“细胞的代谢”知识点归纳
高三生物细胞的代谢知识点

高三生物细胞的代谢知识点细胞是生命的基本单位,人体内的所有生物活动都是由细胞内的代谢过程完成的。
高三生物课程中,细胞的代谢是一个重要的知识点。
在本文中,我们将深入探讨高三生物细胞的代谢知识点,包括细胞呼吸、光合作用和发酵等。
1. 细胞呼吸细胞呼吸是细胞内的氧化反应过程,通过此过程,细胞可以从有机物中释放出能量。
细胞呼吸有三个主要阶段:糖酵解、三羧酸循环和呼吸链。
在糖酵解阶段,葡萄糖分子被分解成两个分子的丙酮酸,同时产生了少量的ATP和NADH。
接下来,丙酮酸进入三羧酸循环,在这个过程中,每个丙酮酸分子将被完全分解成CO2和高能电子载体(如NADH和FADH2),同时产生了大量的ATP。
最后,高能电子载体将进入呼吸链,在这个过程中,电子被传递给氧气,产生更多的ATP。
呼吸链是整个细胞呼吸过程中产生最多ATP的阶段。
2. 光合作用光合作用是植物细胞中的一个重要过程,通过这个过程,植物可以利用太阳能合成有机物,并释放氧气。
光合作用可分为光反应和暗反应两个阶段。
在光反应阶段,植物细胞的叶绿体内的叶绿素能够吸收太阳能,并将其转化为化学能。
在这个过程中,水分子被分解成氧气、氢离子和高能电子,同时还产生了ATP和NADPH。
接下来,这些高能电子和能量将被用于暗反应阶段。
在暗反应阶段,高能电子和能量将被用于合成有机物,最重要的产物是葡萄糖。
暗反应发生在叶绿体的基质中,它利用ATP和NADPH来驱动化学反应,将二氧化碳转化为有机物。
暗反应中一些重要的酶包括RuBisCO和磷酸糖同化酶。
3. 发酵发酵是一种在没有氧气的条件下进行的代谢过程,通过这个过程,细胞可以从有机物中释放出能量。
发酵在某些微生物和肌肉细胞中发生。
发酵的一个重要例子是乳酸发酵,它发生在肌肉细胞中。
在运动过程中,当肌肉细胞需要能量时,细胞内的糖被分解成乳酸和少量的ATP。
乳酸在肌肉细胞中积累,导致肌肉酸痛和疲劳感。
除了乳酸发酵,还存在其他类型的发酵,如酒精发酵。
【高中生物】高中生物知识点:细胞代谢(一)

【高中生物】高中生物知识点:细胞代谢(一)高中生物
知识点之细胞代谢如下:
1、扩散促进作用:水分子(溶剂分子)通过半透膜的扩散作用。
2、原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。
3、出现扩散促进作用的条件:具备半透膜;膜两侧存有浓度高
4、细胞膜结构特点:具有一定的流动性;功能特点:选择透过性
5、酶:就是活细胞(来源)所产生的具备催化作用(功能:减少化学反应活化能,提升化学反应速率)的一类有机物。
6、酶的特性:①、高效性:催化效率比无机催化剂高许多。
②、专一性:每种酶只能催化一种或一类化合物的化学反应。
③、酶需要较温和的作用条件:在最适宜的温度和ph下,酶的活性最高。
温度和ph偏高和偏低,酶的活性都会明显降低。
7、酶的本质:大多数酶的化学本质就是蛋白质(合成酶的场所主要就是核糖体,水解酶的酶就是蛋白酶),也存有少数就是rna。
8、atp的结构简式:atp是三磷酸腺苷的英文缩写,结构简式:a-p~p~p,其中:a 代表腺苷,p代表磷酸基团,~代表高能磷酸键,-代表普通化学键。
9、光合作用:绿色植物通过叶绿体,利用光能够,把二氧化碳和水转化成储存着能量的有机物,并放出氧气的过程
10、叶绿体的功能:叶绿体是进行光合作用的场所。
在类囊体的薄膜上分布着具有吸收光能的光合色素,在类囊体的薄膜上和叶绿体的基质中含有许多光合作用所必需的酶。
高一生物细胞代谢知识点

高一生物细胞代谢知识点细胞代谢是指细胞内各种化学反应的总和,是维持生命活动所必需的。
细胞代谢包括物质的合成和分解两个方面,其中合成过程称为合成代谢,而分解过程则称为分解代谢。
在细胞代谢中,有许多重要的知识点值得我们深入了解。
一、葡萄糖代谢葡萄糖是细胞代谢的主要能量来源。
在有氧条件下,葡萄糖通过糖解和呼吸作用产生能量。
糖解是指葡萄糖分解为乳酸或乙醇,并释放少量能量。
而呼吸作用则是指葡萄糖在线粒体内氧化分解为二氧化碳和水,并释放大量能量。
进一步了解葡萄糖代谢对于理解细胞能量供应的机制至关重要。
二、脂肪代谢脂肪是储存能量的重要物质,也可用作细胞膜的组成成分。
脂肪代谢主要包括脂肪的合成和分解。
合成过程称为脂肪酸合成,发生在细胞质内的内质网上。
而脂肪分解则发生在线粒体内,称为脂肪酸氧化。
深入了解脂肪代谢对于研究肥胖症、糖尿病等疾病具有重要意义。
三、蛋白质代谢蛋白质是细胞内重要的功能分子,参与多种生物化学反应。
蛋白质代谢主要包括合成和降解两个过程。
蛋白质合成发生在细胞质内,依赖于核糖体的作用。
而蛋白质降解则主要发生在细胞质和线粒体中,通过蛋白酶降解为氨基酸。
了解蛋白质代谢有助于理解细胞的功能调节和疾病的发生机制。
四、核酸代谢核酸是细胞内存储遗传信息和调控基因表达的重要分子。
核酸代谢主要包括合成和降解两个过程。
核酸的合成依赖于核苷酸的合成,而核酸降解则发生在细胞核和细胞质中。
了解核酸代谢有助于理解遗传物质的传递、基因调控以及细胞分裂等重要生物学过程。
细胞代谢是生命活动的基础,不同代谢过程相互协调,共同维持细胞的正常功能。
理解细胞代谢的知识点,有助于我们深入了解生命的奥秘,为进一步的研究和应用提供基础。
希望通过本文的介绍,能够对高一生物细胞代谢知识点有一个初步了解,并在以后的学习中深入研究和应用。
细胞的代谢重点知识点总结

细胞的代谢重点知识点总结细胞代谢的主要特点包括:一是高度有序,细胞内的代谢反应严格受到调控,有序进行;二是能量来源单一,细胞内的代谢反应主要依靠细胞内的三底物来完成,包括ATP、NADH和Acetyl-CoA;三是代谢反应体系结构复杂,包括多种代谢酶、酶促反应等;四是细胞内代谢反应是动态平衡的,细胞内代谢反应随着环境的变化而发生变化。
细胞代谢的主要途径包括:糖代谢、脂代谢、蛋白质代谢、核酸代谢等。
糖代谢是指生物体对葡萄糖分解和合成的一系列反应。
葡萄糖通过磷酸化反应生成葡萄糖-6-磷酸,然后进入糖酵解途径进行进一步分解。
糖酵解途径主要有乳酸发酵、酒精发酵和氧化磷酸截子三种,在无氧条件下主要通过乳酸发酵或酒精发酵产生ATP。
在有氧条件下,葡萄糖进入三羧酸循环和线粒体内氧化磷酸化途径生成ATP。
脂代谢是指脂肪在细胞内的代谢过程。
脂肪分解主要通过β氧化途径进行,产生大量能量。
脂肪合成则主要通过乙酰辅酶A的途径进行,在细胞内生成脂类。
蛋白质代谢是指蛋白质的合成和降解过程。
蛋白质合成主要依靠mRNA的翻译过程进行,而蛋白质的降解则主要依靠蛋白酶的作用。
核酸代谢是指核酸的合成和降解过程。
核酸的合成主要依靠核酸酶的作用,而核酸的降解则主要通过核酸酶的作用来完成。
细胞代谢的调控主要包括:基因调控、代谢酶的活性调控和代谢产物的反馈调控。
基因调控主要通过转录激活子和转录抑制子的作用来调控细胞内代谢酶的合成。
代谢酶的活性调控主要通过酶促反应、酶的合成和降解等来实现。
代谢产物的反馈调控主要通过反馈抑制或激活来调控细胞内代谢途径的进行。
细胞代谢的失调会导致一系列疾病的发生。
如糖尿病是由于胰岛素分泌减少引起的血糖代谢失调所致,高脂血症是由于脂类代谢失常引起的,酮症酸中毒则是由于乙酰辅酶A过多积累引起的。
总的来说,细胞的代谢是维持生命活动正常进行的基础。
它通过一系列的有序化学反应来合成和分解各种有机物质,从而为细胞提供能量和物质。
细胞代谢分析知识点总结

细胞代谢分析知识点总结一、细胞代谢的基本概念细胞代谢是指细胞内的各种化学反应过程,包括合成代谢和分解代谢两大类。
合成代谢是指细胞内通过一系列酶促反应,将简单的有机分子合成成更复杂的化合物,比如蛋白质、核酸和脂质等。
而分解代谢是指细胞内将复杂的有机分子分解成较为简单的产物,以释放能量或提供原料,比如葡萄糖的分解过程。
细胞代谢是维持细胞生命活动所必需的过程,它能够提供细胞所需的能量和原料,同时也能够调节细胞内环境的稳定性。
二、代谢物的合成与分解1. 合成代谢:生物体内大部分的有机物是通过合成代谢得到的,比如蛋白质、核酸、脂质等。
合成代谢是通过酶促反应来进行的,酶是生物体内催化化学反应的蛋白质,它能够降低反应所需的能量,提高反应速率。
合成代谢是一个复杂的过程,一般需要多个酶的参与,而且这些酶的活性和表达受到多种调控因素的影响,如基因表达水平、底物浓度、温度、pH值等。
2. 分解代谢:细胞内的分解代谢是通过酶促反应将复杂的有机物分解为较为简单的产物。
例如,葡萄糖的分解通过糖酵解途径可以得到较为简单的产物,同时也释放能量。
分解代谢是细胞内能量供应的重要途径,通过分解有机物来产生 ATP,为细胞提供能量。
三、酶的作用酶是细胞中催化代谢反应的蛋白质,它能够降低反应所需的能量,提高反应速率,从而加快化学反应的进行。
酶的作用方式包括:底物结合、催化反应、产物释放。
酶的活性受到多种调控因素的影响,如温度、pH值、底物浓度和抑制剂等。
此外,酶还受到基因表达水平的调控,通过调节酶的合成和降解,细胞可以对代谢反应进行调控。
四、代谢途径1. 糖酵解途径:即葡萄糖的分解过程,通过一系列酶促反应,葡萄糖分解为丙酮酸和丁二酸,同时释放能量。
这个过程是细胞内能量供应的一个重要途径。
2. 三羧酸循环:三羧酸循环是细胞内氧化脱羧酶促反应的一个重要代谢途径,它能够将丙酮酸、丁二酸等有机物氧化为 CO2 和 H2O,同时释放能量。
3. 脂质代谢途径:细胞内脂质的合成和分解是细胞代谢的一个重要组成部分。
生物细胞代谢知识点总结

生物细胞代谢知识点总结一、细胞代谢的基本概念细胞代谢是细胞内各种化学反应的总和,包括合成代谢和分解代谢。
合成代谢是细胞利用外界物质合成自身所需大分子物质的过程,如合成蛋白质、脂类、多糖等。
分解代谢是细胞利用大分子物质进行分解,产生能量和小分子有机物。
细胞代谢的速率受到多种因素的调控,具有高度的复杂性和灵活性,能够适应环境的变化。
二、代谢途径1. 糖酵解糖酵解是一种无氧分解代谢,发生在细胞质中,将葡萄糖分解为乳酸,产生2个ATP分子。
糖酵解途径是细胞在没有氧气的条件下,产生ATP的途径,为细胞提供了短时间内急需的能量。
2. 有氧呼吸有氧呼吸是一种氧化分解代谢,发生在线粒体内,将葡萄糖分解为二氧化碳和水,产生36个ATP分子。
有氧呼吸是细胞在有氧环境下,产生ATP的主要途径,为细胞提供了持续的能量来源。
3. 脂肪酸氧化脂肪酸氧化是一种有氧分解代谢,发生在线粒体内,将脂肪酸分解为乙酰辅酶A,产生大量ATP。
脂肪酸氧化是细胞利用脂肪产生能量的途径,适用于长时间的低强度运动和长时间的饥饿状态。
4. 蛋白质合成蛋白质合成是细胞利用氨基酸合成蛋白质的过程,包括转录和翻译两个阶段。
蛋白质合成是细胞合成大分子物质的重要途径,对于细胞的生长和修复具有重要作用。
5. 核酸合成核酸合成是细胞利用核苷酸合成DNA和RNA的过程,包括核苷酸的合成和聚合两个阶段。
核酸合成是细胞合成遗传物质的重要途径,对于细胞的遗传信息传递和蛋白质合成具有重要作用。
6. 糖异生糖异生是细胞利用非糖物质(如氨基酸、乙酰辅酶A等)合成葡萄糖的过程,包括糖异生途径和逆糖酵解两个阶段。
糖异生是细胞在碳源不足的情况下,合成葡萄糖的重要途径,为细胞提供了能量和原料。
三、代谢调控细胞代谢的速率受到多种因素的调控,包括酶的调控、信号传导的调控、基因表达的调控等。
1. 酶的调控细胞内的酶是细胞代谢反应的催化剂,酶的活性受到多种因素的调控,包括底物浓度、产物浓度、温度、pH值等。
高中生物细胞代谢知识点

高中生物细胞代谢知识点4篇高中生物细胞代谢知识1物质进出细胞的方式(1)一个典型的渗透装置必须具备的条件是具有一层半透膜。
(2)植物细胞内原生质层可以看作是半透膜,动物细胞的细胞膜可以看作是半透膜,所以都可以发生渗透吸水。
(3)细胞膜和液泡膜以及两层膜之间的细胞质称为原生质层。
原生质体是指植物细胞除去细胞壁以后的结构。
(4)物质跨膜运输的方式有自由扩散,例如氧和二氧化碳进出细胞膜;协助扩散,例如葡萄糖穿过红细胞的细胞膜;主动运输,例如Na+、K+穿过细胞膜。
(5)自由扩散、协助扩散和主动运输的区别拓展:①溶液中的溶质或气体可发生自由扩散,溶液中的溶剂发生渗透作用;渗透作用必须具备两个条件:一是具有半透膜,二是半透膜两侧的溶液具有浓度差。
(6)细胞通过胞吞摄取大分子,通过胞吐排出大分子。
四、酶与 ATP1.酶在代谢中的作用(1)酶是活细胞产生的具有催化功能的有机物,其中绝大多数酶是蛋白质,少数酶是 RNA。
(2)酶的生理作用是催化。
酶具有高效性、专一性,酶的作用条件较温和。
拓展:①同无机催化剂相比,酶降低活化能的作用更显著,因而催化效率更高。
②过酸、过碱或温度过高,会使酶的空间结构遭到破坏,使酶永久失活。
在低温,如0℃左右时,酶的活性很低,但酶的空间结构稳定,在适宜的温度下酶的活性可以升高。
2.ATP在能量代谢中的作用(3)ATP 的结构简式是 A—P~P~P,其中 A 代表腺苷,T 是三的意思,P 代表磷酸基团。
(3)ATP 的结构简式是 A—P~P~P,其中 A 代表腺苷,T 是三的意思,P 代表磷酸基团。
(4)ATP和ADP的转化注意:①酶不同:酶1是水解酶,酶2是合成酶;②能量来源不同:ATP水解释放的能量,来自高能磷酸键的化学能,并用于生命活动;合成ATP的能量来自呼吸作用或光合作用。
③场所不同:ATP水解在细胞的各处。
ATP合成在线粒体,叶绿体,细胞质基质。
拓展:①动物体内合成ATP 的途径是呼吸作用,植物物体内合成 ATP 的途径是呼吸作用和光合作用。
细胞代谢填空知识点总结

细胞代谢填空知识点总结1. 细胞代谢的类型细胞代谢可以分为三个主要类型:①物质代谢,包括合成代谢(合成细胞结构和内在物质)和分解代谢(降解细胞结构和内在物质);②能量代谢,指细胞内通过碳水化合物、脂肪、蛋白质等物质代谢释放出能量;③微量元素代谢,指细胞内对微量元素的吸收和排泄。
2. 有氧代谢有氧代谢是指细胞在氧气存在下进行的代谢,它包括①糖解途径,将葡萄糖分解成丙酮酸,产生ATP和NADH;②三羧酸循环,将丙酮酸通过循环逐步氧化成CO2,释放出更多的ATP和NADH;③电子传递链,将NADH和FADH2在线粒体内逐步氧化成水,释放出更多的ATP。
3. 无氧代谢无氧代谢是指细胞在缺氧的情况下进行的代谢,它包括①酵解途径,将葡萄糖分解成乳酸,产生少量的ATP;②发酵途径,将葡萄糖分解成酒精和二氧化碳,产生少量的ATP。
4. ATP的合成ATP是细胞内能量转移的重要分子,它通过酶催化反应合成。
有氧代谢中,ATP的合成包括①磷酸化途径,通过磷酸添加到ADP上来形成ATP;②光合作用,是植物细胞中进行的产生ATP的途径。
无氧代谢中,ATP的合成包括无氧糖解和无氧磷酸化。
5. 代谢产物的排泄代谢产物包括有害废物和无害废物。
细胞内产生的有害废物需要通过排泄来清除,它包括①氮质废物,比如尿素和氨等;②二氧化碳,通过呼吸排出体外;③无机盐,通过尿液排出体外。
无害废物则是体内所需要的物质的代谢产物,它需要通过排泄来维持正常代谢。
6. 良好的细胞代谢对身体健康的意义良好的细胞代谢能够保持身体正常的生理活动,维持体内稳态。
细胞代谢过程中产生的有害废物需要及时排泄,否则可能导致疾病的发生。
良好的细胞代谢还能够有效地利用能量和物质,保持身体的健康。
总之,细胞代谢是细胞内生命活动的基础,对维持细胞内稳态和保持身体健康至关重要。
通过了解细胞代谢的类型、过程和意义,可以更好地理解细胞内的生理活动,为维持健康的生活提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“细胞的代谢”知识点归纳考试要点1、物质出入细胞的方式Ⅱ2、酶在代谢中的作用Ⅱ3、ATP在能量代谢中的作用Ⅱ4、光合作用的基本过程Ⅱ5、影响光和作用速率的环境因素Ⅱ6、细胞呼吸Ⅱ7、探究影响酶活性的条件Ⅱ8、绿叶中色素的提取和分离Ⅱ知识网络构建重点知识整合一、酶的本质、特性以及酶促反应的因素1、核酸与蛋白质的关系2、有关酶的实验探究思路分析【重点】(1)探究某种酶的本质(2)验证酶的专一性①设计思路:酶相同,底物不同(或底物相同,酶不同)②设计方案示例:结论:淀粉酶只能催化淀粉水解,不能催化蔗糖水解,酶具有专一性。
(3)验证酶的高效性(4)探究酶作用的最适温度或最适pH①实验设计思路:②操作步骤:3、影响酶促反应的因素(1)温度和pH:①低温时,酶分子活性受到抑制,但并未失活,若恢复最适温度,酶的活性也升至最高;高温、过酸、过碱都会导致酶分子结构被破坏而使酶失活。
②温度或pH是通过影响酶的活性来影响酶促反应速率的。
③反应溶液pH的变化不影响酶作用的最适温度;反应溶液温度的变化也不改变酶作用的最适pH。
(2)底物浓度和酶浓度:①在其他条件适宜、酶量一定的条件下,酶促反应速率随底物浓度增加而加快,但当底物达到一定浓度后,受酶数量和酶活性限制,酶促反应速率不再增加。
如图甲。
②在底物充足,其他条件适宜的条件下,酶促反应速率与酶浓度成正比。
如图乙。
4、有关酶的疑难问题点拨(1)酶并非都是蛋白质,某些RNA也具有催化作用,因此酶的基成单位是氨基酸和核糖核苷酸。
(2)酶促反应速率不等同于酶活性。
①温度和pH通过影响酶活性,进而影响酶促反应速率。
②底物浓度和酶浓度也能影响酶促反应速率,但并未改变酶活性。
(3)在探究酶的最适温度(最适pH)时,底物和酶应达到相同温度(pH)后才混合,以使反应一开始便达到预设温度(pH)。
二、ATP的合成利用与能量代谢1、ATP的形成及与光合作用、细胞呼吸的关系【重难点】(1)ATP的形成途径:(2)植物产生ATP的场所是叶绿体、细胞质基质和线粒体,而动物产生ATP的场所是细胞质基质和线粒体。
(3)光合作用的光反应产生的ATP用于暗反应中C3的还原,而细胞呼吸产生的ATP 用于除C3还原之外的各项生命活动。
(4)光能是生物体进行各项生命活动的根本能量来源,而ATP是生命活动的直接能量来源。
(5)光能进入生物群落后,以化学能的形式储存于有机物中,以有机物为载体通过食物链而流动。
(6)能量在生物群落中具有单向流动、不可重复利用以及逐级递减的特点。
2、有关ATP的疑难问题点拨(1)化合物中“A”的辨析(2)ATP与ADP的转化并不是完全可逆的。
ATP与ADP的相互转化,从物质方面来看是可逆的,从酶、进行的场所、能量方面来看是不可逆的,即从整体上来看二者的转化并不可逆,但可以实现不同形式的能量之间的转化,保证生命活动所需能量的持续供应。
(3)误认为ATP等同于能量。
ATP是一种高能磷酸化合物,其分子式可以简写为A—P~P~P,高能磷酸键水解时能够释放出高达30.54 kJ/mol的能量,所以ATP是与能量有关的一种物质,不可将两者等同起来。
(4)ATP转化为ADP也需要消耗水。
ATP转化为ADP又称“ATP的水解反应”,这一过程需ATP酶的催化,同时也需要消耗水。
凡是大分子有机物(如蛋白质、脂肪、淀粉等)的水解都需要消耗水。
高频考点突破考点一:酶在代谢中的作用1、酶的化学本质及作用2、有关酶的本质和生理特性等实验的设计思路【特别提醒】(1)若底物选择淀粉和蔗糖,酶溶液为淀粉酶,验证酶的专一性,检测底物是否被分解的试剂宜选用斐林试剂,不能选用碘液,因为碘液无法检测蔗糖是否被水解。
(2)若选择淀粉和淀粉酶探究酶的最适温度,检测底物被分解的试剂宜选用碘液,不应该选用斐林试剂,因斐林试剂需水浴加热,而该实验中需严格控制温度。
(3)探究酶的适宜温度的实验中不宜选择过氧化氢酶催化 H2O2分解,因为底物H2O2在加热的条件下分解会加快,从而影响实验结果。
3、与酶有关的图表、曲线解读(1)表示酶专一性的图解:①图中A表示酶,B表示被催化的反应物。
②酶和被催化的反应物分子都有特定的结构。
(2)表示酶的高效性的曲线:①催化剂可加快化学反应速率,与无机催化剂相比,酶的催化效率更高。
②酶只能缩短达到化学平衡所需时间,不改变化学反应的平衡点。
(3)影响酶促反应的曲线:①温度和pH:a. 低温时,酶分子活性受到抑制,但并未失活,若恢复最适温度,酶的活性也升至最高;高温、过酸、过碱都会导致酶分子结构被破坏而使酶失活。
b.温度或pH是通过影响酶的活性来影响酶促反应速率的。
②底物浓度和酶浓度:a. 图甲中OP段的限制因素是底物浓度,而P点之后的主要限制因素是酶浓度。
b. 底物浓度和酶浓度不改变酶分子的活性。
考点二:ATP在代谢中的应用1、ATP的形成途径2、生物界中能量代谢过程(1)光能是生物体进行各项生命活动的根本能量来源,植物的光合作用是生物界中最基本的物质代谢和能量代谢。
(2)生物不能直接利用有机物中的化学能,只有有机物氧化分解并将能量转移到ATP中,才能被利用。
(3)光能进入生物群落后,以化学能的形式储存于有机物中,以有机物为载体通过食物链而流动。
难点探究难点一:有关物质出入细胞的方式1、物质浓度与被动运输之间的关系:2、影响主动运输的因素:首先是载体蛋白的种类数量,它决定所运输的物质种类和数量。
其次,由于主动运输需要消耗能量,所以凡是能够影响能量供应的因素也都影响主动运输速率,如温度、氧气浓度等。
第三,主动运输速率与物质浓度有关。
它们的关系可用图表示。
分析:曲线①说明运输速率与物质浓度呈正相关,不受其他因素的限制,应为自由扩散。
因为氧气浓度的高低影响细胞呼吸,影响细胞能量的供应,而主动运输需要消耗能量。
曲线③说明运输速率与氧气浓度无关,说明这种方式不是主动运输,而是一种被动运输方式(可能是自由扩散,也可能是协助扩散)。
相反,曲线②在一定浓度范围内随物质浓度升高而速率加快,当达到一定程度后,由于受到载体数量的限制,不再增加而维持稳定,说明这种运输需要载体,不是自由扩散,可能是协助扩散,也可能是主动运输。
曲线④说明运输速率与氧气浓度有关,根据上面的分析,这个过程是需要能量的,只能是主动运输,所以综合来看,应当是主动运输。
难点二:验证影响酶活性的有关实验1、酶的本质和生理作用的实验验证(1)酶是蛋白质设计思路:通过对照,实验组若出现紫色,则证明待测酶溶液是蛋白质,否则不是蛋白质。
可以看出实验中自变量是待测酶溶液和标准蛋白质溶液,因变量是否出现紫色反应。
同理,也可用吡罗红来鉴定某些酶是RNA的实验。
(2)酶的催化作用设计思路:实验中的自变量是相应的酶溶液的有无,因变量是底物是否被分解。
设计思路二:换酶不换反应物。
此实验过程中要注意:①选择好检测反应物的试剂。
如反应物选择淀粉和蔗糖,酶溶液为淀粉酶,验证酶的专一性,检测反应物是否被分解的试剂宜选用斐林试剂,不能选用碘液,因为碘液无法检测蔗糖是否被水解。
②要保证蔗糖的纯度和新鲜程度是做好实验的关键。
(2)酶的高效性设计思路:实验中自变量是无机催化剂和酶,因变量是底物分解速度。
(3)酶的适宜条件的探究实验的自变量(即单一变量)为温度或pH,因变量是反应物分解的速度或存在量。
①适宜的温度:设计思路:在实验步骤中要注意:a.在酶溶液和反应物混合之前,需要把两者先分别放在各自所需温度下保温一段时间。
b.若选择淀粉和淀粉酶探究酶的最适温度,检测反应物被分解的试剂宜选用碘液,不应该选用斐林试剂,因斐林试剂需水浴加热,而该实验中需严格控制温度。
②适宜的pH:设计思路:设计与酶有关的实验时,实验设计的一般步骤为:取材→分组编号→不同处理→平衡无关变量→现象观察→结果分析→得出结论。
【特别提示】影响酶作用的因素分析酶的催化活性的强弱以单位时间(每分)内底物的减少量或产物的生成量来表示。
研究某一因素对酶促反应速率的影响时,应在保持其他因素不变的情况下,单独改变研究的因素。
影响酶促反应的因素常有:酶的浓度、底物浓度、pH、温度、抑制剂、激活剂等。
其变化规律有以下特点:a. 酶浓度对酶促反应的影响:在底物充足,其他条件固定的情况下,反应系统中不含有影响酶活性的物质及其他不利于酶发挥作用的因素时,酶促反应的速率与酶的浓度成正比。
b. 底物浓度对酶促反应的影响:在底物浓度较低时,反应速率随底物浓度的增加而加快,反应速率与底物浓度近乎成正比;在底物浓度较高时,底物浓度增加,反应速率也随之加快,但不显着;当底物浓度很大,且达到一定限度时,反应速率就达到一个最大值,此时即使再增加底物浓度,反应速率几乎也不再改变。
c. pH对酶促反应的影响:一种酶只能在一定限度的pH范围内才表现活性,超过这个范围酶就失去活性。
在一定条件下,一种酶在某一个pH时活力最大,这个pH称为这种酶的最适pH。
d. 温度对酶促反应的影响:酶促反应在一定温度范围内反应速率随温度的升高而加快;但当温度升高到一定限度时,酶促反应速率不仅不再加快,反而随着温度的升高而下降。
在一定条件下,每一种酶在某一温度时活力最大,这个温度称为这种酶的最适温度。
e. 激活剂对酶促反应速度的影响:能激活酶的物质称为酶的激活剂。
激活剂种类很多,有:①无机阳离子,如钠离子、钾离子、铜离子、钙离子等;②无机阴离子,如氯离子、溴离子、碘离子、硫酸盐离子、磷酸盐离子等;③有机化合物,如维生素C、半胱氨酸、还原性谷胱甘肽等。
许多酶只有当某一种适当的激活剂存在时,才表现出催化活性或强化其催化活性,这称为对酶的激活作用。
而有些酶被合成后呈现无活性状态,它必须经过适当的激活剂激活后才具活性。
这种酶称为酶原。
f. 抑制剂对酶促反应速度的影响:能减弱、抑制甚至破坏酶活性的物质称为酶的抑制剂。
它可降低酶促反应速度。
酶的抑制剂有重金属离子、一氧化碳、硫化氢、氢氰酸、氟化物、碘化乙酸、生物碱、染料、对氯汞苯甲酸、二异丙基氟磷酸、乙二胺四乙酸、表面活性剂等。
难点三:不同种类的酶具体应用1、酶的分布酶既可以在细胞内发挥作用,比如线粒体内的呼吸氧化酶和叶绿体中的光合作用酶等;也可以分泌到细胞外起作用,如唾液淀粉酶、胃蛋白酶等各种消化酶。
不仅如此,在体外适宜的条件下酶也具有催化作用,如可以把唾液淀粉酶加入到试管里,在适宜的条件下催化淀粉的水解反应。
2、酶的分类3、酶的合成过程:(1)遵循中心法则(2)蛋白质类酶的合成包括转录和翻译,原料是氨基酸;而RNA酶的合成过程只有转录,原料是核糖核苷酸。
4、酶的分泌过程:胞外酶合成之后要分泌到细胞外发挥催化作用,因此胞外酶的分泌过程也就是分泌蛋白的形成过程。
它的合成、加工和分泌过程,有核糖体、内质网、高尔基体、线粒体等的参与。