任意角与弧度制题型小结
任意角和弧度制及任意角的三角函数 知识点与题型归纳.

1●高考明方向1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化3.理解任意角的三角函数(正弦、余弦、正切)的定义.★备考知考情1.三角函数的定义与三角恒等变换等相结合, 考查三角函数求值问题.2.三角函数的定义与向量等知识相结合, 考查三角函数定义的应用.3.主要以选择题、填空题为主,属中低档题.一、知识梳理《名师一号》P47 知识点一 角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.《名师一号》P47 对点自测 1、22注意: 1、《名师一号》P48 问题探究 问题1、2相等的角终边相同,终边相同的角也一定相等吗? 相等的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍.角的表示形式是唯一的吗?角的集合的表示形式不是唯一的,如:终边在y 轴的负半轴上的角的集合可以表示为{x |x =k ·360°-90°,k ∈Z},也可以表示为{x |x =k ·360°+270°,k ∈Z}. (补充)2、正角 > 零角 > 负角3、下列概念应注意区分 小于90°的角;锐角;第一象限的角;0°~90°的角.4、(1)终边落在坐标轴上的角 1)终边落在x 轴非负半轴上的角 {x|x =2kπ,k ∈Z }2)终边落在x 轴非正半轴上的角 {x|x =2kπ+π,k ∈Z }终边落在x 轴上的角{x|x =kπ,k ∈Z }3)终边落在y 轴非负半轴上的角{x|x =2kπ+π2,k ∈Z } 4)终边落在y 轴非正半轴上的角{x|x =2kπ+3π2,k ∈Z }3终边落在y 轴上的角{x|x =kπ+π2,k ∈Z }(2) 象限角 (自己课后完成)知识点二 弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角 叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算: 360°=2π弧度;180°=π弧度; ②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.关键:基本公式180︒→=rad π《名师一号》P47 对点自测 3注意: 1、《名师一号》P48 问题探究 问题3在角的表示中角度制和弧度制能不能混合应用? 不能.在同一个式子中,采用的度量制度是一致的, 不可混用.2、弧长公式与扇形面积公式(扇形的圆心角为α弧度,半径为r )4弧长公式||l r α= 扇形面积公式12S lr =(补充)(将扇形视为曲边三角形,记l 为底,r 为高)知识点三 任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α= ,cos α= ,tan α= (x ≠0). (补充)12(补充)关键:立足定义 正弦……一二正,横为零 余弦……一四正,纵为零正切……一三正,横为零,纵不存在3、特殊角的三角函数值(自己课后完成)知识点三任意角的三角函数(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线.《名师一号》P47 对点自测 6注意:《名师一号》P48 问题探究问题4如何利用三角函数线解不等式及比较三角函数值的大小?(1)先找到“正值”区间,即0~2π间满足条件的范围,然后再加上周期.(2)先作出角,再作出相应的三角函数线,最后进行比较5大小,应注意三角函数线的有向性.也可以利用相应图象求解二、例题分析:(一)角的表示及象限角的判定例1.《名师一号》P48 高频考点例1 (1)写出终边在直线y=3x上的角的集合;(2)已知α是第三象限角,求α2所在的象限.【思维启迪】(1)角的终边是射线,应分两种情况求解.(2)把α写成集合的形式,从而α2的集合形式也确定.解:(1)当角的终边在第一象限时,角的集合为{α|α=2kπ+π3,k∈Z},当角的终边在第三象限时,角的集合为{α|α=2kπ+43π,k∈Z},故所求角的集合为{α|α=2kπ+π3,k∈Z}∪{α|α=2kπ+43π,k∈Z}6={α|α=kπ+π3,k∈Z}.(2)∵2kπ+π<α<2kπ+32π(k∈Z),∴kπ+π2<α2<kπ+34π(k∈Z).当k=2n(n∈Z)时,2nπ+π2<α2<2nπ+34π,α2是第二象限角,当k=2n+1(n∈Z)时,2nπ+3π2<α2<2nπ+74π,α2是第四象限角,综上知,当α是第三象限角时,α2是第二或第四象限角.注意:《名师一号》P48 高频考点例1 规律方法(1)若要确定一个绝对值较大的角所在的象限,一般是先将角化为2kπ+α(0≤α<2π)(k∈Z)的形式,然后再根据α所在的象限予以判断.(2)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需角.78(二) 弧度制的定义和公式例1.《名师一号》P48 高频考点 例2(1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时, 才使扇形面积最大?解:(1)设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +rθ=1012θ·r 2=4⇒⎩⎨⎧r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12 故扇形圆心角为12.(2)设圆心角是θ,半径是r ,则2r +rθ=40.S =12θ·r 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100,当且仅当r =10时,S max =100,θ=2. 所以当r =10,θ=2时,扇形面积最大.《名师一号》P47 对点自测 4注意:《名师一号》P48 高频考点 例2 规律方法91.弧度制下l =|α|·r ,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系. 2.在解决弧长、面积及弓形面积时要注意合理 应用圆心角所在的三角形.(三) 三角函数的定义及应用例1.《名师一号》P48 高频考点 例3(1)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.解:(1)r =x 2+y 2=16+y 2,且sin θ=-255,所以sin θ=y r =y 16+y 2=-255,所以θ为第四象限角,解得y =-8.《名师一号》P47 对点自测 5(3)(2015·日照模拟)已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角.10解:(3)因为点P (sin θcos θ,2cos θ)位于第三象限,所以sin θcos θ<0,2cos θ<0,即⎩⎨⎧sin θ>0,cos θ<0,所以θ为第二象限角.※(2)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________.解: (2)如图,连接AP ,分别过P ,A 作PC ,AB 垂直x 轴于C ,B 点,过A 作AD ⊥PC 于D 点, 由题意知BP 的长为2.。
任意角与弧度制知识与题型总结

任意角与弧度制知识与题型总结一、任意角和弧度制1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角,记作:角或 可以简记成。
2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。
可以将角分为正角、零角和负角。
正角:按照逆时针方向转定的角。
零角:没有发生任何旋转的角。
负角:按照顺时针方向旋转的角。
3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点重合于坐标原点,角的始边合于轴的正半轴。
角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。
例1、(1)A={小于90°的角},B={第一象限的角},则A∩B= (填序号). ①{小于90°的角}②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、 C 关系是( ) A .B=A∩C B .B∪C=CC .A ⊂CD .A=B=Cααα∠αx4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0︒到360︒的角与个周角的和。
(2)所有与α终边相同的角连同α在内可以构成一个集合即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 注意:1、Z ∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同。
终边相同的角有无数个,它们相差360°的整数倍。
4、一般的,终边相同的角的表达形式不唯一。
例1、(1)若角的终边与58π角的终边相同,则在[]π2,0上终边与4θ的角终边相同的角为 。
(2)若βα和是终边相同的角。
那么βα-在例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1) 210-; (2)731484'- .例3、求θ,使θ与 900-角的终边相同,且[]1260180,-∈θ.)(Z k k ∈{}Z k k S ∈⋅+==,360| αββθ2、终边在坐标轴上的点:终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ 终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ3、终边共线且反向的角:终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ4、终边互相对称的角:若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk例1、若θα+⋅= 360k ,),(360Z m k m ∈-⋅=θβ 则角α与角β的中变得位置关系是( )。
任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-342.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 36.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .129.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .410.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .3219.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π321.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .1222.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12D .323.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.任意角和弧度制、任意角的三角函数专题及答案一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-34答案 D解析 根据三角函数的定义,tan α=y x =35-45=-34,故选D. 2.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0.3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π答案 B解析 由题意知l =|α|r ,∴|α|=l r =1812=32.4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是()A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 答案 A解析 由三角函数的定义知,选A.5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 3答案 D解析 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,故选D. 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 答案 B解析 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0,所以y =-1+1-1=-1.7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C.8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .12答案 D解析 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.9.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .4 答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.10.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.答案 ⎝ ⎛⎭⎪⎫12,32解析 根据题意得Q (cos π3,sin π3),即Q ⎝ ⎛⎭⎪⎫12,32.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.答案 ⎩⎨⎧⎭⎬⎫-π3,5π3解析 因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 答案 0解析 由题意得P (a ,-b ),Q (b ,a ),∴tan α=-b a ,tan β=a b (a ,b ≠0),∴sin αcos β+tan αtan β+1cos α·sin β=-b a 2+b 2b a 2+b 2+-ba ab +1a a 2+b 2·a a 2+b 2=-1-b 2a 2+a 2+b2a 2=0.二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案 C解析 由题意|OM |=|cos x |,f (x )=|OM ||sin x |=|sin x cos x |= 12|sin2x |,由此可知C 正确. 14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 答案 C解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin2α=2sin αcos α>0,故选C.15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12答案 A解析 由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin11π6+sin 17π6=0+12-12+12=12.三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n 时,2n π+π4≤α≤2n π+π2,此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .32答案 B解析 r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12,∴m =12.19.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 答案 A解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,即-2<a ≤3. 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.(也可用同角基本关系式tan x =sin xcos x得出.) 21.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .12答案 C解析 如图,由三角函数的定义,设x A =cos α,则y B =sin(α+30°),∴x A -y B =cos α-sin(α+30°)=12cos α-32sin α=cos(α+60°)≤1.22.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.23.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )答案 C解析 如图,取AP 的中点为D ,设∠DOA =θ,则d =2r sin θ=2sin θ,l =2θr =2θ, ∴d =2sin l2,故选C.24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.答案 15解析 因为π<α<3π2时,cos α<0,所以r =-5cos α,故sin θ=-35,cos θ=45,则sin θ+cos θ=15.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. 解 ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同样可求得sin α+1tan α=65-66.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π. 所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23). P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.解 (1)由题意可得f (x )=-(x -1)2+1+a ,而0≤x ≤3,所以m =f (1)=1+a ,n =f (3)=a -3.(2)由题意知,角β终边经过点A (a ,a ), 当a >0时,r =a 2+a 2=2a , 则sin β=a 2a =22,cos β=a 2a =22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=2+64.当a <0时,r =a 2+a 2=-2a , 则sin β=a -2a=-22,cos β=a -2a=-22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=-2+64.综上所述,sin ⎝ ⎛⎭⎪⎫β+π6=-2+64或2+64.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.解 (1)因为x 1=35,y 1>0,所以y 1=1-x 21=45,所以sin α=45,cos α=35,所以x 2=cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=-210.(2)S 1=12sin αcos α=14sin2α.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以S 2=-12sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=-14sin ⎝ ⎛⎭⎪⎫2α+π2=-14cos2α.因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43,所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α=2.。
任意角、弧度制小结学案

1.1.3 任意角、弧度制小结【学习目标】 1.通过小结形成知识网络,更加熟练、系统地掌握和运用本小节的知识点;2.能正确表示某一范围的角;能熟练应用弧度制下的弧长公式、扇形面积公式,能求有关扇形面积的最值等.【学习重点】(1)角的集合表示;(2)弧长公式、扇形面积公式的灵活运用【难点提示】构建知识网络、灵活运用解决实际问题.【学法提示】1.请同学们课前将学案与教材110P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一.知识梳理请感悟上面的知识网络(建议自己在电脑自作),主动复习教材中相关知识,并将各知识内容填写在横线上或空白处.二、热身练习1.在直角坐标系中,若角α与角β的终边互相垂直,则角α与角β的关系是( )90;90360();A B k k Z βαβα=+=++⋅∈. .90;90360();C D k k Z βαβα=±=±+⋅∈. .任意角、弧度制任意角弧度制角的概念象限角 同终边上的角 轴上角 正角负角零角弧度制的概念 弧度制与角度制互化弧长、面积公式{}{},,,n Z Y k Z ⋅∈=±⋅∈2.集合Z =x |x=(2n+1)180x |x=(4k 1)180之间的关系是( ).;.;.;..A Z Y B Z Y C Z Y D Z Y ≠≠⊂⊃= 与之间的关系不确定三、典例赏析例1 写出如图(0)y x x =±≥所夹区域内的角的集合.思路启迪 以两条射线为终边上的角是多少度(或弧度)?再看周期性吧!解:解后反思 你是怎样理解题的?求解该题的关键点、易错点在哪里?变式练习 写出终边在四个象限角平分线上的角的集合.解:例2.已知α是第二象限角,试求下列角的范围与所在的象限:(1) 3α;(2) 3α.思路启迪:准确写出α,在33αα、的范围,根据求出的范围,运用数形结合,试试看.解后反思(1)若例2中的α分别是第一象限、第三象限、第四象限的角,怎样确定 33αα、所在象限?有规律吗?各自的周期是多少?(2)解答本题用到了什么数学思想方法?该题中33ααα、、的范围还有不同的写法吗?角的两种制度能用在同一个表达式中出现吗?变式练习 已知α是第三象限角,试求角4α与2α的范围和所在的象限. 解:例3(1)已知扇形OAB 的圆心角α为120,半径6r =,求弧长AB 及扇形面积. (2)已知扇形周长为20cm ,当扇形的中心角为多大时它有最大面积,最大面积是多少?解:解后反思 在第(1)问中,应怎样选择公式更好?第(2)问是一道什么题型,求解时 的入手点在哪里?易错点在哪里?变式练习 已知圆中一条弦的长等于半径r ,求:(1)这条弦所对的劣弧长;(2)这条弦和劣弧组成的弓形的面积.解:例4. 2003年10月15日9时,中国首位航天员杨利伟乘坐的“神舟”五号载人飞船, 在酒泉卫星发射中心用“长征二号F ”型运载火箭发射升空,按规定轨道3地球14圈,在太空飞行21小时18分,16日6时23分在内蒙古中部地区成功着陆,中国首次载人航天飞行任务获得圆满成功.视飞船在地面343千米的太空中绕地球做匀速圆周运动,90分钟绕地球一圈,地球的平均半径为6378千米,计算:(1)飞船绕地球14圈共转过的度数是多少?(2)在太空飞行中,杨利伟与家人进行了一次特别的通话,通话时间持续4分50秒,在这段时间内,杨利伟所乘坐的飞船转过的角度是多少?飞船走了多少千米(不考虑其他因素,计算时取 3.14π≈)?解:解后反思 该题是什么题型?求解它的思想方法是什么、步骤如何?变式练习 在以原点为圆心半径为4的圆周上,动点P 、Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟旋转3π弧度,点Q 按顺时针方向每秒钟旋转6π弧度,求P 、Q 第一次相遇时所用的时间,相遇点的坐标及P 、Q 各自走过的弧长.解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,你的任务完成了吗?你讲的怎样?你提问了吗?我们的学习目标达到了吗?如:知识网络理解了吗?里面的知识内容都掌握了吗?本节课有哪些题型?运用了哪些思想方法求解的?有哪些需要我们注意的?2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?(学习链接——阅读材料)五、学习评价1将分针拨慢10分钟,则分钟转过的弧度数是( ) A.3π B.-3π C.6π D.-6π2.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A.2B.1sin 2 C.1sin 2 D.2sin 3.集合A={},322|{},2|Z n n Z n n ∈±=⋃∈=ππααπαα, B={},21|{},32|Z n n Z n n ∈+=⋃∈=ππββπββ,则A 、B 之间关系为( ) A. A B ⊂ B. B A ⊂ C. B ⊂A D. A ⊂B4.在半径为1的单位圆中,一条弦AB 的长度为3,则弦AB 所对圆心角α是( )A .α=3B .α<3C .α=32π D .α=120 5.若角α与β的终边关于x 轴对称,则α与β的关系是 ; 若角α与β的终边关于y 轴对称,则α与β的关系是 ;若角α与β的终边关于原点对称,则α与β的关系是 ;若角,αβ的终边关于直线y x =对称,则αβ与的关系式是 .6.12弧度的圆心角所对的弦长为2,求此圆心角所夹扇形的面积.解:7.扇形的面积一定,问它的中心角α取何值时,扇形的周长L 最小?解:8.半径为R 的扇形,其周长为R 4,则扇形中所含弓形的面积是多少?解:◆承前启后 现在我们学习了角的推广,角的两种度量制度?在数学中角与三角函数联系最为紧密,那对任意角又怎样定义三角函数呢?【学习链接】(阅读材料)密位制:一种军用的角度计量法.以密位为单位来量角的制度是:把圆周6000等分,每一等分的弧所对圆心角称为1密 位的角,即:1密度位就是圆的16000所对的圆心角(或这条弧)的大小. 密位的写法是在百位数字与十位数字之间画一条短线,如15密位记为“0—15”,读作“零,一五”;1370密位记为“13—70”,读作“一三,七零”。
高考数学 专题12 任意角和弧度制及任意角的三角函数热点题型和提分秘籍 理

专题12 任意角和弧度制及任意角的三角函数1.了解任意角的概念2.了解弧度制的概念,能进行弧度与角度的互化 3.理解任意角的三角函数(正弦、余弦、正切)的定义热点题型一 象限角与终边相同的角例1、 (1)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________。
(2)如果α是第三象限的角,试确定-α,2α的终边所在位置。
【答案】(1)⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π(2)见解析解析:(1)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π。
(2)由α是第三象限的角得π+2k π<α<3π2+2k π(k ∈Z ),所以-3π2-2k π<-α<-π-2k π(k ∈Z ),即π2+2k π<-α<π+2k π (k ∈Z ), 所以角-α的终边在第二象限。
由π+2k π<α<3π2+2k π(k ∈Z ),得2π+4k π<2α<3π+4k π(k ∈Z )。
所以角2α的终边在第一、二象限及y 轴的非负半轴。
【提分秘籍】1.终边在某直线上角的求法步骤(1)数形结合,在平面直角坐标系中画出该直线。
(2)按逆时针方向写出[0,2π)内的角。
(3)再由终边相同角的表示方法写出满足条件角的集合。
(4)求并集化简集合。
2.确定k α,αk(k ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出k α或αk的范围,然后根据k 的可能取值讨论确定k α或αk的终边所在位置。
【举一反三】设角α是第二象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则角α2属于( )A .第一象限B .第二象限C .第三象限D .第四象限热点题型二 扇形的弧长及面积公式例2、 (1)已知扇形周长为10,面积是4,求扇形的圆心角。
三角函数任意角和弧度制知识点

三角函数任意角和弧度制知识点第一章三角函数任意角和弧度制知识点任意角知识点一、任意角b终边总结:任意角构成要素为顶点、始边、终边、旋转方向、旋转量大小。
α知识点二、直角坐标系则中角的分类始边o1、象限角与轴线角aβ2、终边相同的角与角α终边相同的角β子集为__________________c终边轴线角的表示:终边落到x轴非负半轴角的子集为_____________;终边落到x轴非正半轴角的子集为_______;终边落到x轴角的子集为____________________。
终边落在y轴非负半轴角的集合为_____________;终边落在y轴非正半轴角的集合为_______;终边落在y轴角的集合为____________________。
终边落在坐标轴角的集合为__________________。
象限角的则表示第一象限的角的子集为_________________第二象限的角的子集为_____________。
第三象限的角的集合为_________________;第四象限的角的集合为____________。
例题1、推论以下各角分别就是第几象限角:670°,480°,-150°,45°,405°,120°,-240°,210°,570°,310°,-50°,-315°例题2、以下角中与330°角终边相同的角是()a、30°b、-30°c、630°d-630°题型一、象限角的认定例1、已知角的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,指出他们是第几象限角,并指出在0°~360°范围内与其终边相同的角。
(1)420°(2)-75°(3)855°(4)1785°(5)-1785°(6)2021°(7)-2021°(8)1450°(9)361°(10)-361°例2、已知α是第二象限角,则180°-α是第_____象限角。
高考数学复习典型题型专题讲解与练习21 任意角与弧度制

高考数学复习典型题型专题讲解与练习专题21 任意角与弧度制题型一 终边相同的角1.已知角β0y -=上.则角β的集合S 为__________.【答案】{}|60180,n n Z ββ︒︒=+⋅∈0y -=过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA 上的角是60°,终边落在射线OB 上的角是240°,所以以射线OA ,OB 为终边的角的集合分别为{}1|60360,S k k Z ββ︒︒==+⋅∈,{}2|240360,S k k Z ββ︒︒==+⋅∈,所以,角β的集合{}12|60360,S S S k k Z ββ︒︒=⋃==+⋅∈{}|60180360,k k Z ββ︒︒︒⋃=++⋅∈ {}{}602180,|60(21)180,k k Z k k Z ββββ︒︒︒︒==+⋅∈⋃=++⋅∈∣ {|60180,}n n Z ββ︒︒==+⋅∈.故答案为:{}|60180,n n Z ββ︒︒=+⋅∈.2.在0°到360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角: (1)-120°; (2)640°.【答案】(1)240°,它是第三象限的角;(2)280°,它是第四象限的角.【解析】(1)与-120°终边相同的角的集合为M ={β|β=-120°+k ·360°,k ∈Z }. 当k =1时,β=-120°+1×360°=240°,∴在0°到360°范围内,与-120°终边相同的角是240°,它是第三象限的角. (2)与640°终边相同的角的集合为M ={β|β=640°+k ·360°,k ∈Z }. 当k =-1时,β=640°-360°=280°,∴在0°到360°范围内,与640°终边相同的角为280°,它是第四象限的角. 3.写出与α=-1910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.【答案】{β|β=k ·360°-1 910°,k ∈Z };元素β见解析【解析】与α=-1 910°终边相同的角的集合为{β|β=k ·360°-1910°,k ∈Z }. ∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴1111363636k ≤< (k ∈Z ),故取k =4,5,6. k =4时,β=4×360°-1910°=-470°; k =5时,β=5×360°-1910°=-110°; k =6时,β=6×360°-1910°=250°. 题型二 象限角的规定4.下列说法中正确的序号有________. ①-65°是第四象限角;②225°是第三象限角; ③475°是第二象限角;④-315°是第一象限角. 【答案】①②③④【解析】由题意,①65-是第四象限角,是正确的;②225是第三象限角,是正确的;③475360115=+,其中115是第二象限角,所以475为第二象限角是正确的; ④31536045-=-+,其中45是第一象限角是正确的, 所以正确的序号为①②③④ 5.若α是第一象限角,问α-,2α,3α是第几象限角? 【答案】α-是第四象限角;2α是第一、二象限角或终边在y 轴的非负半轴上;3α是第一、二或第三象限角.【解析】因为α是第一象限角,所以36036090()k k k α⋅︒<<⋅︒+︒∈Z , 所以36090360()k k k Z -⋅︒-︒<-<-⋅︒∈α,所以α-所在区域与(90,0)-︒︒范围相同,故α-是第四象限角;236022360180()k k k Z ⋅︒<<⋅︒+︒∈α,所以2α所在区域与(0,180)︒︒范围相同,故2α是第一、二象限角或终边在y 轴的非负半轴上;12012030()3k k k α⋅︒<<⋅︒+︒∈Z .当3()k n n Z =∈时,36036030()3n n n Z ⋅︒<<⋅︒+︒∈α,所以3α是第一象限角; 当31()k n n Z =+∈时,360120360150()3n n n α⋅︒+︒<<⋅︒+︒∈Z ,所以3α是第二象限角;当32()k n n Z =+∈时,360240360270()3n n n α⋅︒+︒<<⋅︒+︒∈Z ,所以3α是第三象限角. 综上可知:3α是第一、二或第三象限角. 6.已知角α的终边在第四象限. (1)试分别判断2α、2α是哪个象限的角;(2)求3α的范围. 【答案】(1)2α是第二或第四象限的角,2α是第三或第四象限或y 轴的非正半轴的角;(2)2ππ2π2,3233k k π⎛⎫++⎪⎝⎭(k ∈Z ). 【解析】α是第四象限的角,3222()2k k k Z ππαππ∴+<<+∈, 3()42k k k Z παπππ∴+<<+∈, 当2()kn nZ 时,322()42n n n Z παπππ∴+<<+∈ 此时2α是第二象限; 当21()k n n Z =+∈时,7222()42n n n Z παπππ∴+<<+∈ 此时2α是第四象限; 又3222()2k k k Z ππαππ+<<+∈ 43244()k k k Z ππαππ+<<+∈此时2α是第三象限或第四象限或y 轴的非正半轴; (2)3222()2k k k Z ππαππ+<<+∈ 222()32333k k k Z ππαππ∴+<<+∈ 题型三 角度与弧度的互化7.已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是________度,即________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是________. 【答案】864245π151.2cm π 【解析】∵相互啮合的两个齿轮,大轮有48齿,小轮有20齿, ∴当大轮转动一周时,大轮转动了48个齿, ∴小轮转动4812205=周,即123608645⨯=,1224255ππ⨯=, ∴当大轮的转速为180/r min 时,12180432/5r min ⨯=,小轮转速为432/r min , ∴小轮周上一点每1s 转过的弧度数为:724322605ππ⨯÷=, ∵小轮的半径为10.5cm ,∴小轮周上一点每1s 转过的弧长为:7221151.252cm ππ⨯=, 故答案为:864;245π;151.2cm π. 8.已知两角和为1弧度,且两角差为1°,则这两个角的弧度数分别是__________. 【答案】12+π360,12-π360【解析】设两个角的弧度分别为x,y ,又由1∘=π180rad , 所以{x +y =1x −y =π180,解得{x =12+π360y =12−π360 , 即所求两角的弧度数分别为12+π360,12−π360.9.海面上,地球球心角1'所对的大圆的圆弧长为1nmile (海里),1nmile 是多少千米?(将地球看成球体,半径取为6370km )【答案】1.853km【解析】6011'⎛⎫= ⎪⎝⎭∴弧长为1637060 1.853180km π⋅≈,故1 n mile 为1.853km . 题型四 弧长、扇形面积有关计算10.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( ) A .14B .12或2C .1D .14或1 【答案】D【解析】解:由题意得212,18,2l r lr =-⎧⎪⎨=⎪⎩解得8,2,r l =⎧⎨=⎩或4,4,r l =⎧⎨=⎩故14l r α==或1l r α==.故选:D11.如图,四边形ABCD 是菱形,60A ∠=︒,2AB =,扇形BEF 的半径为2,圆心角为60︒,则图中阴影部分的面积是________.【答案】23π【解析】扇形BEF 的面积为2122233ππ⨯⨯=,连接BD ,设,BE AD N BF CD M==,,33NDB MCB DBN MBD CBM BD BD ππ∠=∠=∠=-∠=∠=因此DBN CBM ≅即扇形BEF 在四边形ABCD 内面积等于BCD △22=因此图中阴影部分的面积是23π故答案为:23π12.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差. 按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1)9π2m );(2)少1.522m . 【解析】(1)本题比较简单,就是利用扇形面积公式21122S lr r α==来计算弧田面积,弧田面积等于扇形面积-对应三角形面积.(2)由弧田面积的经验计算公式计算面积与实际面积相减即得. 试题解析:(1) 扇形半径,扇形面积等于弧田面积=(m 2)(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=.平方米按照弧田面积经验公式计算结果比实际少1.52平米.13,宽为1dm 的长方形木块在桌面上作无滑动的翻滚,翻滚到第四面时被一小木板挡住,使木块底面与桌面成30的角.求点A 走过的路程的长及走过的弧度所对扇形的总面积.()dm ,走过的弧度所对的扇形的总面积为()274dm π. 【解析】1AA 所在圆弧的半径是2dm ,圆心角为2π;12A A 所在圆弧的半径是1dm ,圆心角为2π;23A A ,圆心角为3π,所以走过的路程是3段圆弧之和,即()21223dm πππ⨯+⨯=,3段圆弧所对的扇形的总面积是()2222111*********4dm ππππ⨯⨯+⨯⨯+⨯⨯=. 题型五 扇形中的最值问题14.已知扇形的面积为216cm ,求扇形周长的最小值,并求此时圆心角的弧度数. 【答案】16cm ;弧度数为2【解析】设扇形半径为r ,圆心角为θ,则扇形面积21162S r θ==,扇形周长2l r r θ=+,即2lr θ=+,代入面积表达式得:2232(2)432(4)324)256l θθθθ+==++≥⨯=,即16l ≥,当且仅当2θ=时等号成立.故周长的最小值为16cm ,此时圆心角的弧度数为2.15.某市规划拟在如图所示的扇形土地上修建一个圆形广场.已知60AOB ︒∠=,AB 的长度为100m π,怎样设计能使广场的占地面积最大?其值是多少?【答案】当1O 是扇形AOB 的内切圆时,广场的占地面积最大,此时1O 的面积为()210000m π.【解析】如图所示,∵603AOB π︒∠==,AB 的长度为100m π,∴100300(m)3OA ππ==.由题意可知,当1O 是扇形AOB 的内切圆时,广场的占地面积最大,设1O 与OA 切于点C ,连接11,O O O C .则111130,300O OC OO OA O C O C ︒∠==-=-, 又1112O C O O =⨯,∴()1113002O C O C =-⨯, 解得1100m O C =.故当1O 是扇形AOB 的内切圆时,广场的占地面积最大,此时1O 的面积为()2210010000m ππ⨯=.16.一扇形的周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形面积最大,并求此扇形的最大面积.【答案】2α=弧度,最大面积225cm【解析】设扇形的半径为r ,其周长为20,则扇形弧长为202r -, 且2020,010r r ->∴<<,扇形面积221(202)10(5)252S r r r r r =-=-+=--+,当=5r ,1025α==时,S 取最大值为25, 所以圆心角为2弧度时,扇形面积最大为25.17.如图所示,十字形公路的交叉处周围成扇形,现计划在这块扇形土地上修建一个圆形广场,已知60AOB ︒∠=,AB 的长度为100m π.怎样设计能使广场的占地面积最大?最大面积是多少?【答案】当1O 是扇形AOB 的内切圆时,广场的占地面积最大;最大面积是210000m π【解析】603AOB π︒∠==,AB 的长度为100m π,()100300m 3OA ππ∴==.根据题意可知,当1O 是扇形AOB 的内切圆时,广场的占地面积最大. 如图所示,设1O 与OA 相切于点C ,连接1O O ,1O C , 则16O OC π∠=,111300OO OA O C O C =-=-.又11sin 6O C OO π=⋅,故()1113002O C O C =-⨯,解得()1100m OC =. 这时1O 的面积为()2210010000m ππ⨯=.即最大面积是210000m π.题型六 弧长公式、扇形面积公式的应用18.中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π 【答案】A【解析】1S 与2S 所在扇形圆心角的比即为它们的面积比, 设1S 与2S 所在扇形圆心角分别为,αβ,则αβ= ,又2αβπ+=,解得(3απ= 故选:A19.如图,圆心在原点,半径为R 的圆交x 轴正半轴于点A ,P ,Q 是圆上的两个动点,它们同时从点A 出发沿圆周做匀速运动,点P 沿逆时针方向每秒转3π,点Q 沿顺时针方向每秒转6π,试求P ,Q 出发后第五次相遇时各自转过的弧度数及各自走过的弧长.【答案】203R π和103R π.【解析】易知动点P ,Q 从第k 次相遇到第1()k k +∈N 次相遇 所走过的弧长之和恰好等于圆的一个周长2R π, 因此当它们第五次相遇时走过的弧长之和为10R π. 设动点P ,Q 自A 点出发到第五次相遇走过的时间为t 秒, 走过的长分别为1l ,2l 则13l tR π=,266l tR tR ππ=-⋅=.因此121036l l tR tR R πππ+=+=.∴102036Rt Rπππ==⎛⎫+⋅ ⎪⎝⎭(秒),1203l R π=,2103l R π=. 由此可知,P 转过的弧度数为203π,Q 转过的弧度数为103π, P ,Q 走过的弧长分别为203R π和103R π. 20.一个面积为1的扇形,所对弧长也为1,则该扇形的圆心角是________弧度 【答案】12【解析】设扇形的所在圆的半径为r ,圆心角为α, 因为扇形的面积为1,弧长也为1,可得21121r r αα⎧⋅=⎪⎨⎪=⎩,即221r r αα⎧⋅=⎨=⎩,解得12,2r α==.故答案为:1221.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 和其所对弦AB 围成的图形,若弧田的弧AB 长为4π,弧所在的圆的半径为6,则弧田的弦AB 长是__________,弧田的面积是__________.【答案】12π﹣【解析】∵如图,弧田的弧AB 长为4π,弧所在的圆的半径为6,过O 作OC AB ⊥,交AB 于D ,根据圆的几何性质可知,OC 垂直平分AB .∴α=∠AOB =46π=23π,可得∠AOD =3π,OA =6,∴AB =2AD =2OA sin 3π=2×6∴弧田的面积S =S 扇形OAB ﹣S △OAB =12⨯4π×6﹣132⨯=12π﹣故答案为:。
三角函数解三角形题型归类

三角函数解三角形题型归类一知识归纳:(一)任意角、弧度制及任意角的三角函数 1.角的概念(1)任意角:①定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;②分类:角按旋转方向分为 、 和 . (2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S = .(3)象限角:使角的顶点与 重合,角的始边与 ,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个 ,负角的弧度数是一个负数 ,零角的弧度数是 .(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°.(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α= ,cos α= ,tan α= .(2)任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0) 4.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (二)公式概念1.三角函数诱导公式⎝ ⎛⎭⎪⎫k 2π+α(k ∈Z)的本质奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角).2.两角和与差的三角函数公式(1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.3.二倍角公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,cos 2α=1+cos 2α2,sin 2α=1-cos α2;(3)tan 2α=2tan α1-tan 2α.(三)正、余弦定理及其变形: 1.正弦定理及其变形 在△ABC 中,a sin A=b sin B=c sin C=2R (其中R 是外接圆的半径);a =2R sin A ,b =2R sin B ,c =2R sin C ; sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 2.余弦定理及其变形a 2=b 2+c 2-2bc cos A ; cos A =b 2+c 2-a 22bc.b 2= ; cos B = ;c 2= . cos C = .3.三角形面积公式:S △ABC =12ah =12ab sin C =12ac sin B =_________________=abc 4R =12(a +b +c )·r (R是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .2.整体法:求y =A sin(ωx +φ)(ω>0)的单调区间、周期、值域、对称轴(中心)时,将ωx +φ看作一个整体,利用正弦曲线的性质解决.3.换元法:在求三角函数的值域时,有时将sin x (或cos x )看作一个整体,换元后转化为二次函数来解决.4.公式法:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =A tan(ωx +φ)的最小正周期为π|ω|. (2016年 全国卷1)4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =2c =,2cos 3A =,则b =(A (B (C )2 (D )3 6.将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为 (A )2sin(2)4y x π=+ (B )2sin(2)3y x π=+(C )2sin(2)4y x π=-(D )2sin(2)3y x π=-14.已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-=————————————. (2015年 全国卷1)8. 函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B =,且a = 求ABC ∆的面积.(2014年 全国卷1) 2.若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为 A .①②③ B. ①③④ C . ②④D. ①③16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测学科网得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .(2013年 全国卷1)9.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )10.已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b = (A )10 (B )9(C )8(D )516.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.(2012年 全国卷1)9.已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π417.(本小题满分12分)已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,sin sin c C c A =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆b ,c .三、题型归纳题型一、三角函数定义的应用1.若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y 等于( )A.-33 B.33C.- 3D. 3变式1.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4题型二、三角函数值的符号2.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4变式2.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34 D .-43 题型三、同角三角函数关系式的应用3.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C .-34 D.454.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32 B.32 C .-34 D.34变式3.已知sin α-cos α=2,α∈(0,π),则tan α等于( ) A .-1 B .-22 C.22D .1 题型四 诱导公式的应用5.(1)已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α=________. (2)sin(-1 200°)cos 1 290°+cos(-1 020°)sin(-1 050°)=______变式4.已知角α终边上一点p(-4,3),则cos()sin()2119cos()sin()22παπαππαα+---+的值为 题型五、三角函数的图形变换6.(1)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位(2)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入部分数据,如下表:(1)f (x )的解析式;(2)将y =f (x )图象上所有点向左平移π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.变式5.已知函数y =2sin ⎝⎛⎭⎫2x +π3. (1)求它的振幅、周期、初相;(2)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.题型六、三角函数的性质问题7.(1)函数y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间为________.(2)已知函数f (x )=cos ⎝⎛⎭⎫ωx +φ-π2⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则y =f ⎝⎛⎭⎫x +π6取得最小值时x 的集合为( )A.⎩⎨⎧⎭⎬⎫x |x =k π-π6,k ∈Z B.⎩⎨⎧⎭⎬⎫x |x =k π-π3,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x =2k π-π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z(3)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且其图象向右平移π12个单位后得到的函数为奇函数,则函数f (x )的图象( ) A.关于点⎝⎛⎭⎫π2,0对称 B.关于直线x =5π12对称C.关于点⎝⎛⎭⎫5π12,0对称D.关于直线x =π12对称(4)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x 是( ) A.奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B.偶函数且图象关于点(π,0)对称 C.奇函数且图象关于直线x =π2对称 D.偶函数且图象关于点⎝⎛⎭⎫π2,0对称 变式6.已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.题型七、最值与值域问题8.已知函数2()(sinx cosx)cos 2f x x =++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角与弧度制【知识梳理】1按旋转方向分2. 按角的终边位置(1) 角的终边在第几象限, ___ 则此角称为第几;(2)角的终边在__上,则此角不属于任何一个象限.3. 所有与角a终边相同的角,连同角a在内,可构成一个集合S= ___________________________ ,即任一与角a终边相同的角,都可以表示成角a与_______________ 的和.【常考题型】题型一、象限角的判断【例1】已知角的顶点与坐标原点重合,始边落在X轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1) - 75°; (2)855 ° ; (3) - 510° .【类题通法】象限角的判断方法(1) 根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角.(2) 根据终边相同的角的概念.把角转化到0°〜360°范围内,转化后的角在第几象限,此角就是第几象限角.【对点训练】在直角坐标系中,作出下列各角,在0°〜360°范围内,找出与其终边相同的角,并判定它是第几象限角. (1)360 ° ; (2)720 ° ; (3)2 012 ° ; (4) - 120° .题型二、终边相同的角的表示【例2】(1)写出与a=- 1 910 °终边相同的角的集合,并把集合中适合不等式一720°<卩v 360°的元素卩写出来.⑵分别写出终边在下列各图所示的直线上的角的集合.1终边相同的角常用的三个结论(1)终边相同的角之间相差 360°的整数倍.⑵ 终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差 90°的整数倍.2•区域角是指终边落在坐标系的某个区域的角,其写法可分三步 (1)先按逆时针方向找到区域的起始和终止边界;⑵由小到大分别标出起始、终止边界对应的一个角 a ,卩,写出所有与a ,卩终边相同的角;(3)用不等式表示区域内的角,组成集合.【对点训练】题型三、确定n 及一所在的象限na【例3】 若a 是第二象限角,则 2a , y 分别是第几象限的角?【类题通法】1. n a 所在象限的判断方法确定n a 终边所在的象限,先求出 n a 的范围,再直接转化为终边相同的角即可.2負所在象限的判断方法已知角a 的终边在如图所示的阴影部分内,试指出角a 的取值范围.【类题通法】a已知角a所在象限,要确定角所在象限,有两种方法:na(1)用不等式表示出角—的范围,然后对n的取值分情况讨论:被n整除;被n除余1 ;被n 除余2;…;被n除余n—1.从而得出结论.⑵作出各个象限的从原点出发的n等分射线,它们与坐标轴把周角分成4n个区域•从x轴非负半轴起,按逆时针方向把这4n个区域依次循环标上1,2,3,4.标号为几的区域,就是a a根据a终边所在的象限确定的终边所落在的区域.如此,一所在的象限就可以由标号区域n n所在的象限直观地看出.a【对点训练】已知角a为第三象限角,试确定角2 a , ~是第几象限角.题型四轴线角与象限角1. 终边落在x轴正半轴上角的集合___________________________2. 终边落在x轴负半轴上角的集合 ____________________________3. 终边落在y轴正半轴上角的集合 ____________________________4. 终边落在y轴负半轴上角的集合____________________________5.终边落在x轴上角的集合6.终边落在y轴上角的集合7.终边落在坐标轴上角的集合8.与终边关于原点对称(互为反向延长线),与的关系9.与终边关于X轴对称,与的关系10. 与终边关于y轴对称,与的关系_____________________________11. 第一象限角的范围:___________________________12. 第二象限角的范围:___________________________13. 第三象限角的范围:___________________________14. 第四象限角的范围:___________________________【知识梳理】1. 角度制与弧度制(1)角度制.①定义:用度作为单位来度量角的单位制.②1度的角:周角的__________ 作为一个单位.(2)弧度制.① 定义:以 ______ 作为单位来度量角的单位制.② 1弧度的角:长度等于 __________ 的弧所对的圆心角.2. 任意角的弧度数与实数的对应关系正角的弧度数是一个 __________ ,负角的弧度数是一个 ___________ ,零角的弧度数是 0.3. 角的弧度数的计算如果半径为r 的圆的圆心角a 所对弧的长为I ,那么,角a 的弧度数的绝对值是| a | = p4. 弧度与角度的互化角度化弧度弧度化角度360 ° = rad 2 n rad =180 ° = radn rad =1 °=rad ~ 0.017 45 rad 1 rad =~ 57.30 °5. 一些特殊角的度数与弧度数的对应表度 0° 30 ° 45 ° 60 °90 ° 120° 135 °150 °180 °弧度nnnn2n 3n 5 n— —— ----— n64323 46•扇形的弧长及面积公式设扇形的半径为 弧长为, a 为其圆心角,则a 为度数a 为弧度数扇形的弧长 I = I =扇形的面积S =S ==【常考题型】题型一、角度与弧度的换算2 n 【例1】把下列角度化成弧度或弧度化成角度: (1)72 ° ;(2) — 300 °; (3)2 ; (4)—-.【类题通法】角度与弧度互化技巧抓住关系式n rad = 180 °是关键,由它可以得到:【对点训练】3 nn已知 a 1 =— 570°, a 2 = 750 ° , 卩 1=, 卩 2=- —.(1)将a 1, a 2用弧度表示出来,并指出它们是第几象限角;⑵将卩1,卩2用角度表示出来,并在一 720 °〜0°范围内,找出与它们有相同终边的所有在进行角度与弧度的换算时,=弧度数,弧度数X角.题型二、扇形的弧长公式及面积公式的应用【例2】(1)已知扇形的周长为8 cm,圆心角为2,则扇形的面积为__________________________ .⑵已知一半径为R的扇形,它的周长等于所在圆的周长,那么扇形的圆心角是多少弧度? 面积是多少?【类题通法】弧度制下涉及扇形问题的攻略1 1 2(1)明确弧度制下扇形的面积公式是S= q lr = 2I a | r2⑵涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.注意:运用弧度制下的弧长公式及扇形面积公式的前提是a为弧度.【对点训练】已知扇形的周长是30 cm当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?题型三、用弧度制表示角的集合【例3】用弧度表示终边落在下列各图所示阴影部分内(不包括边界)的角的集合.用弧度制表示角应关注的三点(1)用弧度表示区域角,实质是角度表示区域角在弧度制下的应用,必要时,需进行角度与弧度的换算.注意单位要统⑵表示角的集合时,可先写出一周范围(如一n〜n, 0〜2n )内的角,再加上2k n, k €乙⑶终边在同一直线上的角的集合可以合并为{x|x =a + k n, k € Z};终边在相互垂直的两n直线上的角的集合可以合并为xx=%+k•p, k€Z .在进行区间的合并时,一定要做到准确无误.【对点训练】以弧度为单位,写出终边落在直线y=—x上的角的集合.其他重要例题1. 在下列各组中,终边不相同的一组是( )A . 600和3000 B. 230°和950° C. 1050°和30° D. 1000°和80°2. 下列各角中,与60°角终边相同的角是()A. 60B. 600C. 1380D. 3003. A 2k (2k 1) ,k z ,B 4 4,则A B ______________4. ________________________________________________________ 若角a = 2 014° ,则与角a 具有相同终边的最小正角为__________________________________________________ ,最大负角为_____________ 半期考试补救例1已知函数f x x2 2x 2,(1 )若x R,求函数的最值;(2)若x 1,3,求函数的最值;(3)若x [ 2,3],求函数的最值;(4)若x a, a 2 ,a R,求函数的最小值;(5) x a, a 2 , a R,求函数的最大值。
练习:(1)已知k R,求函数y x2 2kx 3在区间1,2上的最大值。
(2)已知k R,求二次函数y kx2 2kx 1, x 3,2的最值。