎛⎫-⎪⎝⎭=1112.(5)设至少需n个乙这样的人,而n个乙这样的人译不出的概率为114⎛⎫-⎪⎝⎭n,故n个乙这样的人能译出的概率为1-114⎛⎫-⎪⎝⎭n≈99%.解得n=16.故至少需16个乙这样的人,才能使译出的概率为99%.13.如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9.电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(1)求p;(2)求电流能在M与N之间通过的概率.【解析】解:记A i表示事件:电流能通过T i,i=1,2,3,4.A表示事件:T1,T2,T3中至少有一个能通过电流.B表示事件:电流能在M与N之间通过.(1) A=A1·A2·A3,A1,A2,A3相互独立,P(A)=P(A1·A2·A3)=P(A1)P(A2)P(A3)=(1-p)3,又P(A)=1-P(A)=1-0.999=0.001,故(1-p)3=0.001,p=0.9.(2)B=A4+(A4·A1·A3)∪(A4·A1·A2·A3)P(B)=P(A4)+P(A4·A1·A3+A4·A1·A2·A3),=P(A4)+P(A4)P(A1)P(A3)+P(A4)P(A1)P(A2)P(A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891.14.生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:(1)试分别估计元件A 、元件B 为正品的概率; (2)生产一件元件A ,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B ,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下; (1)求生产5件元件B 所获得的利润不少于300元的概率;(2)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望. 【解析】(1)由题可知 元件A 为正品的概率为 14032841005P ++==,元件B 为正品的概率为24029631004P ++==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项分布专题训练
一.选择题
1.甲、乙两人独立地解同一问题,甲能解决这个问题的概率是1p,乙能解决这个问题的概率是2p,
那么其中至少有1人能解决这个问题的概率是 ( D )
A.21pp; B.21pp; C.211pp; D.121(1)(1)pp.
2.在一个盒子中有大小相同的10个球,其中6个红球,4个白球,两人无放回地各取一个球,则
在第一个人摸出红球的条件下,第二个人也摸出红球的概率是 ( A )
A.13; B.23; C.49; D.59.

【解析】设“第一个人摸出红球”为事件A,“第二个人摸出红球”为事件B,则11692105490CCPAA,

11
65
2
10

30
90CCPABA


,则5|9PABPBAPA。

3.两个独立事件1A和2A发生的概率分别为1p和2p,则有且只有一个发生的概率
为 .122111pppp
4. (04年重庆) 甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5,计算:
⑴三人各向目标射击一次,求恰有两人命中目标及至少有一人命中目标的概率;
⑵若甲连续射击三次,求他恰好一次命中的概率.
解:⑴设iA(3,2,1i)表示事件“第i人命中目标”,显然1A、2A、3A相互独立,且7.0)(1AP,
6.0)(2AP
,5.0)(3AP.

三人中恰有两人命中目标的概率为
44.0)(321321321AAAAAAAAAP
.

三人中恰有至少有一人命中目标的概率为
94.0)(1321AAAP
.

⑵设kA表示“甲在第k次命中目标”,3,2,1k.显然1A、2A、3A相互独立,且
7.0)()()(321APAPAP
.

甲连续射击三次,恰好一次命中的概率为
203.0)(321321321AAAAAAAAAP
.

5.已知在10只晶体管中有2只次品,从中连续抽取两件,且取出的产品不再放回,求下列事件的
概率.
⑴两只都是正品; ⑵两只都是次品.
解:设事件iA(1,2i)表示第i次取到正品,则iA表示第i次取到次品.
依题意,1810PA,217|9PAA,1210PA,211|9PAA.
⑴12AA表示第1次,第2次都取到正品,即表示两只都是正品,根据乘法公式

12121

28

|45PAAPAPAA
.

⑵121211|45PAAPAPAA.
另解:本题也可利用古典概型来解决.
点评:本题中由于是两个都是正(次)品,由于是连续抽取且抽后不放回,故与条件概率有关.
6.(04年福建·理)甲、乙两人参加一次英语口试,已知在备选的10道题中,甲能答对其中的6道,
乙能答对其中的8道,规定每次考试都从备选题中随机地抽出3道,至少答对2道才算合格.
⑴求甲答对试题数X的概率分布分布;
⑵求甲、乙两人至少有一人考试合格的概率.
解:⑴依题意,甲答对题数X的概率分布如下:
X
0 1 2 3

P
130 310 12 1
6
⑵方法1:甲、乙两人至少有一人考试合格的概率为

()PPABABAB()()()PABPABPAB
2111421444
31531531545

.

方法2:∵甲、乙两人考试均不合格的概率为1()()()45PABPAPB,
∴甲、乙两人至少有一人考试合格的概率为441()45PPAB.
7.(07年天津·文科)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红
球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为红球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
解:(Ⅰ)设“从甲盒内取出的2个球均为红球”为事件A,“从乙盒内取出的2个球均为红球”为
事件B.由于事件AB,相互独立,且
2327C1()C7PA,2
3
2
9

C
5

()C18PB

故取出的4个球均为红球的概率是
155
()()()718126PABPAPBgg

(Ⅱ)设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”
为事件C,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为
事件D.由于事件CD,互斥,且
1123442279CCC2()CC21PCg,11
2

52
4

22
75

CC
C
10

()CC63PDg

故取出的4个红球中恰有4个红球的概率为
21016
()()()216363PCDPCPD

8.(01年天津)如图,用A、B、C三个不同的元件联结成两个电子系统(Ⅰ)、(Ⅱ)。当元件A、
B、C都正常工作时,系统(Ⅰ)正常工作;当元件A正常工作且B
、C至少有一个正常工作时,系

统(Ⅱ)正常工作。已知元件A、B、C正常工件的概率依次为0.80、0.90、0.90,分别求系统(Ⅰ)、
(Ⅱ)正常工作概率1P、2P,并说明哪个系统的稳定性好.

解:分别记元件A、B、C正常工作为事件A、B、C,由已知()0.80PA,()()0.90PBPC,
则:
⑴因为事件A、B、C是相互独立的,所以系统(Ⅰ)正常工作的概率为

1
()()()()0.648PPABCPAPBPC

⑵因为元件A正常工作与元件B、C至少有一个正常工作是相互独立的,而B、C没有一个正常
工作的概率为()PBC,于是B、C至少有一个人正常工作的概率为1()()0.99PBPC,
∴系统(Ⅱ)正常工作概率2()[1()]0.792PPAPBC。

B C A
A
B
C
(Ⅰ)
(Ⅱ)
(或()()()()0.99PBCPBPCPBC)

相关文档
最新文档