2.2.1二项分布及其应用
高中数学选修2(新课标)课件2.2.1二项分布及其应用

类型三 条件概率的性质及应用 例 3 把外形相同的球分装三个盒子,每盒 10 个.其中,第一 个盒子中有 7 个球标有字母 A,3 个球标有字母 B;第二个盒子中有 红球和白球各 5 个;第三个盒子中有红球 8 个,白球 2 个.试验按 如下规则进行:先在第一个盒子中任取一个球,若取得标有字母 A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母 B 的 球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则 称试验成功.求试验成功的概率.
【答案 100 个,但要求的是甲机床
加工的合格品概率,故只要在甲加工的 40 个零件中考虑问题即可, 同理,(2)只要在甲抽到的为奇数的所有可能中找出乙抽到的数比甲 大的结果.
方法归纳
利用缩小基本事件范围计算条件概率的方法 将原来的基本事件全体 Ω 缩小为已知的条件事件 A,原来的事 件 B 缩小为 AB.而 A 中仅包含有限个基本事件,每个基本事件发生 的概率相等,从而可以在缩小的事件空间上利用古典概型公式计算
(2) 把 一 枚 硬 币 连 续 抛 两 次 . 记 “ 第 一 次 出 现 正 面 ” 为 事 件 A.“第二次出现正面”为事件 B.则 P(B|A)等于( )
1
1
A.2
B.4
1
1
C.6
D.9
解析:(2)由题知本题是一个条件概率,第一次出现正面的概率
是 P(A)=12,第一次出现正面且第二次也出现正面的概率是 P(AB)
【解析】 (2)将甲抽到数字 a,乙抽到数字 b,记作(a,b), 甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2), (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共 15 个,在 这 15 个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5), (1,6),(3,4),(3,5),(3,6),(5,6),共 9 个,所以所求概率 P=195=35.
二项分布及其应用教案定稿

二项分布及其应用教案定稿第一章:引言1.1 教学目标了解二项分布的背景和意义,理解二项分布的概念及其在实际问题中的应用。
1.2 教学内容1.2.1 二项分布的定义通过具体案例引入二项分布的概念,讲解二项分布的基本性质。
1.2.2 二项分布的概率质量函数推导二项分布的概率质量函数,讲解影响二项分布概率的因素。
1.3 教学方法采用案例分析法,通过具体案例引导学生理解二项分布的概念及其应用。
1.4 教学评估通过小组讨论和课堂练习,检查学生对二项分布的理解程度。
第二章:二项分布的概率质量函数2.1 教学目标掌握二项分布的概率质量函数的推导和运用。
2.2 教学内容2.2.1 二项分布的概率质量函数推导讲解二项分布的概率质量函数的推导过程,引导学生理解各个参数的含义。
2.2.2 二项分布的概率质量函数的应用通过具体案例,讲解如何运用二项分布的概率质量函数解决实际问题。
2.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的概率质量函数。
2.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布概率质量函数的掌握程度。
第三章:二项分布的期望和方差3.1 教学目标掌握二项分布的期望和方差的计算方法及其应用。
3.2 教学内容3.2.1 二项分布的期望讲解二项分布的期望的计算方法,引导学生理解期望的含义。
3.2.2 二项分布的方差讲解二项分布的方差的计算方法,引导学生理解方差的概念。
3.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的期望和方差。
3.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布的期望和方差的掌握程度。
第四章:二项分布的应用4.1 教学目标了解二项分布在不同领域的应用,提高学生解决实际问题的能力。
4.2 教学内容4.2.1 生物学领域的应用讲解二项分布在生物学领域的应用,如基因遗传等。
4.2.2 医学领域的应用讲解二项分布在医学领域的应用,如药物疗效等。
4.2.3 社会科学领域的应用讲解二项分布在社会科学领域的应用,如民意调查等。
【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)

独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,
医学统计学第八讲二项分布其应用

贝努利试验:指只有两个互斥结果的试验 。如阳性与阴性,生存与死亡,发病与未 发病。
n次贝努利试验指重复进展n次独立的贝努 利试验。又叫贝努利试验序列。
贝努利试验序列特点
①每次试验的结果只能是2个互相对立结 果中的一个。
② n个观察单位的结果互相独立。 ③在一样条件下,每次试验结果的概率不变
。
二项分布〔binomial distribution〕是指 在n次Bernoulli试验中,当每次试验的“阳性 〞概率保持不变时,出现“阳性〞的次数 X=0,1,2,…,n的概率分布。
二项分布下至少发生k例阳性的概率为发生k例 阳性、k+1例阳性、...、直至n例阳性的概率之和。
即
p(x≥k) =p(x=k)+p(x=k+1)+……+p(x=n)
n
p(X k) P(X) P(k) P(k 1) P(k 2) P(n) Xk
X=k,k+1,k+2, …… ,n
二项分布下发生k1例及以上到k2 例阳性的概率为 发生k1例阳性、 k1+1例阳性、...、直至k2例阳性的概 率之和。即
)n
0 √ √ √ (1- )3 1 X √ √ (1-)2 √ X √ (1-)2 √ √ X (1-)2
2 X X √ 2(1-) X √ X 2(1-)
√ X X 2(1-) 3 X X X 3
P( X
0)
3 0
(
)0
(1)Βιβλιοθήκη P( X 1) 31( )1(1 )2
P( X
2)
3 2
(
区间,用(1 – 阴性率可信区间) ,可得阳性率 可信区间。
二、率的假设检验
二项分布及其应用

14.在高三的一个班中,有的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生数ξ~B,则P(ξ=k)取最大值时k的值为()
A.0B.1C.2D.3
15.某篮球决赛在广东队与山东队之间进行,比赛采用7局4胜制,即若有一队先胜4场,则此队获胜,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛组织者可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元,则组织者在此次决赛中要获得的门票收入不少于390万元的概率为________.
A.B.C.D.
3.设两个正态分布N(μ1,σ)(σ1>0)和N(μ2,σ)(σ2>0)的密度函数图象如图所示.则有()
A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2
4.在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为()
10.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).
8.在国庆期间,甲去北京旅游的概率为,乙、丙去北京旅游的概率分别为、.假定三人的行动相互之间没有影响,那么这段时间内至少有一人去北京旅游的概率为________.
9.某种品牌摄像头的使用寿命ξ(单位:年)服从正态分布,且使用寿命不少于2年的概率为0.8,使用寿命不少于6年的概率为0.2.某校在大门口同时安装了两个该种品牌的摄像头,则在4年内这两个摄像头都能正常工作的概率为________.
2.2.2二项分布及其应用-事件的相互独立性(高中数学人教A版选修2-3)

练习2、若甲以10发8中,乙以10发7中的命中率打靶, 两人各射击一次,则他们都中靶的概率是( D )
(A)
3 5
(B)
3 4
(C)
12 25
(D)
14 25
如P(B)>0时,有P(AB)=P(A|B)P(B), P(A)>0时,有P(AB)=P(B|A)P(A).
2.P(A|B)与P(AB)的区别
P(A|B) 是在事件 B 发生的条件下,事件 A 发生的概率, P(AB)是事件A与B同时发生的概率,无附加条件. 3.条件概率的性质 (1)0≤P(A|B)≤1.
跟踪练习 1.判断下列各题中给出的事件是否是相互独立事件: (1)甲盒中有6个白球、4个黑球,乙盒中有3个白球、5个 黑球.从甲盒中摸出一个球称为甲试验,从乙盒中摸出一个 球称为乙试验,事件A1表示“从甲盒中取出的是白球”,事 件B1表示“从乙盒中取出的是白球”. (2)盒中有4个白球、3个黑球,从盒中陆续取出两个球, 用A2表示事件“第一次取出的是白球”,把取出的球放回盒 中,事件B2表示事件“第二次取出的是白球”. (3)盒中有4个白球、3个黑球,从盒中陆续取出两个球, 用A3表示“第一次取出的是白球”,取出的球不放回,用B3 表示“第二次取出的是白球”.
P(A1· A2……An)=P(A1)· P(A2)……P(An)
互斥事件与独立事件
互斥事件
概 念 不可能同时发生的两个 事件叫做互斥事件
相互独立事件 如果事件A(或B)是否发 生对事件B(或A)发生的 概率没有影响,这样的 两个事件叫做相互独立 事件
相互独立事件A,B同时 发生记作A·B P(A·B)=P(A)·P(B)
高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》8

条件概率教学设计课标分析《条件概率》是人教B 版普通高中课程标准实验教科书《数学》选修2-3 第二章随机变量及其分布中,二项分布及其应用的第一课时的内容,主要包括:(1)条件概率的概念;(2)条件概率的性质;(3)条件概率公式的简单应用。
《条件概率》的内容,利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过对有无“第一名同学没有中奖”条件,最后一名同学中奖的概率的比较,引出条件概率的概念,给出了条件概率的两个性质,并通过条件概率公式的简单应用加深对条件概率概念本质特征的理解掌握。
为相互独立事件和二项分布的内容教学,起“引流开山”之作用,即为定义相互独立事件和研究二项分布做好了知识铺垫。
正因本节是数学新概念引入建立,其教学便化身为本章的难点,对其进行合理的教学处理尤显重要。
本节教学重点和难点都是对条件概率的概念理解,应用公式对条件概率的计算是围绕这一中心的;在条件概率概念的引入中,应抓住“条件概率的本质是样本空间范围的缩小下的概率”这一转化关键。
教学关键是实际案例对比,甚者要辅以图示直观说明解释和反例验证等教学方式对条件概率的概念进行多角度分析研究,才能突破本节教学重点和教材分析《条件概率》第一课时是高中数学选修2-3第二章第二节的内容本节课是在必修三学习了概率的定义,概率的关系与运算,概率的基本性质,古典概型特点及其运算的基础上,学习如何计算已知某一事件发生的条件下,另一事件发生的概率,它仍属于概率的范畴。
它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模条件概率是比较难理解的概念。
教科书利用大家比较熟悉的抽奖为实例,以无放回抽取奖券的方式,通过比较抽奖前和在已知第一名同学没有中奖的条件下,最后一名同学中奖的概率从而引入条件概率的概念,给出条件概率的两种计算方法。
高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案

第二章随机变量及其分布 2.2二项分布及其应用
一、学习任务 1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题. 2. 能通过实例理解相互独立事件的定义及概率计算公式,并能综合利用互斥事件的概率加法公 式即对立事件的概率乘法公式. 3. 理解独立重复试验的概率及意义,理解事件在 n 次独立重复试验中恰好发生 k 次的概率 公式,并能利用 n 次独立重复试验的模型模拟 n 次独立重复试验. 二、知识清单
(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 P1 ,则
¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯) P1 = P (¯¯ A A B B ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯) = P (¯¯ A A B B 1 2 = (1 − )2 (1 − )2 2 5
n−k k P (X = k) = Ck , k = 0, 1, 2, ⋯ , n. n p (1 − p)
此时称随机变量 X 服从二项分布(binnomial distribution),记作 X ∼ B(n, p)),并称 p 为 成功概率. 例题: 下列随机变量 X 的分布列不属于二项分布的是( ) A.投掷一枚均匀的骰子 5 次,X 表示点数 6 出现的次数 B.某射手射中目标的概率为 p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要 的射击次数 C.实力相等的甲、乙两选手举行了 5 局乒乓球比赛,X 表示甲获胜的次数 D.某星期内,每次下载某网站数据后被病毒感染的概率为 0.3,X 表示下载 n 次数据后电脑被 病毒感染的次数 解:B 选项 A,试验出现的结果只有两个:点数为 6 和点数不为 6 ,且点数为 6 的概率在每一次试验 都为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用B表示最后一名同学抽到中奖奖券的事件,
则B {NNY }
由古典概型可知,最后一名同学一事抽般件到地A包中,含n奖(的A奖)基表券本示的
概率为:P(B) n(B) 1 n() 3
事件的个数
思考:如果已经知道第一名同你学知没道有第抽一到名中同奖学奖券,
那么最后一名抽到中奖奖券的概的率抽又奖是结多果少为?什么
分析:
会影响最后一名同
学的抽奖结果吗?
若抽到中奖奖券用"Y "表示,没有抽到用" N "表示,
不妨设“第一名同学没有抽到中奖奖券”为事件A,
则A {NYN , NNY }
用B表示最后一名同学抽到中奖奖券的事件, 则B {NNY }
最后一名同学抽到奖券的概率为P(B | A) n(B) 1 n( A) 2
2.2.1《二项分布及其应用 -条件概率》
教学目标
• 知识与技能:通过对具体情景的分析,了解条件 概率的定义。
• 过程与方法:掌握一些简单的条件概率的计算。 • 情感、态度与价值观:通过对实例的分析,会进
行简单的应用。 • 教学重点:条件概率定义的理解 • 教学难点:概率计算公式的应用 • 授课类型:新授课 课时安排:1课时
P(B | A) n( AB) / n() P( AB) n( A) / n() P( A)
条件概率的定义:
一般地,设A,B为两个事件,且P(A)>0,则
P(B A) P( AB) P( A)
在原样本空间 的概率
称为在事件A发生的条件下,事件B发生的条件概率。 一般把P(B|A)读作A发生的条件下B的概率。 注意: (1)条件概率的取值在0和1之间,即0≤P(B|A) ≤1 (2)如果B和C是互斥事件,则
的概率。 (3)解法一:由(1)(2)可得,在第一次抽到理科题
的条件下,第二次抽到理科题的概率为
3
P(B
A)
P( AB) P( A)
10 3
1 2
5
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率; (3)在第一次抽到理科题的条件下,第二次抽到理科题
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB.
(2) n( AB) A32 6
P( AB) n( AB) 6 3 n() 20 10
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率; (3)在第一次抽到理科题的条件下,第二次抽到理科题
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB.
(1)从5道题中不放回地依次抽取2道的事件数为
n() A52 20
根据分步乘法计数原理,n( A) A31 A41 12 P( A) n( A) 12 3
n() 20 5
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
注:P(B|A)表示在事件A发生的条件下B发生的概率
思考:你知道第一名同学的抽奖结果为什么会影响
最后一名同学的抽奖结果吗?
分析: 若不知道第一名同学的抽奖结果,则样本空间为、
{YNN , NYN , NNY }
若知道了第一名同学的抽奖结果,则样本空间变成
A {NYN , NNY }
但因为最后一名中奖的情况只有一种{NNY} 故概率会发生变化
的概率。
解法二:因为n(AB)=6,n(A)=12,所以
P(B A) n( AB) 6 1 n( A) 12 2
解法三:第一次抽到理科题,则还剩下两道理科、 两道文科题 故第二次抽到理科题的概率为1/2
练习:甲乙两地都位于长江下游,根据一百多年的气象 记录,知道甲乙两地一年中雨天所占的比例分别为20% 和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少? 解:设A={甲地为雨天}, B={乙地为雨天},
分析:求P(B|A)的一般思想
因为已经知道事件A必然发生,所以只需在A发生 的范围内考虑问题,即现在的样本空间为A。
因为在事件A发生的情况下事件B发生,等价于事 件A和事件B同时发生,即AB发生。
故其条件概率为
P(B | A) n( AB) n( A)
为了把条件概率推广到一般情形,不妨记原来的 样本空间为,则有
则P(A)=20%,P(B)=18%,P(AB)=12%,
(1)乙地为雨天时甲地也为雨天的概率是
P( A B) P( AB) 12% 2 P(B) 18% 3
(2)甲地为雨天时乙地也为雨天的概率是
P(B A) P( AB) 12% 3 P( A) 20% 5
练习:甲乙两地都位于长江下游,根据一百多年的气象 记录,知道甲乙两地一年中雨天所占的比例分别为20% 和18%,两地同时下雨的比例为12%,问: (3)甲乙两市至少一市下雨的概率是多少?
探究:3张奖券中只有1张能一中般奖地,,现我分们别用由来3名同学
无放回地抽取,问最后一名同表学示抽所到有中基奖本奖事券件的的概率是
否比其他同学小?
集合,叫做基本事件
分析:
空间(或样本空间)
若抽到中奖奖券用"Y "表示,没有抽到用" N "表示,
那么所有可能的抽取情况为 {YNN , NYN , NNY }
P(B∪C |A)= P(B|A)+ P(C|A) (3)要注意P(B|A)与P(AB)的区别,这是分清条件概率
与一般概率问题的关键。
概率 P(B|A)与P(AB)的区别与联系
联系:事件A,B都发生了 区:
样本空间不同: 在P(B|A)中,事件A成为样本空间; 在P(AB)中,样本空间仍为。
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
解:设A={甲地为雨天}, B={乙地为雨天}, 则P(A)=20%,P(B)=18%,P(AB)=12%, ∵{甲乙两市至少一市下雨}=A∪B 而P(A∪B)=P(A)+P(B)-P(AB) =20%+18%-12% =26% ∴甲乙两市至少一市下雨的概率为26%