14.勤学早九年级数学(上)第2 4章《圆》周测(一)

合集下载

036.勤学早测试卷目录(16-17) 数学 九年级(上、下)

036.勤学早测试卷目录(16-17)  数学 九年级(上、下)

勤学早测试卷(2016-2017)数学九年级(上、下)九年级数学(上册)1.九(上)第21章《一元一次方程》周测(一)2.九(上)第21章《一元二次方程》周测(二)3.九(上)第2l章《一元二次方程》单元检测题(月考一)4.九(上)第2l章《一元二次方程》专题一点通(一)(二)5.九(上)第22章《一次函数》周测(一)6.九(上)第22章《二次函数》周测(二)7.九(上)第22章《二次函数》单元检测题8.九(上)第22章《二次函数》专题一点通(一)(二)9.九(上)第22章《二次函数》专题一点通(三)10.九(上)月考(二)11.九(上)第23章《旋转》单元检测题12.九(上)第23章《旋转》专题一点通13.九(上)期中模拟题(月考三)14.九(上)第24章《圆》周测(一)15.九(上)第24章《圆》周测(二)16.九(上)第24章《圆》周测(三)17.九(上)第24章《圆》单元检测题18.九(上)第24章《圆》专题一点通19.九(上)月考(四)20.九(上)第25章《概率初步》单元检测题21.九(上)第25章《概率初步》专题一点通22.九(上)期末模拟题(月考五)九年级数学(下册)23.九(下)第26章《反比例函数》周测(一)24.九(下)第26章《反比例函数》周测(二)25.九(下)第26章《反比例函数》单元检测题(月考一)26.九(下)第26章《反比例函数》专题一点通27.九(下)第27章《相似》周测(一)28.九(下)第27章《相似》周测(二)29.九(下)第27章《相似》单元检测题30.九(下)第27章《相似》专题一点通31.九(下)月考(二)32.九(下)第28章《三角函数》周测(一)33.九(下)第28章《三角函数》单元检测题34.九(下)第28章《三角函数》专题一点通35.九(下)第29章《投影与视图》单元检测题36.九(下)月考(三)(中考模拟题)。

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8―4πB.16―4πC.32―4πD.32―8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A.B.C.D.6.如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )A.2π3―32B.2π3―3C.π3―32D.π37.如图,⊙O是正△ABC的外接圆,△DOE是顶角为120°的等腰三角形,点O与圆心重合,点D,E 分别在圆弧上,若⊙O的半径是6,则图中阴影部分的面积是( )A.4πB.12π―9 3C.12π―923D.24π―9 38.如图,在正方形ABCD中,点E,F分别是边BC和CD上的动点(不与端点重合),∠EAF=45°,AF、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43―1B.3+5C.1+25D.35―110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC= x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2―AC2=0.52―0.42=0.3m,∴CD=OD―OC=0.5―0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°―∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG―S梯形OEDF―S扇形BOF=6×23―12×(2+4)×23―60π⋅42360=63―83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(―2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,{∠HAM=∠CMOMC=MA∠OCM=∠AMH∴△AMH≌△MCO(ASA),故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,{∠CMO=∠MPECM=PM∠MCO=∠PME∴△MCO≌△PME(ASA)∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(―1,―3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24―t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2―C F2=x2―(24―t)2,在Rt△BFO中,B F2=B O2―O F2=242―t2,于是有:x2―(24―t)2=242―t2,整理得,t=―148x2+24,∴y=―124x 2+2x+96=―124(x―24)2+120,当x=24时,y max=120。

新人教版初中数学九年级数学上册第四单元《圆》检测(包含答案解析)(1)

新人教版初中数学九年级数学上册第四单元《圆》检测(包含答案解析)(1)

一、选择题1.如图,在平面直角坐标系中,P 是直线y =2上的一个动点,⊙P 的半径为1,直线OQ 切⊙P 于点Q ,则线段OQ 的最小值为( )A .1B .2C .3D .52.如图,在ABC 中,90ACB ∠=︒,过B ,C 两点的O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O 于点F .连接BF ,CF ,若135EDC ∠=︒,2AE =,4BE =,则CF 的值为( ).A .10B .22C .23D .33.以O 为中心点的量角器与直角三角板ABC 如图所示摆放,直角顶点B 在零刻度线所在直线DE 上,且量角器与三角板只有一个公共点P ,∠POB =40°,则∠CBD 的度数是( )A .50°B .45°C .35°D .40°4.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .45B .215C .16D .8 5.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .6.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .1027.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .338.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60° 9.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 10.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .611.如图,AB 是⊙O 的直径,AB=AC 且∠BAC=45°,⊙O 交BC 于点D ,交AC 于点E ,DF 与⊙O 相切,OD 与BE 相交于点H .下列结论错误的是( )A .BD=CDB .四边形DHEF 为矩形C .2AE DE =D .BC=2CE 12.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.如图,I 是ABC 的内心,AI 的延长线与ABC 的外接圆相交于点D ,与BC 交于点E ,连接BI 、CI 、BD 、DC .下列说法:①CAD DAB ∠=∠,②AI BI CI ==,③1902BIC BAC ∠=︒+∠;④点D 是BIC △的外心;正确的有______.(填写正确说法的序号)14.如图,点A ,B ,C 在圆O 上,54ACB ∠=︒,则ABO ∠的度数是______.15.已知扇形的圆心角为120︒,面积为π,则扇形的半径是___________.16.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.17.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.18.如图,已知点,,A B C 在O 上,若50ACB ∠=,则AOB ∠=_____________________度.19.如图,O 是正方形ABCD 的外接圆,2,AB =点E 是劣弧AD 上的任意一点,连接BE ,作CF BE ⊥于点F ,连接,AF 则当点E 从点A 出发按顺时针方向运动到点D 时,AF 长的取值范围为________________.20.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.三、解答题21.如图,已知四边形ABCD 是矩形,AC 为对角线.(1)把△ABC 绕点A 顺时针旋转一定角度得到△AEF ,点B 的对应点为E ,点C 的对应点F 在CD 的延长线上,请你在图中作出△AEF .(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,求证:B ,D ,E 三点共线.22.如图,已知O 的直径AB ⊥弦CD 于点E ,且E 是OB 的中点,连接CO 并延长交AD 于点F .⊥;(1)求证:CF ADAB=,求CD的长.(2)若1223.如图,在平面直角坐标系中有一矩形ABCD(每一小格为一个单位长度),将矩形ABCD绕着点A逆时针旋转90°后得到新的图形.(1)请画出旋转后的图形,旋转后C点对应点的坐标为______.(2)请计算点C在旋转过程中的路径长.24.如图,已知A、B、C、D四点都在⊙O上.(1)若∠ABC=120°,求∠AOC的度数;(2)在(1)的条件下,若点B是弧AC的中点,求证:四边形OABC为菱形.25.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O与座板A的距离为2m(此时OA垂直于地面),现一人荡秋千时,座板到达点B(OA不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).26.如图,已知,MON ∠点A 在射线OM 上.根据下列方法画图(用尺规作图). ①以O 为圆心,OA 长为半径画圆,交ON 于点B ,交射线OM 的反向延长线于点C ,连接BC ;②以OA 为边,在MON ∠的内部,画AOP OCB ∠=∠;③连接AB ,交OP 于点E ;④过点A 作O 的切线,交OP 于点F .()1依题意补全图形;()2求证MOP PON ∠=∠;()3若60,10MON OF ∠=︒=,求AE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接PQ 、OP ,如图,根据切线的性质得:PQ ⊥OQ ,再利用勾股定理得出OQ ,利用垂线段最短,当OP 最小时,OQ 最小,即可求解.【详解】连接PQ 、OP ,如图,∵直线OQ 切⊙P 于点Q ,∴PQ ⊥OQ ,在直角OPQ △中,2221OQ OP PQ OP --,当OP 最小时,OQ 最小,当OP ⊥直线y =2时,OP 有最小值2,∴OQ 的最小值为2213-=,故选:C .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径,也考查了勾股定理,熟练掌握切线的性质以及勾股定理是解答本题的关键.2.A解析:A【分析】由四边形BCDE 内接于⊙O 知∠EFC=∠ABC=45°,据此得AC=BC ,由EF 是⊙O 的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE ,再根据四边形BECF 是⊙O 的内接四边形知∠AEC=∠BFC ,从而证△ACE ≌△BCF 得AE=BF ,根据Rt △ECF 是等腰直角三角形知EF 2=20,继而可得答案.【详解】∵四边形BCDE 内接于O ,且135EDC ∠=︒, ∴18045EFC ABC EDC ︒∠=∠=-∠=︒,∵90ACB ∠=︒, ∴ABC 是等腰三角形,∴AC BC =,又∵EF 是O 的直径, ∴90EBF ECF ACB ∠=∠=∠=︒, ∴BCF ACE ∠=∠,∵四边形BECF 是O 的内接四边形,∴AEC BFC ∠=∠,∴()ACE BFC ASA ≅△△,∴AE BF =,Rt BEF △中,22222224220EF BF BE BE AE =+=+=+=,Rt ECF △中,45EFC ∠=︒,∴CE CF =,∴2222220CE CF CF EF +===,∴210CF =,∴10CF =故选:A .【点睛】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、全等三角形的判定与性质及勾股定理.3.D解析:D【分析】根据切线的性质得到∠OPB=90°,证出OP//BC,根据平行线的性质得到∠POB=∠CBD,于是得到结果.【详解】∵AB是⊙O的切线,∴∠OPB=90°,∵∠ABC=90°,∴OP//BC,∴∠CBD=∠POB=40°,故选D.【点睛】本题考查了切线的性质,平行线的判定和性质,熟练掌握切线的判定和性质是解题的关键.4.A解析:A【分析】连接OA,先根据⊙O的直径CD=12,CP:PO=1:2求出CO及OP的长,再根据勾股定理可求出AP的长,进而得出结论.【详解】连接OA,∵⊙O的直径CD=12,CP:PO=1:2,∴CO=6,PO=4,∵AB⊥CD,∴22-22OA OP-5,64⨯=∴AB=2AP=22545故选:A.【点睛】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式2222ar d⎛⎫=+⎪⎝⎭成立,知道这三个量中的任意两个,就可以求出另外一个.5.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.6.C解析:C【分析】根据圆周角定理得出∠D=∠B,得出△ABC是等腰直角三角形,进而解答即可.【详解】∵AC=AC,∴∠D=∠B,∵∠BAC=∠D,∴∠B=∠BAC,∴△ABC是等腰三角形,∵AB是直径,∴△ABC是等腰直角三角形,∵AC=5,∴AB=故选:C.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.7.C解析:C【分析】+的最小值,进而求解即可.利用菱形的性质及相切两圆的性质得出P与D重合时PE PF【详解】解:作点A关于直线CD的对称点A´,连接BD,DA´,∵四边形ABCD是菱形,∴AB=AD,∵∠BAD=60°,∴△ABD是等边三角形,∴∠ADB=60°,∵∠BDC=∠ADB=60°,∴∠ADN =60°,∴∠A´DN=60°,∴∠ADB+∠ADA´=180°,∴A´,D,B在一条直线上,+最小,由此可得:当点P和点D重合,E点在AD上,F点在BD上,此时PE PF∵在菱形ABCD中,∠A=60°,∴AB=AD,则△ABD为等边三角形,∴BD=AB=AD=3,∵⊙A,⊙B的半径分别为2和1,∴PE=1,DF=2,+的最小值为3.∴PE PF故选C.【点睛】本题考查了菱形的性质,等边三角形的性质,点与圆的位置关系等知识.根据题意得出点P位置是解题的关键.8.B解析:B【分析】由线段AB 是⊙O 的直径,弦CD 丄AB ,根据垂径定理的即可求得=BC BD ,然后由圆周角定理,即可求得答案.【详解】解:∵线段AB 是⊙O 的直径,弦CD 丄AB ,∴=BC BD ,∵∠CAB =20°,∴∠BOD=2∠CAB=2×20°=40°.故选:B .【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用. 9.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键. 10.C解析:C【分析】过点P 作PD ⊥MN ,连接PM ,由垂径定理得DM =3,在Rt △PMD 中,由勾股定理可求得PM 为5即可.【详解】解:过点P 作PD ⊥MN ,连接PM ,如图所示:∵⊙P与y轴交于M(0,−4),N(0,−10)两点,∴OM=4,ON=10,∴MN=6,∵PD⊥MN,∴DM=DN=1MN=3,2∴OD=7,∵点P的横坐标为−4,即PD=4,∴PM5,即⊙P的半径为5,故选:C.【点睛】本题考查了垂径定理、坐标与图形性质、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键.11.D解析:D【分析】A、利用直径所对的圆周角是直角,以及等腰三角形的三线合一性质即可得出结论;B、根据中位线得出OD//AC,再根据矩形的判定即可得出结论C、根据垂径定理得出BD DE=,再根据等腰直角三角形的性质得出AE=BE,从而得出=,即可得出2BD DE=AE DED、不能得出BC=2CE【详解】解:连接AD∵AB为⊙O的直径,∴∠BDA=∠BEA =90°,即AD⊥BC,又∵AB=AC,∴BD=DC,∠BAD=∠DAE,故A正确;∵OA=OB∴OD是三角形ABC的中位线∴OD//AC∴∠DHE =90°=∠BEF,∵DF与⊙O相切,∴∠ODF =90°∴四边形DHEF为矩形故B正确;∵∠BEA =90°,∠BAC=45°,∴AE=BE∴AE BE=∵∠DHE =90°∴OD⊥BE∴BD DE=∴2AE DE=故C正确;不能得出BC=2CE故选:D【点睛】本题考查了切线的性质、三线合一定理、三角形中位线定理、垂径定理;熟练掌握等腰三角形的性质和圆周角定理,并能进行推理论证是解决问题的关键.12.D解析:D【分析】设展开后的圆半径为r,根据圆锥性质可知底面周长就等于展开后扇形的弧长,然后算出展开后扇形的半径,进而计算出扇形的面积.【详解】解:设展开后的扇形半径为r,由题可得:4π=2rπ解得r=8∴S扇形=14π×82=16π故选:D【点睛】此题主要考查了圆锥的计算,正确理解圆锥侧面展开图与各部分对应情况是解题关键.二、填空题13.①③④【分析】利用三角形内心的性质得到根据旋转的性质可对①进行判断;利用三角形内心的性质可对②进行判断;利用和三角形内角和定理得可对③判断;通过证明可得在证明可对④进行判断【详解】∵是的内心∴AD 平 解析:①③④【分析】利用三角形内心的性质得到BAD CAD ∠=∠,根据旋转的性质可对①进行判断;利用三角形内心的性质可对②进行判断;利用12IBC ABC ∠=∠,12ICB ACB ∠=∠和三角形内角和定理得1902BIC BAC ∠=︒+∠,可对③判断;通过证明BID DBI ∠=∠,可得BD DI =,在证明BD CD =,可对④进行判断.【详解】∵I 是ABC 的内心,∴AD 平分BAC ∠,即BAD CAD ∠=∠,∴CAD ∠绕点A 顺时针旋转一定的角度一定能和DAB ∠重合,∴①正确;∵I 是ABC 的内心,∴点I 到三角形三边距离相等,∴②错误;∵BI 平分ABC ∠,CI 平分ACB ∠, ∴12IBC ABC ∠=∠,12ICB ACB ∠=∠, ∵()111801809022BIC IBC ICB ABC ACB BAC ∠=︒-∠-∠=︒-∠+∠=︒+∠ ∴③正确; ∵IBC IBA ∠=∠,BAI CAD CBD ∠=∠=∠,∴BAI ABI IBC DBC ∠+∠=∠+∠,∴BID DBI ∠=∠,∴BD DI =,∵CAD BAD ∠=∠,∴BD CD =,∴BD CD =,∴BD CD DI ==,∴点B 、I 、C 在以点D 为圆心,DB 为半径的圆上,即点D 是BIC △的外心, ∴④正确.故答案为:①③④.【点睛】本题考查了三角形的内切圆与内心的性质,以及旋转的性质和三角形外心,熟练掌握三角形内切圆以及内心的性质是解答本题的关键.14.36°【分析】根据圆周角定理可得再利用等腰三角形的性质即可求解【详解】解:∵∴∵∴故答案为:36°【点睛】本题考查圆周角定理掌握圆周角定理是解题的关键解析:36°【分析】根据圆周角定理可得2108AOB ACB ∠=∠=︒,再利用等腰三角形的性质即可求解.【详解】解:∵54ACB ∠=︒,∴2108AOB ACB ∠=∠=︒,∵OA OB =, ∴()1180362ABO BAO AOB ∠=∠=︒-∠=︒, 故答案为:36°.【点睛】本题考查圆周角定理,掌握圆周角定理是解题的关键. 15.【分析】根据扇形的面积公式S 扇形=即可求得【详解】解:∵S 扇形=∴r2==3∴r=(负值舍去)故答案为:【点睛】本题主要考查扇形面积的计算解题的关键是掌握扇形面积的计算公式:S 扇形=【分析】根据扇形的面积公式S 扇形=2360n r π 即可求得. 【详解】解:∵S 扇形=2360n r π, ∴r 2=360360 120S n πππ==3, ∴(负值舍去),【点睛】本题主要考查扇形面积的计算,解题的关键是掌握扇形面积的计算公式:S 扇形=2360n r π. 16.120【分析】连接OB 先证明四边形ABCD 是菱形然后再说明△AOB △OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB ∵点在上∴OA=OC=OB ∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.17.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.18.【分析】直接根据圆周角定理即可得出结论【详解】解:∵∠ACB 与∠AOB 是同弧所对的圆周角与圆心角∠ACB=50°∴∠AOB=100°故答案是:100°【点睛】本题考查的是圆周角定理熟知在同圆或等圆中解析:100【分析】直接根据圆周角定理即可得出结论.【详解】解:∵∠ACB 与∠AOB 是同弧所对的圆周角与圆心角,∠ACB=50°,∴∠AOB=100°.故答案是:100°.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,一条弧所对的圆周角等于这条弧所对的圆心角的一半是解答此题的关键.19.【分析】首先根据题意可知当点与点重合时最长的最大值为;再证明点的运动轨迹为以为直径的通过添加辅助线连接交于点连接由线段公理可知当点与点重合时最短的最小值为即可得解【详解】解:∵由题意可知当点与点重合 512AF ≤≤【分析】首先根据题意可知,当点F 与点B 重合时AF 最长,AF 的最大值为2;再证明点F 的运动轨迹为以BC 为直径的'O ,通过添加辅助线连接'AO 交'O 于点M ,连接'O F ,由线段公理可知,当点F 与点M 重合时AF 最短,AF 51.即可得解.【详解】解:∵由题意可知,当点F 与点B 重合时AF 最长∴此时2AF AB ==,即AF 的最大值为2∵CF BE ⊥∴90CFB ∠=︒∴点F 的运动轨迹为以BC 为直径的'O ,连接'AO 交'O 于点M ,连接'O F ,如图:∵2AB = ∴11'122BO BC AB === ∴在'Rt ABO 中,22''5AO AB BO =+=∴''51AM AO O M =-=∴由两点之间,线段最短可知,当点F 与点M 重合时AF 最短∴AF 51 ∴512AF ≤≤.【点睛】本题考查了正多边形和圆的动点问题、90︒的圆周角所对的弦为直径、勾股定理、线段公理等知识点,解题的关键是确定AF 取最大值和最小值时点F 的位置,属于中考常考题型,难度中等.20.104【分析】根据圆内接四边形的对角互补列式计算即可【详解】解:∵四边形ABCD 内接于⊙O ∴∠A+∠C =180°∴∠C =180°﹣∠A =180°﹣76°=104°故答案为:104【点睛】本题考查的是解析:104【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠A +∠C =180°,∴∠C =180°﹣∠A=180°﹣76°=104°,故答案为:104.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.三、解答题21.(1)作图见解析;(2)证明见解析.【分析】(1)延长CD,以A为圆心AC长为半径画弧交CD延长线即为F.以F为圆心BC长为半径画弧,以A为圆心AB长为半径画弧,两段弧交于点E.最后连接AE、EF、AF即可.(2)连接DE,BE.由题意可知∠AEF=∠ADF=90°,即A,F,D,E四点共圆,即可知道∠AED+∠AFD=180°.再由AF=AC结合题意可进一步证明∠ABD=∠AFD.最后由AB=AE可知∠ABE=∠AEB,即推出∠AFD=∠AEB,即可证明∠DEA+∠AEB=180°.【详解】(1)如图,△AEF即为所求.(2)如图,连接DE,BE.∵∠AEF=∠ADF=90°,∴A,F,D,E四点共圆,∴∠AED+∠AFD=180°.∵AF=AC,∴∠ACD=∠AFD.∵∠ACB=∠AFE,∠ACB+∠ACD=90°,∠AFE+∠FAE=90°,∴∠ACD=∠EAF=∠AFD.∵∠ABD=∠EAF,∴∠ABD=∠AFD.∵AB=AE,∴∠ABE=∠AEB,∴∠AFD=∠AEB,∴∠DEA+∠AEB=180°,∴B,E,D共线.【点睛】本题考查作图-旋转变换、矩形和等腰三角形的性质以及圆的确定条件和圆的性质.需理解题意,灵活运用所学知识解决问题.22.(1)证明见解析;(2)63CD =.【分析】(1)首先根据垂径定理和等腰三角形的性质得到CB=CO ,然后结合OC=OB ,得到OCB 是等边三角形根据圆周角定理和对顶角的性质,结合三角形内角和定理即可证明90AFO ∠=︒,即可证明;(2)根据题意和(1)问结论得到OE=3,在Rt OCE 中应用勾股定理求得CE ,结合垂径定理即可求得CD .【详解】 (1)证明:如图,连接BC .∵AB CD ⊥,E 是OB 的中点,∴CB CO =,12BCD BCO ∠=∠. ∵OC OB =,∴OB OC BC ==, ∴OCB 是等边三角形,∴60BOC BCO ∠=∠=°,∴60AOF BOC ∠=∠=°,30BCD BAD ∠=∠=︒, ∴()180603090AFO ∠=-+=°°°°,∴CF AD ⊥.(2)∵12AB =,∴6OB =.∵E 是OB 的中点,∴132OE OB ==. 在Rt OCE 中,22226333CE OC OE --=∵AB CD ⊥,∴263CD CE ==.【点睛】本题考查了垂径定理,圆周角定理,等边三角形的判定和性质,勾股定理,属于圆的综合题,重点是掌握相关定理,要求考生熟记并能熟练应用,是中考的重难点.23.(1)图见解析,(2,3)-;(2)52π. 【分析】 (1)先根据旋转的性质分别画出点,,B C D 旋转后的对应点,,B C D ''',再顺次连接点,,,A B C D '''可得旋转后的图形,然后根据旋转的性质可得四边形AB C D '''是矩形,,AD AD C D CD '''==,由此即可得;(2)先利用矩形的性质、勾股定理求出AC 的长,再利用弧长公式即可得.【详解】(1)先根据旋转的性质分别画出点,,B C D 旋转后的对应点,,B C D ''',再顺次连接点,,,A B C D '''可得旋转后的图形,如图所示:由题意得:(2,0),(5,0),(5,4),(2,4)A B C D ,2,3,4OA AB CD BC AD ∴=====,由旋转的性质得:4,3AD AD C D CD '''====,四边形AB C D '''是矩形,2,OD AD OA C D AD '''''∴=-=⊥,∴点C '的坐标为(2,3)C '-,即旋转后C 点对应点的坐标为(2,3)-;(2)由题意得:点C 在旋转过程中的路径长为CC '的长,如图所示:四边形ABCD 是矩形,3,4AB BC ==,∴对角线225AC AB +BC ,由旋转的性质得:90CAC '∠=︒,则CC '的长为90551802ππ⨯=, 即点C 在旋转过程中的路径长为52π. 【点睛】本题考查了画旋转图形、旋转的性质、弧长公式等知识点,熟练掌握旋转的性质是解题关键.24.(1)∠AOC=120°;(2)见解析【分析】(1)先由圆内接四边形的性质得∠ADC=60°,再由圆周角定理即可得出答案;(2)证△OAB和△OBC都是等边三角形,则AB=OA=OC=BC,根据菱形的判定方法即可得到结论.【详解】(1)∵A、B、C、D四点都在⊙O上∴∠ABC+∠ADC=180°,∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=2∠ADC=120°;(2)连接OB,如图所示:∵点B是弧AC的中点,∠AOC=l20°,∴∠AOB=∠BOC=60°,又∵OA=OC=OB,∴△OAB和△OBC都是等边三角形,∴AB=OA=OC=BC,∴四边形OABC是菱形.【点睛】本题考查了圆内接四边形的性质,圆周角定理,圆心角、弧、弦的关系:在同圆或等圆中,相等的弧所对的圆心角相等.也考查了等边三角形的判定与性质以及菱形的判定.25.(1)3mπ;(2)127(5m-.【分析】(1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD,根据勾股定理求出OD,结合图形计算即可.【详解】解:(1)AB弧线的长度=302() 1803mππ⨯=;(2)如图,∵OB=OC ,OD ⊥BC , ∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2, ∴2222372()2OD OB BD =-=-=, ∴点B 到地面的距离=712720.4252-+=-, 答:点B 到地面的距离为127()5m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.26.(1)见解析;(2)见解析;(3)53AE =【分析】(1)根据题意画出图形即可;(2)根据圆周角定理解答即可;(3)根据切线的性质和含30°的直角三角形的性质解答.【详解】解:(1)如图所示:(2)2,MON OCB ∠=∠,AOP OCB ∠=∠,BOP OCB AOP ∴∠=∠=∠即MOP PON ∠=∠;(3)60MON ∠=︒,30,AOP ∴∠=︒ FA 是O 的切线,,FA OA ∴⊥10,OF =OA ∴=,,OA OB =OAB ∴∆是等边三角形,,MOP PON ∠=∠,OE AB ∴⊥2∴=AE . 【点睛】本题主要考查了作图−复杂作图,关键是根据切线的性质,圆周角定理,等腰三角形、等边三角形的性质等知识解答.。

人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆》测试卷-附参考答案一、单选题1.已知AB是⊙O的直径,的度数为60°,⊙O的半径为2cm,则弦AC的长为()A.2cm B.cm C.1cm D.cm2.已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定3.如图,是的直径,若,则圆周角的度数是()A.B.C.D.4.如图,已知半圆O与四边形的边相切,切点分别为D,E,C,设半圆的半径为2,则四边形的周长为()A.7 B.9 C.12 D.145.如图,是的内接三角形,作,并与相交于点D,连接BD,则的大小为()A.B.C.D.6.如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A.B.C.D.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.8.如图,半径为的扇形中,是上一点,垂足分别为,若,则图中阴影部分面积为( )A.B.C.D.二、填空题9.如图,是的弦,C是的中点,交于点D.若,则的半径为 .10.如图,是的直径,交于点,且,则的度数= .11.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.12.如图,为的外接圆,其中点在上,且,已知和则.13.如图,以正方形的顶点为圆心,以对角线为半径画弧,交的延长线于点,连结,若,则图中阴影部分的面积为.(结果用表示)三、解答题14.如图,CD是⊙O的直径,弦AB⊥CD于E,是的中点,连接BC,AO,BD.求的大小.15.如图,是的外接圆,且,点M是的中点,作交的延长线于点N,连接交于点D.(1)求证:是的切线;(2)若,求的半径.16.如图,等腰内接于,AC的垂直平分线交边BC于点E,交于F,垂足为D,连接AF并延长交BC的延长线于点P.(1)求证:;(2)若,求的度数.17.如图,在中,是边上一点,以为圆心,为半径的圆与相交于点,连接,且.(1)求证:是的切线;(2)若,求的长.18.如图,⊙O的半径OC垂直于弦AB于点D,点P在OC的延长线上,AC平分∠PAB.(1)判断AP与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,弦AB平分OC,求与弦AB、AC围成的阴影部分的面积.参考答案:1.A2.A3.B4.D5.A6.C7.D8.B9.510.24°11.12.13.14.解:又是中点在和中≌∴BD=OA是直径,OA是半径90°且30°. 15.(1)证明:∵∴∵点M是的中点∴∴∴∴是的直径∴∵∴∴是的切线;(2)解:如图所示,连接,设交于D∵∴设的半径为r,则∵∴在中,由勾股定理的∴∴∴的半径为.16.(1)证明:如图,连接BF.∵AC的垂直平分线交边BC于点E,交于F,且圆是轴对称图形,∴O,E,F三点共线,∴∴∴,∵,∴(2)解:如图,连接CF,设,则∵∴∵∴∴∴.∵∴,即易证(SAS),∴∵,∴,∴,∴,解得∴∴的度数为108°.17.(1)证明:连接OD.∵AC=CD∴∠A=∠ADC.∵OB=OD∴∠B=∠BDO.∵∠ACB=90°∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径∴CD是⊙O的切线.(2)解:∵AC=CD,∠A=60°∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CDtan∠DCO tan30°=2.∵∠B=90°﹣∠A=30°,OB=OD∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长18.(1)解:AP与⊙O的位置关系是相切,理由如下:连接平分垂直于弦,且是半径是的切线;(2)解:连接OB,如图所示:∵弦AB垂直平分OC∴∴∴∵OA=OC∴△OAC是等边三角形∴∴△OBD≌△CAD(ASA)∴。

【初三数学】武汉市九年级数学上(人教版)第24章圆测试卷及答案

【初三数学】武汉市九年级数学上(人教版)第24章圆测试卷及答案

人教版九年级上册第24章数学圆单元测试卷(含答案)(5)一、填空题(每题5分,计40分)1、已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°2.点P 在⊙O 内,OP =2cm ,若⊙O 的半径是3cm ,则过点P 的最短弦的长度为( ) A .1cmB .2cmCD .3.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P ,P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定4.如图,为的四等分点,动点从圆心出发,沿路线作匀速运动,设运动时间为(s ).,则下列图象中表示与之间函数关系最恰当的是( )5. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )A .与轴相离、与轴相切B .与轴、轴都相离C .与轴相切、与轴相离 D .与轴、轴都相切6 如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D,且⊙O的半径为2,则CD 的长为 ( )A.B.C.2D. 47.如图,△PQR 是⊙O 的内接三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR,则∠DOR 的度数是 ( )A.60B.65C.72D. 75PA =A B C D ,,,O P O O C D O ---t ()APB y =∠y t x y x y x y x y 第4题图A B C D O PB .D .A .C .第6题图O P Q D BAC第7题图R8.如图,、、、、相互外离,它们的半径都是1,顺次连结五个圆心得到五边形,则图中五个扇形(阴影部分)的面积之和是( )A .B .C .D . 二 选择题(每题5分,计30分) 9.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为 .10. 如图,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径弦于),设,,他用含的式子表示图中的弦的长度,通过比较运动的弦和与之垂直的直径的大小关系,发现了一个关于正数的不等式,你也能发现这个不等式吗?写出你发现的不等式 .(12题图)12.如图,∠AOB=300,OM=6,那么以M 为圆心,4为半径的圆与直OA 的位置关系是_________________.13.如图,△㎝,则AC的长等于_______㎝。

勤学早2016年九年级数学(上)第24章《圆》专题一点通圆中的证明与计算(word版有答案)

勤学早2016年九年级数学(上)第24章《圆》专题一点通圆中的证明与计算(word版有答案)

勤学早九年级数学(上)第24章《圆》专题一点通(一)圆中的证明与计算1.如图,AB 是⊙O 的直径,直线点F 、C 是⊙O 上两点,且弧BC =弧FC ,连接AC 、AF ,过点C 作CD ⊥AF 交AF 延长线于点D ,垂足为D(1) 求证:CD 是⊙O 的切线(2) 若CD =2,弧AF =弧FC ,求⊙O 的半径2.如图,P A 、PB 分别与⊙O 相切于点A 、B ,OC ∥AP 交PB 于C(1) 求证:AP =OC +BC(2) 若⊙O 的半径为4,P A =8,求BC 的长3.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,P 是⊙O 上半部分的一个动点,连接OP 、CP(1) 求△OPC 的最大面积(2) 求∠OCP 的最大度数(3) 如图2,延长PO 交⊙O 于点D ,连接DB .当CP =DB 时,求证:CP 是⊙O 的切线4.已知AB 是半圆O 的直径,点C 是半圆O 上的动点,点D 是AB 延长线上的动点,在运动过程中,保持CD =OA(1) 当直线CD 与半圆O 相切时(如图1),求∠ODC 的度数(2) 当直线CD 与半圆O 相交时(如图2),设另一交点为E ,连接AE ,AE ∥OC① AE 与OD 的大小有什么关系?为什么?② 求∠ODC 的度数5.已知四边形ABCD 中,∠BAD =∠ABC =90°,以AB 为直径的⊙O 与边CD 相切于点E(1) 如图1,求证:∠ADC =2∠CBE(2) 如图2,若OD =6,OC =8,求⊙O 的半径6.已知直线AB 与⊙O 相切于点A ,弦CD ∥AB(1) 如图1,求证:AC =AD(2) 如图2,E 、F 为⊙O 上两点,且∠CDE =∠ADF .若⊙O 的半径为25,CD =4,求EF 的长 勤学早九年级数学(上)第24章《圆》专题一点通(二)圆中的数形结合1.如图,在平面直角坐标系中,直线y =-x -5交x 轴于点A ,交y 轴于点B .如图1,过A 、O 、B 作⊙O 1(1) 求圆心O 1的坐标(2) 如图2,点P 是劣弧OB 上一点,连接P A 、PO 、PB .当点P 在劣弧OB 上(端点除外)运动时,求POPB PA -的值 (3) 如图3,线段OB 绕点O 逆时针方向旋转30°到OC ,过A 、O 、C 三点作⊙O 2,点P 是劣弧AO 上一点,连接P A 、PO 、PC .当点P 在劣弧AO 上(端点除外)运动时,则POPA PC -的值是否发生变化?如果不变化,求其值;如果变化,说明理由2.如图,已知A ,B 两点的坐标分别为A (32,0),B (0,2),点P 是△AOB 外接圆上的一点,且∠AOP =45°(1) 如图1,求点P 的坐标(2) 如图2,点Q 是弧AP 上一动点,(不与A 、P 重合),连PQ 、AQ 、BQ ,求PQAQ BQ -的值 (3) 如图3,连BP 、AP ,在PB 上任取一点E ,连AE .将线段AE 绕A 点顺时针旋转90°到AF ,连BF ,交AP 于点G .当E 在线段BP 上运动时,(不与B 、P 重合),求PGBE 的值 3.已知在平面直角坐标系中,⊙O 的半径为2,⊙O 交坐标轴于A 、B 、C 、D 四点(1) 如图1,点F 是弧BC 的中点,连接FO ,并延长交⊙O 于E ,连接F A 、FD ,求证:FE 平分∠AFD(1) 知图2,点P 是弧AD 上任意一点(不含A 、D ),连接PC ,过A 作AQ ⊥CP 于Q ,连接OQ 、AP ,求∠OQC 的度数(3) 如图3,点M 是弧AC 上一动点,连接MA 、MC 、MB 、MD ,求MBMA MC MD •-22的值 勤学早九年级数学(上)第24章《圆》专题一点通(一)圆中的证明与计算参考答案1.证明:(1) 连接OC∵OA =OC∴∠OAC =∠OCA∵弧BC =弧FC∴∠CAF =∠CAB∴∠F AC =∠OCA∴OC ∥AD∵CD ⊥AF∴OC ⊥CD∴CD 是⊙O 的切线(2) ∵弧AF 弧FC∴∠F AC =∠BAC =30°∴∠OAC =∠OCA =30°,∠AOC =120°在Rt △ACD 中,AC =4,OA =334 即⊙O 的半径为334 2.证明:(1) 连接OA 、OB ∵P A 、PB 分别与⊙O 相切于点A 、B∴OA ⊥P A ,OB ⊥PB过点C 作CD ⊥AP 于D∴四边形OADC 为矩形∴OA =CD =OB∵OC ∥AP∴∠OCB =∠CPD在△OCB 和△CPD 中∴△OCB ≌△CPD (ASA )∴BC =PD∴AP =AD +DP =OC +BC(2) 由(1)可知,OC =PC设AD =OC =PC =x ,则PD =8-x在Rt △CDP 中,42+(8-x )2=x 2,解得x =5∴BC =8-5=33.解:(1) 当OP ⊥OC 时,S △OPC 有最大值为4(2) 当CP 为⊙O 的切线时,∠OCP 有最大值∵OP =21OC ∴∠OCP =30°(3) 连接AP∵∠AOP =∠BOD∴AP =BD∵CP =BD∴AP =CP∴∠A =∠C =∠D在△BDP 和△PCO 中∴△BDP ≌△PCO (SAS )∴∠OPC =∠PBD∵AB 是⊙O 的直径∴∠PBD =90°∴∠OPC =90°∴CP 是⊙O 的切线4.解:(1) ∠ODC =45°(2) ① AE =OD ,理由如下:∵AE ∥OC∴∠OAE =∠COD∵CD =OA =OE =OC∴△OAE ≌△DCO∴AE =OD② 设∠ODC =α,则∠OAE =∠OEA =∠COD =α ∴∠OCE =2α∵OC =OE∴∠OEC =∠OCE =2α在△ADE 中,α+α+2α+α=180°,α=30°5.证明:(1) ∵CB 、CE 是⊙O 的切线∴CB =CE∴∠CBE =∠CEB设∠CBE =∠CEB =α,则∠C =180°-2α∵AD ∥BC∴∠C +∠D =180°∴∠D =2α∴∠ADC =2∠CBE(2) r =4.86.解:(1) 连接AO 并延长交CD 于E∵AB 与⊙O 相切∴OA ⊥AB∵CD ∥AB∴OE ⊥CD∴CE =DE∴AE 是线段CD 的垂直平分线∴AC =AD(2) ∵∠CDE =∠ADF∴∠EDF =∠ADC∴AC =EF连接AO 并延长交CD 于H∴CH =DH =2∵OD =25 ∴OH =23 ∴AH =23+25=4 在Rt △ACH 中,5222=+=AH CH HC∴EF =AC =521.解:(1) A (-5,0)、B (0,-5)∴OA =OB =5∵∠AOB =90°∴△AOB 为等腰直角三角形∵O 1为AB 的中点∴O 1(2525--,) (2) 过点O 作OC ⊥OP 交AP 于C∵∠APO =∠ABO =45°∴△OCP 为等腰直角三角形由共顶点等腰三角形的旋转,得△AOC ≌△BOP (SAS ) ∴PB =AC ∴2==-POPC PO PB PA (3) 在线段CP 上截取CM =AP ,连接OM由旋转可知OC =OB∵OB =OA∴OC =OA在△OAP 和△OCM 中∴△OAP ≌△OCM (SAS )∴OM =OP ,∠COM =∠AOP∵∠AOC =∠COM +∠AOM =∠AOP +∠AOM =120° ∴3==-PO PMPO PAPC2.解:(1) 在Rt △AOB 中,422=+=OB OA AB连接P A 、PB∵∠AOP =∠BOP =45°∴P A =PB∴△P AB 为等腰直角三角形∴P A =PB =22根据对角互补四边形模型,OA +OB =2OP ∴OP =2322+过点P 作PC ⊥x 轴于C∴OC =PC =31+∴P (31+,31+) (2) 2=-PQ AQBQ (方法同第1题)(3) 过点F 作FH ⊥AP 于H根据三垂直模型,得△AEP ≌△F AH (AAS ) ∴PE =AH ,∠FHA =∠PBP∵P A =PB∴BE =PH∵△BPG ≌△FHG (AAS )∴PG =PH∴BE =2PG3.解:(1) ∵F 为弧BC 的中点∴FOB =FOC∴∠FOD =∠FOA∵OA =OF =OD∴△AOF 、△DOF 均为等腰直角三角形∴∠OF A =∠OFD∴FE 平分∠AFD(2) ∵∠AQC =90°,∠AOC =90°∴∠OCP =∠OAQ (八字型)过点O 作OE ⊥OQ 交CP 于E∵∠COE +∠AOE =90°,∠AOQ +∠AOE =90°∴∠COE =∠AOQ在△COE 和△AOQ 中∴△COE ≌△AOQ (ASA )∴OE =OQ∴∠OQC =45°(3) 基本模型的应用MD +MC =2MB ,MD -MC =2MA ∴222))((22=••=•-+=•-MB MA MB MA MB MA MC MD MC MD MB MA MC MD。

2023-2024学年九年级数学上册《第二十四章 圆》单元测试卷有答案(人教版)

2023-2024学年九年级数学上册《第二十四章 圆》单元测试卷有答案(人教版)

2023-2024学年九年级数学上册《第二十四章圆》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点归纳1、圆在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作⊙O,读作“圆O”。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

小于半圆的弧叫做劣弧。

大于半圆的弧叫做优弧。

能够重合的两个圆叫做等圆。

在同圆或等圆中,能重合的弧叫等弧。

2、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线过圆心,且平分弦对的两条弧.3、弧、弦、圆心角之间的关系定义:顶点在圆心的角叫做圆心角。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

注:在同圆或等圆中,如果两个圆心角,两条弦,两条弧、两个弦的弦心距中,有一组量相等,那么其余各组量也分别相等4、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等。

推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

圆内接四边形的性质:圆内接四边形的对角互补。

5、点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离为OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r 。

性质:不在同一条直线上的三个点确定一个圆。

(武汉专版)九年级数学上《第24章圆》检测题(含答案)

(武汉专版)九年级数学上《第24章圆》检测题(含答案)

第24章单元检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.若⊙O 的半径为5cm,点A 到圆心O 的距离为4cm,那么点A 与⊙O 的位置关系是(C )A.点A 在圆外B.点A 在圆上C.点A 在圆内D.不能确定2.(2018·武汉元调)圆的直径是13c m,如果圆心与直线上某一点的距离是6.5cm,那么直线和圆的位置关系是(D )A.相离B.相切C.相交D.相交或相切3.如图,在⊙O 中,点A,B,C 均在圆上,∠AOB=80°,则∠ACB 等于(B )A.130°B.140°C.145°D.150°4.如图,⊙O 的直径AB 垂直于弦CD,垂足为点E,∠A=22.5°,OC=4,则CD 的长为(D )A.22B.4C.8D.42,第3题图),第4题图),第5题图),第7题图)5.如图,AB 为⊙O 的直径,C,D 是⊙O 上的两点,∠BAC=20°,AD ︵=CD ︵,则∠DAC 等于(C )A.70°B.45°C.35°D.25°6.已知圆锥的底面直径为6cm,母线长为4cm,那么圆锥的侧面积为(A )A.12πcm 2B.24πcm 2C.36πcm 2D.48πcm27.如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC 等于(A )A.130°B .100°C.50°D.65°8.如图,△ABC 为等腰直角三角形,∠A=90°,AB=AC=2,⊙A 与BC 相切,则图中阴影部分的面积为(C )A.1-π2B.1-π3C.1-π4D.1-π5,第8题图),第9题图),第10题图)9.如图,在矩形ABCD 中,AB=4,AD=5,AD,AB,BC 分别与⊙O 相切于E,F,G 三点,过点D 作⊙O 的切线交BC 于点M,切点为N,则DM 的长为(A )A.133B.92C.4313D.22510.如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B,AB 是⊙O 的直径.点M,N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误的是(B )A.MN=433B.若MN 与⊙O 相切,则AM=3C.若∠MON=90°,则MN 与⊙O 相切D.l 1和l 2的距离为2二、填空题(每小题3分,共18分)11.如图,在△ABC 中,∠C=90°,∠A=25°,以点C 为圆心,BC 为半径的圆交AB 于点D,交AC 于点E,则BD ︵的度数为__50°__.12.小明制作一个圆锥模型,这个圆锥的侧面是一个半径为9cm,圆心角为120°的扇形铁皮制作的,再用一块圆形铁皮做底面,则这块圆形铁皮的半径为__3__cm.13.如图,将正六边形ABCDEF 放在平面直角坐标系中,中心与坐标原点重合,若A 点的坐标为(-1,0),则点C 的坐标为____________.,第11题图),第13题图),第14题图),第15题图),第16题图)14.如图,在矩形ABCD 中,AB=8,AD=12,过A,D 两点的⊙O 与BC 边相切于点E,则⊙O 的半径为__6.25__.15.如图,⊙O 的半径为3cm,B 为⊙O 外一点,OB 交⊙O 于点A,AB=OA,动点P 从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为__1或5__s 时,BP 与⊙O 相切.16.如图,在平面直角坐标系中,已知点A,B 的坐标分别为A(6,0),B(0,2),以AB 为斜边在右上方作Rt△ABC.连接OC,则OC 的最大值为__210__.三、解答题(共72分)17.(8分)如图,在⊙O 中,AB 为⊙O 的弦,C,D 是直线AB 上两点,且AC=BD,求证:△OCD 为等腰三角形.【解析】如图,过点O 点作OM⊥AB ,垂足为M.∵OM⊥AB ,∴AM =BM.∵AC =BD ,∴CM =DM.又∵OM⊥AB ,∴OC =OD.∴△OCD 为等腰三角形.18.(8分)如图,已知AB 是⊙O 的直径,点C,D 在⊙O 上,点E 在⊙O 外,∠EAC=∠B=60°.(1)求∠ADC 的度数;(2)求证:AE 是⊙O 的切线.【解析】(1)∵∠ABC 与∠ADC 都是AC ︵所对的圆周角,∴∠ADC =∠B =60°.(2)∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠BAC =30°.∴∠BAE =∠BAC +∠EAC =30°+60°=90°,即BA⊥AE.∴AE 是⊙O 的切线.19.(8分)如图,在△ABC 中,∠C=90°,AC+BC=8,点O 是斜边AB 上一点,以O 为圆心的⊙O 分别与AC,BC 相切于点D,E.(1)当AC=2时,求⊙O 的半径;(2)设AC=x,⊙O 的半径为y,求y 与x 的函数关系式.【解析】(1)连接OE ,OD ,OC.在△ABC 中,∠C =90°,AC +BC =8,∵AC =2,∴BC =6.∵以O 为圆心的⊙O 分别与AC ,BC 相切于点D ,E ,设OD =OE =r ,则12×2·r +12×6·r =12×2×6,解得r =32,∴圆的半径为32.(2)∵AC =x ,BC =8-x ,由12x ·y +12(8-x )·y =12x (8-x ),得y =-18x 2+x.20.(8分)如图,AB 为⊙O 的直径,点C,D 在⊙O 上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD 的长;(2)求图中阴影部分的面积.【解析】(1)如图,连接OD.∵AB 为⊙O 的直径,∴∠ACB =90°.∵BC =6cm ,AC =8cm ,∴AB =10cm.∴OB =5cm.∵OD =OB ,∴∠ODB =∠ABD =45°.∴∠BOD =90°.∴BD =OB 2+OD 2=52cm.(2)S 阴影=S 扇形DOB -S △OBD =90360π·52-12×5×5=25π-504cm 2.21.(8分)如图,四边形ABCD 内接于⊙O,点E 在对角线AC 上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD 的度数;(2)求证:∠1=∠2.【解析】(1)∵BC =DC ,∴∠CBD =∠CDB =39°.∵∠BAC =∠CDB =39°,∠CAD =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°.(2)∵EC =BC ,∴∠CEB =∠CBE.∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD.∵∠BAE =∠BDC =∠CBD ,∴∠1=∠2.22.(10分)如图,点I 是△ABC 的内心,AI 的延长线交边BC 于点D,交△ABC 外接⊙O 于点E,连接BE,CE.(1)若点I,O 重合,AD=6,求CD 的长;(2)求证:C,I 两个点在以点E 为圆心,EB 为半径的圆上.【解析】(1)∵I ,O 重合,∴点I 是△ABC 的外心.∵点I 是△ABC 的内心,∴△ABC 是等边三角形,设AB =BC =2CD =2x ,则AD =3x =6,∴CD =x =2 3.(2)如图,连接IB.∵点I 是△AB C 的内心,∴∠BAD =∠CAD ,∠ABI =∠CBI.∴BE ︵=CE ︵.则BE =CE.∴∠BIE=∠BAD +∠ABI =∠IBD +∠CAD =∠IBD +∠CBE =∠IBE.∴IE =BE =CE ,即C ,I 两个点在以点E 为圆心,EB 为半径的圆上.23.(10分)如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD⊥AB 于点D,延长DO 交⊙O 于点P,过点P 作PE⊥AC 于点E,作射线DE 交BC 的延长线于点F,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC 的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF 是⊙O 的切线.【解析】(1)∵AC =12,∴CO =6.∴PC ︵=60·π·6180=2π.(2)∵PE⊥AC ,OD ⊥AB ,∴∠PEA =90°,∠ADO =90°.在△ADO 和△PEO ∠ADO =∠PEO ,∠AOD =∠POE ,OA =OP ,∴△POE ≌△AOD (AAS ).∴OD =OE.(3)设⊙O 的半径为r.∵OD⊥AB ,∠ABC =90°,∴OD∥BF.∴∠ODE =∠CFE.又OD =OE ,∴∠CEF =∠CFE.∴FC =EC =r -OE =r -OD =r -12BC.∴BF =BC +FC =r +12BC.∵PD =r +OD =r +12BC ,∴PD =BF.又∵PD∥BF ,且∠DBF =90°,∴四边形DBFP 是矩形.∴∠OPF =90°,OP ⊥PF.∴PF 是⊙O 的切线.24.(12分)如图,已知BC 是⊙O 的弦,A 是⊙O 外一点,△ABC 为正三角形,D 为BC 的中点,M 为⊙O 上一点.(1)若AB 是⊙O 的切线,求∠BMC;(2)在(1)的条件下,若E,F 分别是边AB,AC 上的两个动点,且∠EDF=120°,⊙O 的半径为2,试问BE +CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.【解析】(1)如图①,连接OB ,OD ,OC.∵AB 是⊙O 的切线,∴∠ABO =90°.∵△ABC 是等边三角形,∴∠A =∠ABC =∠ACB =60°.∴∠OCB =∠OBC =30°.∴∠BOC =120°.∴∠BMC =12∠BOC =60°.(2)BE +CF 的值为定值.理由:如图②,过点D 作DH⊥AB 于点H ,DN ⊥AC 于点N ,连接AD ,如图②.∵△ABC 为正三角形,D 为BC 的中点,∴AD 平分∠BAC ,∠BAC =60°.∴DH =DN ,∠HDN =120°,∵∠EDF =120°,∴∠HDE =∠NDF.在△DHE 和△DNF ∠DHE =∠DNF ,DH =DN ,∠HDE =∠NDF ,∴△DHE ≌△DNF.∴HE =NF.∴BE +CF =BH -EH +CN +NF =BH +CN.在Rt △DHB 中,∵∠DBH =60°,∴BH =12BD.同理可得CN =12DC.∴BE +CF =12BD +12DC =12BC =BD.∵∠BOC =120°,D 为BC 中点,⊙O 半径为2,∴OD ⊥BC ,∠BOD =60°.∴BD = 3.∴BE +CF 的值是定值,定值为 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.勤学早九年级数学(上)第2 4章《圆》周测(一)
(考试范围:第24.1----圆 解答参考时间:90分钟 满分120分)
一、选择题(每小题3分.共30分)
1.如图,AB 是⊙O 的弦,∠AOB = 90°.若OA = 4,则AB 的长为( B )
A .4 B
. C
. D
.第1题图B
A O
2.如图,在⊙O 中,弦AB 的长为8cm ,M 是AB 上任意一点,且OM 的最小值为3.则⊙O 的半径为( B )
A . 4cm
B . 5cm
C .6cm
D . 8crn
第2题图
3.如图,点A 、B 、C 都在⊙O 上,若∠AOB +∠ACB =90°,则∠ACB 的大小是( C ) A .20° B .25° C . 30° D . 40°
第3题图
B
4.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( B ) A .115° B .105° C .100° D . 95°
第4题图E D
C B
A
5.如图,⊙O 的半径是3,点P 是弦AB 延长线上的一点,连接OP ,若OP =4.∠APO =30°,则弦AB 的
长为( A )
A
. B
C
. D
第5题图P
6.如图,⊙O 的两条弦AB ⊥CD ,垂足为E ,且AB = CD ,已知CE =2,ED =8,则⊙O 的半径是( D )
A .3
B .4
C .5 D
第6题图
7.如图,一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角∠ACB = 45°,则这个人工湖的直径AD 长为( B
)
A .
B .m
C .m
D .m
第7
题图
8.如图,AB 是⊙O 的直径,AB =10,弦AC =8,OD ⊥AC 于E ,交⊙O 于D ,连接BE ,则BE 的长为( B
)
A
B .
C .5
D .6
第8题图
9.如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC 于D ,E ,若∠DOE
=60°,AD AC 的长为( C
)
A B .2
C .
D .
第13题图
B
A
14. 如图所示,在⊙O 中,已知∠BAC =∠CDA=25°
,则∠ABO 的度数为 . (40°) 第14题图
15.如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O 与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数解析式为 . (y= -x+1或y=x-1)
O 的直径,AB =10,C 、D 为⊙O 上两动点(C 、D 不与A ,B 重合),是CD 的中点,则EM 的最大值为 . (5) 第16题图
B
A
解:延长CE 交⊙O 于F ,则EM=12
DF ,故当DF 最大时,EM 最大,∴DF 为直径,DF=10, ∴EM 最大值为5.
三、解答题(共8题,共72分)
17.(本题8分)如图,点A、B、C是⊙O上的三点.BO平分∠ABC.求证:BA=BC.
B
证:连OA、OC,证△ABO≌△CBO
18.(本题8分)如图,在⊙O中,∠A=∠C.求证:AB CD

证:连OB、OD,证∠AOB=∠COD即可
19.(本题8分)如图,四边形ABCD内接于⊙O,∠ABC=135°.若⊙
O AC的长.
解:连OA、OC,证∠
AOC=90°,∴
20.(本题8分)如图,四边形ABCD内接于⊙O,∠ADC=90°,BD平分∠ADC,AD=20 ,CD=15,求
四边形ABCD的面积.
A
B C
解:连AC,△ADC是直角三角形,△ABC是等腰直角三角形;四边形ABCD面积是1225 4
.
21.(本题8分)如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.以点O为原点、
竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系.
(1)直接写出点B、C的坐标:B______、C______;[ B(4,4);C(6,2)]
(2)在图中标出该圆弧所在圆的圆心D的位置.[ D(2,0)]
(3)直接写出⊙D的半径= (结果保留根号).(
22.(本题10分)(2016武汉原创题)如图,AD为⊙O的直径,CD为弦,AB BC
=,连接OB.
(1)求证:OB∥CD;
(2)若AB=15,CD=7,求⊙O的半径.
D
解:(1)连BD,∵AB BC
=,∴∠BDC=∠BDA=∠OBD,∴OB∥CD.
(2)连AC交OB于点E,∵OB∥CD,∠ACD=90°,∴OB⊥AC,设⊙O的半径为R,
∵OE=1
2
CD=
7
2
,∴BE=R-
7
2
,∵22222
AB BE AE AO OE
-==-,

22
22
77
15
22
R R
⎛⎫⎛⎫
--=-
⎪ ⎪
⎝⎭⎝⎭
,∴R=
25
2
23.(本题10分)(2016武汉原创题)已知:△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交
AB于点E.
(1)如图1,求证:CD DE
=;
(2)如图2,若AB=13,BC=10,F为半圆的中点,求DF的长.
解:(1)连AD,则AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∴CD DE
=;
(2)易求BD=CD=5,AD=12,作CM⊥DF于点M,则DM=CM=
2
2
DC=
52

连AF,则AF=CF=
2
2
AC=
132
2
,∴MF=22
CF CM
-=62,∴DF=DM+MF=
172
2
24.(本题l2分)(2016武汉改编题)在平面直角坐标系中,P点在x轴上,⊙P交x轴于A、B两点,交y
轴于C、D两点,E为⊙O上一点,连接CE .
(1) 如图①,若AC CM
=,AB=13,BM=5,求点C的坐标;
(2)如图②,当O为AP中点时,探究DE,CE,BE之间的数量关系;
(3)如图③,当O为AP中点时,写出DE,CE,AE之间的数量关系(不证明)。

解:(1)连AM,证AM=CD=2OC=12,∴C(0,6)
(2)BE+DE=CE,证△ACP为等边三角形,∠CEB=∠CED=60°,再截长或补短构造全等三角形即可.
(3)CE+DE,同(2)类似证∠CEA=∠DEA=30°.。

相关文档
最新文档