风电塔筒涂装工艺设计doc

风电塔筒涂装工艺设计doc
风电塔筒涂装工艺设计doc

项目

风电塔筒(不包含基础环)

涂装工艺

Coating Process

公司

1 Rev.1

2

3 Revision Date/

R

Signature.

/Approved

设计 DESIGNED 校对 CHECKED 审核 EXAMINED 批准 APPROVAL

目录

概述 (3)

1.缩写和标准引用 (4)

1.1缩写 (4)

1.2引用标准 (4)

2.涂料配套方案 (6)

2.1 缩写 (6)

2.2 塔筒本体 (6)

2.3 塔筒顶法兰MF1面 (6)

2.4 其他法兰面 (7)

2.5法兰螺栓孔 (7)

2.6 法兰孔内侧端面的说明和涂装示意图 (7)

2.7 门板和门框涂装说明 (8)

2.8 砂箱板、油槽板、钟摆涂装说明 (8)

2.9 法兰内端面 (9)

2.10 筒体内不锈钢和镀锌件 (9)

2.11 门铰链部位 (9)

2.12干膜厚度标准 (9)

2.13光泽度要求 (10)

2.14涂装注意事项 (10)

3.涂装前的表面处理 (11)

4.油漆施工 (13)

4.1组装后筒体的表面处理 (13)

4.2 油漆涂装 (13)

5.法兰底漆保护用工装 (25)

6.现场修补 (26)

7.综述 (28)

8.安全施工措施 (30)

概述

本文是根据有限公司的实际生产工艺流程,制订的风塔内表面和外表面油漆涂装的要求和施工指导。本指导仅适用于牌油漆的施工。

1.缩写和标准引用

1.1缩写

DFT 干膜厚度

WFT 湿膜厚度

SSPC 钢结构涂装委员会

ISO 国际标准化组织

NACE 国家腐蚀工程师协会

1.2引用标准

ISO 12944 钢结构保护涂层

NACE NO5 高压淡水冲洗的清洁标准

ISO 8501-1:1988 涂装钢材表面锈蚀等级和除锈等级

ISO 8502-3 表面清洁度测试评估-准备涂漆的钢材表面灰尘评

估-压敏胶带法

ISO 8503-2:1995 表面粗糙度比较样板抛(喷)丸、喷砂加工表面GB6484 铸钢丸

GB6485 铸钢砂

GB/T13312 钢铁件涂装前除油程度检验方法(验油试纸法)JB/Z350 高压无气喷涂典型工艺

GB1764 漆膜厚度测定法

GB7692 涂装作业安全规程涂漆前处理工艺安全GB6514 涂装作业安全规程涂漆工艺安全SSPC SP1 溶剂清洗

SSPC SP10 近白级喷射清理

SSPC PA 2 干膜厚度测量方法

ISO 2808 漆膜厚度测量法

ISO 4628 附着力拉开测试法

2.涂料配套方案

2.1 缩写

Hempadur 17360(19830灰红色)环氧富锌底漆

Hempadur 45880(12170浅灰色)环氧中间漆

Hempathane 55100(17980 RAL9018)聚氨酯面漆

Hempadur 15700(19840金属灰色)无机富锌底漆

2.2 塔筒本体

2.2.1 塔筒的外表面(RAL9018)

涂层产品名称干膜厚度min(um)

底漆Hempadur 17360 50

中间漆Hempadur 45880 160

面漆Hempathane 55100 40

干膜总厚度250

2.2.2 塔筒的内表面

涂层产品名称干膜厚度min(um) 底漆Hempadur 17360 50

面漆Hempadur 45880 125

干膜总厚度 175

2.3 塔筒顶法兰MF1面

涂层产品名称干膜厚度min(um) 无机富锌漆Hempadur 15700 70

干膜总厚度 70

2.4 其他法兰面

涂层产品名称干膜厚度min(um) 环氧富锌漆Hempadur 17360 70

干膜总厚度 70

2.5法兰螺栓孔

涂层产品名称干膜厚度min(um) 环氧富锌漆Hempadur 17360 70

面漆Hempadur 45880 125

干膜总厚度 195

2.6 法兰孔内侧端面的说明和涂装示意图

注意:法兰孔的内侧如图示箭头所指端面,在法兰孔和法兰内端面做完底漆后,在做后道漆之前就要底漆保护工装用堵头和相应规格的垫片装配后卡在法兰孔内,再涂装面漆。详见附页图纸说明图(附页1)。

2.7 门板和门框涂装说明

塔内漆

塔内

塔内

塔外

塔外

塔外

塔外漆

塔外

塔内

漆塔内

塔内

把手处不锈钢装配件不做油漆处理。

2.8 砂箱板、油槽板、钟摆涂装说明

砂箱板的内侧面、油槽板的外侧面先喷砂,然后再涂装底漆,干膜厚度70um。

钟摆先喷砂,再做电弧喷锌处理,膜厚60um。但是钟摆上有螺纹孔,要用相应规格的螺栓堵上。

注意:在砂箱和油槽焊接套筒体上后,砂箱和油槽间的巢穴里不允许再喷砂。

2.9 法兰内端面

法兰内端面(法兰背面)在底漆做完后,做面漆之前,要用底漆保护用工装堵头和相应的垫片装配后从内端面法兰孔侧卡住后再做后续的油漆。

2.10 筒体内不锈钢和镀锌件

筒体内的不锈钢接地焊接支架、中段筒体的中段服务平台焊接支架的镀锌部分,在喷砂之前均都要包裹保护起来。不锈钢接地支架的角焊缝需要喷砂涂漆。

2.11 门板门框部位

门板和门框处装门板接地线的区域在喷砂之前也要包裹保护起来,具体的区域根据门板接地线来定。门铰链孔和框铰链轴在喷砂前保护起来。

2.12干膜厚度标准

下限值:设计干膜厚度的-15%;上限值:设计干膜厚度的20%。

2.13 光泽度要求

60°时测量的光泽度必须不小于90%。

2.14 涂装注意事项

喷面漆时,建议让塔筒旋转,直到表干,避免产生流挂。

3.涂装前的表面处理

1)严格的表面处理是决定涂层寿命诸多因素中的首要因素。表面处理不但要形成一个清洁的表面,以消除金属腐蚀的隐患,而且要使该表面的粗糙度适当,以增加涂层与基体金属间的附着力。

2)钢板在进入抛丸机之前,一定要检查钢板表面是否有油污,如果有油污,必须按照SSPC-SP1的“溶剂清洁”标准进行清洗。

3)喷砂用磨料应符合GB6484、GB6485标准规定的钢砂、钢丸或使用无盐分无污染的铜矿砂,金属砂最好为棱角砂与钢丸混合而成。必须干燥,无油污,无杂物,不能对涂料的性能有影响。磨料的导电率将不得高于250 s/cm。磨料的大小要能够产生规定涂料系统要求的粗糙度。

磨料必须有棱角,清洁、干燥,不允许有油污、可溶性盐的游离物和长石,粒度在0.5mm-2mm 之间(GB/T8923-88)。钢丸和钢砂的大小在

1.0-1.2mm,混合比6 :4。硬度必须在40-50 Rc 之间。

4)从抛丸机出来的钢板,应使用无油、无水的压缩空气进行吹扫;表面清洁度要求达Sa2.5(ISO8501-1:1988、GB/T8923-88) (其文字描述:在不放大的情况下进行观察,表面应无可见油脂和污物,并且没有氧化皮、铁锈、油漆涂层和异物。任何残留的痕迹应仅是点状或条纹状

的轻微色斑)。对于对接处和喷砂达不到的部位,采用动力工具机械打磨除锈,达到ISO8501-1:1988 中的St3 级,即露出金属光泽。

5)表面粗糙度级别根据ISO8503进行评估,或者使用复制胶带法进行测量。在粗糙度测试3N中粗糙度BN9,表面粗糙度的要求为Rz 40-75微米。

6)检查并确认喷嘴处压缩空气压力在5.5-7 公斤。压缩空气应无油无水,必要时进行油纸试验。如果压缩空气中含有油水,则需安装油水分离器。

7)检查空气温度湿度,空气相对湿度高于80%时建议停止喷砂或采取加热手段降低喷砂间湿度。

8)在喷砂施工期间,要确保磨料没有受到灰尘和有害物质的污染。

9)喷砂完工后,除去喷砂残渣,使用真空吸尘器或无油无水分压缩空气,吹去表面灰尘,经质控部检查,并取得监理认可,合格后必须在

4 小时内喷漆。

10)喷砂完成后应及时收砂,并经尘砂分离器分离。清洁的好砂可以回收,废砂及尘埃应及时清除出系统。

11)喷砂后,做底漆前,要将钢板上的编号处用刷子刷干净。

4.油漆施工

4.1 组装后筒体的表面处理

1)为了保证涂料发挥最佳性能,在施工底漆之前,必须正确处理电焊缺陷,例如,气孔和不连续焊等要修正好;锐边和火焰切割边缘打磨到半径R=2mm;焊缝要光顺、没有焊渣飞溅等。

2)塔筒表面的油污或焊缝探伤拍片留下的润湿剂务必清除,按照SSPC-SP1“溶剂清洁”标准执行。

3)为达到良好的清洁度和一定的粗糙度,焊缝处,推荐使用扫砂除锈,动力工具是在不得已的情况下小面积使用。动力工具打磨至

ISO8501-1:1988标准的St3级,(其文字描述为:在不放大的情况下进行观察,表面应无可见的油脂和污物,并且几乎没有附着不牢的氧化皮、铁锈、油漆涂层和异物,表面应具有金属底材的光泽)。

注:动力工具清理主要用于小面积的涂层修补时,基层表面处理的施工;但是,在任何情况下,不推荐使用动力钢丝刷,因为它会抛光表面,没有良好的粗糙度,会影响油漆的附着力。

4)表面处理后4个小时内,钢材表面在返黄前就要涂漆。如果钢材表

面有返锈现象,变湿或被污染,要求重新清理到前面要求的级别。油漆施工前必须使用无油、无水的压缩空气对所有待涂表面进行吹扫。

4.2 油漆涂装

1)在每一度漆喷涂之前,必须用新的或清洁干净的刷子进行预涂。所有的焊缝、切口边缘、扇形口、钢板边缘和其它漆膜低的地方,都要在喷涂下道漆前预涂好。

2)第一度预涂必须使用刷子使涂料能渗透进表面并防止空气的截留。

为了帮助高固体份涂料的渗透性,第一度预涂可以适当稀释。

4.2.3 塔筒外表面的油漆施工

4.2.3.1 环氧富锌底漆Hempadur 17360的施工

干膜:50μm

混合体积比:A组分(基料17369):B组分(固化剂97040)=4:1 溶剂 08450 稀释剂(体积)比例参考15%左右

推荐喷嘴直径:0.43~0.53mm

喷出压力:150kg/cm2以上

1)环境控制

测量并记录温度、湿度、钢板温度、油漆温度。相对湿度要求在80%以下。用露点盘查出露点确保钢板温度高于露点3 度。如果环境条件达不到以上要求,停止油漆施工,或采取加热升温达到要求后继续作业。

低温时可用相应的冬用型涂料。

2)油漆材料准备

按照油漆施工工艺文件准备好油漆基料17369、固化剂97040、稀释剂08450 并确认颜色是否正确。记录批号。检查包装,如果包装有损或泄漏,不要使用或请油漆生产厂家代表确认可以使用后才能使用。打开包装后要检查油漆外观。检查是否有胶化、变色等不正常现象,如有不正常,不要使用或请油漆生产厂家代表确认可以使用后才能使用。3)调配

按 4:1 体积比调配基料17369、固化剂97040。用气动搅拌器充分搅拌。注意一定要将固化剂97040 慢慢加入基料17369 中,并用气动搅拌器充分搅拌,必要时可加入适量稀释剂。注意由于油漆中的锌粉重,容易沉淀,因此在喷涂过程中应不停搅拌。

4)预涂

用刷涂的方式对边角等难以接近部位进行预涂。

5)喷涂

选择 0.017-0.021 英寸的喷嘴,调整喷涂距离、手法,以确保厚度在

50 微米左右。注意油漆在20 度时混合使用时间为2 小时。油漆调配

后2 小时内必须用完,否则油漆会发生胶化而报废。油漆的混合使用时间跟温度有关,温度降低,混合使用时间会延长,反之会缩短。

6)厚度控制

漆膜干燥后用钢膜仪测量漆膜厚度。如果漆膜太厚或太薄,调整喷涂速度或稀释剂比例直到相应厚度。

7)检查

目测有无漏喷、流挂、桔皮、针孔等缺陷。等漆膜干燥后用磁性干膜仪测量漆膜厚度。如果漆膜厚度不足,补喷一度以达到相应厚度。

4.2.3.2 环氧中间漆Hempadur 45880的施工

干膜:175μm

混合体积比:A组分(基料45889):B组分(固化剂95881) =3:1 溶剂 08450 稀释剂(体积)比例参考15%左右

推荐喷嘴直径:0.43~0.58mm

喷出压力:250kg/cm2以上

1)环境控制

测量并记录温度、湿度、钢板温度、油漆温度。相对湿度要求在80%以下。用露点盘查出露点确保钢板温度高于露点3 度。如果环境条件达不到以上要求,停止油漆施工,或采取加热升温达到要求后继续作业。

低温时可用相应的冬用型涂料。

2)油漆材料准备

按照油漆施工工艺文件准备好油漆基料45889、固化剂95881、稀释剂08450 并确认颜色是否正确。记录批号。检查包装,如果包装有损或泄漏,不要使用或请油漆生产厂家代表确认可以使用后才能使用。打开包装后要检查油漆外观。检查是否有胶化、变色等不正常现象,如有不正常,不要使用或请油漆生产厂家代表确认可以使用后才能使用。3)调配

按 3:1 体积比调配基料45889、固化剂95881。用气动搅拌器充分搅拌。注意一定要先加入固化剂并充分搅拌后才能加入稀释剂。

4)预涂

用刷涂的方式对边角等难以接近部位进行预涂。

5)喷涂

选择 0.017-0.023 英寸的喷嘴,调整喷涂距离、手法,以确保厚度在175 微米左右。注意油漆在20度时混合使用时间为3小时。油漆调配后3小时内必须用完,以防胶化。

6)厚度控制

喷涂过程中可用湿膜卡测量厚度并根据涂料的固含量测量干膜厚度。

待漆膜干燥后用钢膜仪测量漆膜厚度。如果漆膜太厚或太薄,调整喷涂速度或稀释剂比例,直到相应厚度。

7)检查

目测有无漏喷、流挂、桔皮、针孔等缺陷。等漆膜干燥后用磁性干膜仪测量漆膜厚度。如果漆膜厚度不足,补喷一度以达到相应厚度。

4.2.3.3 聚氨酯面漆Hempadur 55100的施工

干膜:40μm

混合体积比:A组分(基料55109):B组分(固化剂95370)=7:1 溶剂 08450 稀释剂(体积)比例参考15%左右

推荐喷嘴直径:0.43~0.48mm

喷出压力:75kg/cm2至100kg/cm2

1)注意

注意气温为20 摄氏度时,环氧中层漆45880 于聚氨脂面漆55100 之间覆涂间隔最小为8 小时,最大覆涂间隔建议不超过21 天。如果间隔较长,建议先进行清洁,拉毛处理有助于提高油漆的附着力。气温较低时覆涂间隔会延长,反之会缩短。

2)环境控制

测量并记录温度、湿度、钢板温度、油漆温度。相对湿度要求在80%以下。用露点盘查出露点并确保钢板温度高于露点3 度。如果环境条件达不到以上要求,停止油漆施工,或采取加热升温达到要求后继续作业。3)油漆材料准备

按照油漆施工工艺文件准备好油漆基料55109、固化剂95370、稀释剂08080 并确认颜色是否正确。记录批号。检查包装,如果包装有损或泄漏,不要使用或请油漆生产厂家代表确认可以使用后才能使用。打开包装后要检查油漆外观。检查是否有胶化、变色等不正常现象,如有不正常,不要使用或请油漆生产厂家代表确认可以使用后才能使用。

4)调配

按 7:1 体积比调配基料55109、固化剂95370。用气动搅拌器充分搅拌。注意一定要将固化剂充分搅拌后才能加入稀释剂08080。

5)预涂

用刷涂的方式对边角等难以接近部位进行预涂。

6)喷涂

选择 0.017-0.021 英寸的喷嘴,调整喷涂距离、手法,以确保厚度在

40 微米左右。注意油漆在20 度时混合使用时间为2 小时。油漆调配

后2 小时内应用完,以防油漆胶化。

7)厚度控制

喷涂过程中可用湿膜卡测量厚度并根据涂料的固含量测量干膜厚度。

待漆膜干燥后用钢膜仪测量漆膜厚度。如果漆膜太厚或太薄,调整喷涂速度或稀释剂比例,直到相应厚度。

8)检查

目测有无漏喷、流挂、桔皮、针孔等缺陷。等漆膜干燥后用磁性干膜仪测量漆膜厚度。如果漆膜厚度不足,补喷一度以达到相应厚度。

4.2.4 塔筒内表面的油漆施工

4.2.4.1 环氧富锌底漆Hempadur 17360的施工

干膜:50μm

混合体积比:A组分(基料17369):B组分(固化剂97040)=4:1 溶剂 08450 稀释剂(体积)比例参考15%左右

推荐喷嘴直径:0.43~0.53mm

喷出压力:150kg/cm2以上

1)环境控制

测量并记录温度、湿度、钢板温度、油漆温度。相对湿度要求在80%以下。用露点盘查出露点确保钢板温度高于露点3 度。如果环境条件达

风电塔筒涂装工艺设计doc

项目 风电塔筒(不包含基础环)涂装工艺 Coating Process 公司

目录 概述 (3) 1.缩写和标准引用 (4) 1.1缩写 (4) 1.2引用标准 (4) 2.涂料配套方案 (6) 2.1 缩写 (6) 2.2 塔筒本体 (6) 2.3 塔筒顶法兰MF1面 (6) 2.4 其他法兰面 (7) 2.5法兰螺栓孔 (7)

2.6 法兰孔侧端面的说明和涂装示意图 (7) 2.7 门板和门框涂装说明 (8) 2.8 砂箱板、油槽板、钟摆涂装说明 (8) 2.9 法兰端面 (9) 2.10 筒体不锈钢和镀锌件 (9) 2.11 门铰链部位 (9) 2.12干膜厚度标准 (9) 2.13光泽度要求 (10) 2.14涂装注意事项 (10) 3.涂装前的表面处理 (11) 4.油漆施工 (13) 4.1组装后筒体的表面处理 (13) 4.2 油漆涂装 (13) 5.法兰底漆保护用工装 (25)

6.现场修补 (26) 7.综述 (28) 8.安全施工措施 (30) 概述 本文是根据的实际生产工艺流程,制订的风塔表面和外表面油漆涂装的要求和施工指导。本指导仅适用于牌油漆的施工。

1.缩写和标准引用 1.1缩写 DFT 干膜厚度 WFT 湿膜厚度 SSPC 钢结构涂装委员会 ISO 国际标准化组织 NACE 国家腐蚀工程师协会 1.2引用标准 ISO 12944 钢结构保护涂层 NACE NO5 高压淡水冲洗的清洁标准 ISO 8501-1:1988 涂装钢材表面锈蚀等级和除锈等级 ISO 8502-3 表面清洁度测试评估-准备涂漆的钢材表面灰尘评

解析风电塔筒法兰外翻变形的控制工艺

解析风电塔筒法兰外翻变形的控制工艺 摘要:随着能源问题与环境问题的日益突出,风能资源作为一种清洁环保可再 生能源,其重要性越来越高。当前,风力发电产业获得快速发展,风电发电机组 单台设计容量增加,其对塔架的高度要求越来越高。管塔式塔架因其结构紧凑, 安全可靠,便于维护等优势,在风电发电塔架设计中应用较为广泛。 关键词:风电塔;法兰外翻变形;控制工艺 在风力发电装备中,风力发电塔架具有十分重要的,不可缺少的作用。它在 整个发电过程中起着连接风机各个关键装置的作用,要担负起叶片转动过程中产 生的各种压力,冲击,以及电机的震动还要调整受力过程中的摇摆。发电塔架经 过3、4段直筒或锥筒联合在一起构成的。因为每一节塔架是将滚制筒与法兰通 过焊接的方式连在一起的,所以。最重要的是在焊接之后要调控好平面度。要是 在制作过程中操作不当,将不利于风力发电机的正常运作,造成机械破损.降低 机械设备的工作效率,缩短机械设备的寿命。 1 传统工艺及存在问题 1.1传统工艺 为了使法兰与筒体焊接后的内倾量满足设计要求,传统工艺是将 2个合格的 法兰通过刚性固定法连接,找正法兰与筒体的位置后,再焊接成为一个整体。传 统工艺实现的方法通常有 2 种:第 1种方法是将两法兰用螺栓连接在一起,在2 个法兰之间、螺栓内侧均匀垫上 2mm 厚的垫片,拧紧螺母并找正法兰和筒体的 位置后,实施法兰与筒体的焊接,然后将螺栓拆除。第 2 种方法是先在两法兰内 壁均匀焊接 8 ~ 10 块连接钢板,将两法兰固定在一起,然后找正法兰与筒体的位置后,再进行焊接,最后将连接钢板去除。 1.2存在问题 不管采用以上哪种方法,由于焊接应力的作用,当将螺栓或连接钢板去除后,均会出现一个共性问题,那就是法兰出现外翻变形,不能满足相关的设计要求。 由于受法兰外翻变形的影响,采用第 1 种方法焊接后,拆卸螺栓非常困难。采用 第 2 种方法焊接后,必须割下连接钢板,打磨和抛光焊点,同时还必须进行探伤 检测等,这样使得工艺繁琐,生产效率较低。 2风电塔筒法兰焊接工艺 在风电塔筒焊接作业中,为保证筒体与法兰焊接作业能够满足角变形要求, 并且加快筒体组装速度,决定采取将单个法兰与筒体对接点焊之后进行焊接组成 一体的方式。 先在专用法兰平台上进行组装,组装后上单节法兰在焊接滚轮架上进行法兰 焊接。采取埋弧自动焊进行焊接,直流反接,焊丝牌号:H10Mn2,焊丝直径规 格为Φ4,应用HJ350作为焊剂,应用MZ1250自动弧焊机进行焊接。先进行外侧封焊,对外侧点对时间隙比较大的位置进行封焊,再进行内侧焊缝焊接,内侧焊 接一道后,外侧应用碳弧气刨清根,在完成清根后,应用角向磨光机与砂轮进行 坡口打磨,并将坡口两侧20mm宽范围内打磨,通过坡口打磨消除碳化物与氧化物,避免在焊接作业中出现裂纹或夹渣等缺陷问题,进行外侧焊接后再焊完内侧 焊缝。 3 风电塔筒法兰焊接变形控制的工艺措施

风电塔筒基础环超声波探伤作业指导书

超声波探伤作业指导书 (风电机组塔筒、基础环部分) 编制人员: 芦海亮 2011年1月1日批准 2011年1月8日实施 地址:北京市东城区 通讯:QQ860398063 E-mail:tsinghuauniversity@https://www.360docs.net/doc/3c625844.html,

超声波探伤作业指导书 1 适用范围 本作业指导书适用于板厚为6mm~250mm的碳素钢、低合金钢制承压设备用板材的超声波检测和质量分级;承压设备用碳钢、低合金钢锻件超声波检测和质量分级;母材厚度在8mm~400mm的全熔化焊对接焊接接头的超声检测。 2引用标准 JB/T4730.3-2005《承压设备无损检测-第3部分:超声检测》 JB/T4730.1-2005《承压设备无损检测-第1部分:通用要求》 JB/T7913-1995《超声波检测用钢制对比试块的制作与校验方法》 JB/T9214-1999《A型脉冲反射式超声探伤系统工作性能 测试方法》 JB/T10061-1999《A型脉冲反射式超声探伤仪通用技术条件》 JB/T10062-1999《超声波探伤用探头性能测试方法》 JB/T10063-1999《超声探伤用1号标准试块技术条件》 3 试验项目及质量要求 3.1 试验项目:钢板、锻件(法兰)、焊缝内部缺陷超声波探伤。 3.2 质量要求 3.2.1 检验等级的分级 钢板质量分级:评定指标根据单个缺陷指示长度mm、单个缺陷指示面积cm2、在任一1mx1m检测面积内存在的缺陷面积百分比%、以下单个缺陷指示面积不计cm2;根据质量要求检验等级分Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五个级,I级最高。 锻件(法兰)质量分级:评定指标根据由缺陷引起底波降低量、单个缺陷当量直径、密集区缺陷占检测总面积的百分比%;根据质量要求检验

风电塔筒涂装工艺设计doc

项目 风电塔筒(不包含基础环) 涂装工艺 Coating Process 公司 1 Rev.1 2 3 Revision Date/ R Signature. /Approved 设计 DESIGNED 校对 CHECKED 审核 EXAMINED 批准 APPROVAL

目录 概述 (3) 1.缩写和标准引用 (4) 1.1缩写 (4) 1.2引用标准 (4) 2.涂料配套方案 (6) 2.1 缩写 (6) 2.2 塔筒本体 (6) 2.3 塔筒顶法兰MF1面 (6) 2.4 其他法兰面 (7) 2.5法兰螺栓孔 (7) 2.6 法兰孔内侧端面的说明和涂装示意图 (7) 2.7 门板和门框涂装说明 (8) 2.8 砂箱板、油槽板、钟摆涂装说明 (8)

2.9 法兰内端面 (9) 2.10 筒体内不锈钢和镀锌件 (9) 2.11 门铰链部位 (9) 2.12干膜厚度标准 (9) 2.13光泽度要求 (10) 2.14涂装注意事项 (10) 3.涂装前的表面处理 (11) 4.油漆施工 (13) 4.1组装后筒体的表面处理 (13) 4.2 油漆涂装 (13) 5.法兰底漆保护用工装 (25) 6.现场修补 (26) 7.综述 (28)

8.安全施工措施 (30) 概述 本文是根据有限公司的实际生产工艺流程,制订的风塔内表面和外表面油漆涂装的要求和施工指导。本指导仅适用于牌油漆的施工。

1.缩写和标准引用 1.1缩写 DFT 干膜厚度 WFT 湿膜厚度 SSPC 钢结构涂装委员会 ISO 国际标准化组织 NACE 国家腐蚀工程师协会 1.2引用标准 ISO 12944 钢结构保护涂层 NACE NO5 高压淡水冲洗的清洁标准 ISO 8501-1:1988 涂装钢材表面锈蚀等级和除锈等级 ISO 8502-3 表面清洁度测试评估-准备涂漆的钢材表面灰尘评 估-压敏胶带法 ISO 8503-2:1995 表面粗糙度比较样板抛(喷)丸、喷砂加工表面GB6484 铸钢丸 GB6485 铸钢砂 GB/T13312 钢铁件涂装前除油程度检验方法(验油试纸法)JB/Z350 高压无气喷涂典型工艺

风电塔筒通用制造工艺

风电塔筒通用制造工艺

————————————————————————————————作者:————————————————————————————————日期:

风电塔筒通用制造工艺湖北创联重工有限公司

目录 1.塔筒制造工艺流程图 2.制造工艺 3.塔架防腐 4.吊装 5.运输

一、塔架制造工艺流程图 (一)基础段工艺流程图 1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。 2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。 3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。 4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。 (二)塔架制造工艺流程图 1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。 2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。 3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。 4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。 二、塔架制造工艺 (一)工艺要求: 1.焊接要求 (1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进行焊接。 (2)塔架筒节纵缝及对接环缝应采用埋弧自动焊,应采取双面焊接,内壁坡口焊接完毕后,外壁清根露出焊缝坡口金属,清除杂质后再焊接,按相同要求制作

风电塔筒施工方案

风电场塔筒制作防腐 施 工 技 术 方 案 目录

1 综述.......................................................... .... ........... ................ .................... 2 涂层质量检查.................................................. ........ ... ............. ................... 2.1腐蚀环境及保护期............................................ ........ ......... ....... ................ 2.2涂层质量检查................................................. ........ .... ............ ................... 3 表面准备..................................................... ........ ................ .................... ... 3.1准备工艺........................................... ........ .......... ...... .............................. ... 3.2准备步骤、打砂清理和粗糙度要求.............................. ................... .......... 3.3涂装施工要求................................................. .............

风电塔筒涂装工艺doc

风电塔筒涂装工艺 项目 风电塔筒(不包含基础环) 涂装工艺 Coating Process 公司 Revision Date/ R 1 Rev.1 2 3 Signature. /Approved 设计DESIGNED 校对CHECKED 审核EXAMINED 批准APPROV AL

目录 概述 (3) 1.缩写和标准引用 (4) 1.1缩写 (4) 1.2引用标准 (4) 2.涂料配套方案 (6) 2.1 缩写 (6) 2.2 塔筒本体 (6) 2.3 塔筒顶法兰MF1面 (6) 2.4 其他法兰面 (7) 2.5法兰螺栓孔 (7) 2.6 法兰孔内侧端面的说明和涂装示意图 (7) 2.7 门板和门框涂装说明 (8) 2.8 砂箱板、油槽板、钟摆涂装说明 (8)

2.9 法兰内端面 (9) 2.10 筒体内不锈钢和镀锌件 (9) 2.11 门铰链部位 (9) 2.12干膜厚度标准 (9) 2.13光泽度要求 (10) 2.14涂装注意事项 (10) 3.涂装前的表面处理 (11) 4.油漆施工 (13) 4.1组装后筒体的表面处理 (13) 4.2 油漆涂装 (13) 5.法兰底漆保护用工装 (25) 6.现场修补 (26) 7.综述 (28) 8.安全施工措施 (30)

概述 本文是根据有限公司的实际生产工艺流程,制订的风塔内表面和外表面油漆涂装的要求和施工指导。本指导仅适用于牌油漆的施工。

1.缩写和标准引用 1.1缩写 DFT 干膜厚度 WFT 湿膜厚度 SSPC 钢结构涂装委员会 ISO 国际标准化组织 NACE 国家腐蚀工程师协会 1.2引用标准 ISO 12944 钢结构保护涂层 NACE NO5 高压淡水冲洗的清洁标准 ISO 8501-1:1988 涂装钢材表面锈蚀等级和除锈等级 ISO 8502-3 表面清洁度测试评估-准备涂漆的钢材表面灰尘评 估-压敏胶带法 ISO 8503-2:1995 表面粗糙度比较样板抛(喷)丸、喷砂加工表面GB6484 铸钢丸 GB6485 铸钢砂 GB/T13312 钢铁件涂装前除油程度检验方法(验油试纸法)JB/Z350 高压无气喷涂典型工艺 GB1764 漆膜厚度测定法 GB7692 涂装作业安全规程涂漆前处理工艺安全 GB6514 涂装作业安全规程涂漆工艺安全

风电塔筒内部结构2000KW塔筒顶法兰平面度加工方法探讨

风电塔筒内部结构2000KW塔筒顶法兰平面度加工方法探讨摘要:针对大唐三门峡清源风电场许继单机2000KW/8On风电塔筒顶法兰装焊后平面度要求较高、难于保证这一生产难题,作者分别采用二种不同的加工方法认真进行对比、分析,并设计出的专用定位工装。最终采用顶部法兰与相邻三节筒节装配焊接后,用专用定位工装,在数控落地铣镗床上焊后加工顶法兰端面,再将加工过的组件与塔架上段塔筒其余各段总装,较好地解决了这一制约生产的技术难题。 关键词:顶法兰;平面度;焊接变形 :TG113.26+3:A 1 问题的提出 1.1 前言 由于风电塔筒上段顶部法兰总装时与风机机舱推力轴承相连接,所以对其装焊形位公差控制要求相当严格。我公司承制的许继2000KW/80n风电塔筒顶部法兰总装后图纸要求法兰平面度不大于0.35mm表面光洁度为5级。远高于东汽风电塔筒对法兰焊后平面度0.6mm的要求。 1.2 保证顶部法兰要求平面度0.6m m以内的上段塔筒传统的加

工工艺 为保证风电塔架上段塔筒顶部法兰的焊后平面度,对于顶部法兰要求平面度0.6mm以内的上段塔筒,我们通常采用如下的加工工艺。我们在塔架上段塔筒上、下法兰整体辗制成型后机加工时预留适当的法兰内倾反变形量。塔架上段塔筒厂内装焊时,采用先将上、下法兰与与之相邻的筒节在平台上竖装,将焊缝间隙调整均匀,点焊定位加固成组件;再将上段其余筒节按排板图也装配成组件,定位加固;最后将二法兰组件与筒节组件总装。检验合格后,制定严密、科学的焊接方法、焊接规范及合理的焊接顺序,然后认真施焊,从而尽可能地减小焊接变形。如果采用我们传统的加工方法,将难以保证许继塔筒顶部法兰焊后平面度要求,生产将不能正常进行,进而影响产品的正常交货周期。 2 改进方法探讨 图1 上段组成示意图 顶部法兰机加工时在法兰端面予留5mm厚度余量作为焊后加工 余量。结合我公司设备现状,我们制订了二种加工方案: 2.1 方案一

探讨风电塔筒制造技术及质量控制要求

探讨风电塔筒制造技术及质量控制要求 摘要:在风力发电机组运行过程中,风电塔筒就是风力发电的塔杆,主要功能就是支撑风力发电机组,吸收风电机组的振动。在风电机组运行中,塔筒的制作质量关系着生产安全,笔 者结合多年工作经验,阐述风电塔筒制造技术,并深入分析质量控制要求,以期为相关人员 提供借鉴与参考。 关键词:风电塔筒;制造技术;质量控制 1 塔筒制造流程 一般而言,风电塔筒的制作流程主要有钢板下料、卷板校圆、纵缝焊接、法兰拼装及焊接、 环缝焊接、大节拼装及焊接、附件拼装及焊接、塔筒防腐、内饰件安装、包装以及装车运输等。在制作流程中,必须对焊接操作进行质量控制,针对焊接处的焊缝进行探伤检测。 2 塔筒制造方案 2.1 材料准备及检验 对于钢板、法兰等原材料,在入库前要对其尺寸、厚度、外形等进行检验,检验其是否达标。在初次检验合格后,还要抽取10%的钢板对其外形、尺寸进行超声波复检,质量达到所要求 的标准方可入库。而环锻法兰在初次检验合格后也要抽取10%进行超声波以及磁粉检测,确 保两种检测方法下均符合要求,便可入库。 2.2 钢板下料 一般情况下,钢板的下料过程要采用数控切割机进行操作。操作前,要严格按照工艺的具体 难度进行数控编程,并调试无误后才可进行下料工作。在完成下料操作后,还要对钢板瓦片 的方向、顺序等进行标记,同时还要对钢板号、瓦片编号等进行标记。对于钢板的切割尺寸,其长度偏差要求在上下2mm以内,钢板宽度的误差要不超过2mm,对角线的误差不超过 3mm。对零件的环缝、纵缝的坡口等进行处理时,务必要严格按照工艺要求,且要将坡口及 以其为中心的30mm范围打磨光滑。 2.3 卷板及校园 在进行卷板操作时,要用长度为 1.2m的样板进行辅助控制,将样板与同体间的缝隙严格控 制在2mm以内。在完成卷板后,还要用气保焊对卷板与筒体坡口进行进一步的加固。纵缝 要求筒体间对接的间隙范围不超过2mm,错边量不超过3mm。 2.4 纵缝焊接 在进行焊接时,要先焊接内缝,完成后再将背缝及其周围做彻底的清理,使其露出焊缝坡口 的金属,然后再将其焊接起来。在焊接过程中,需要注意的是:焊接前,首先要检测纵缝对 接处间隙的距离,若间隙大小超过1mm,则应先使用对应规格的气保焊对其进行打底,且焊接的温度要控制在100-250℃之间,焊接线的能量要低于39千焦每厘米,以达到焊缝冲击功 的标准。焊接完成后,按照《承压设备无损检测》中的要求对所焊接的纵缝进行超声波探伤 检验,检测结果达到一级,即为合格。与此同时,焊接部位的外观也要进行一定的检测,若 未达到标准,则重新进行处理。此外,检验合格后,按要求使用切割片或是火焰割枪将引熄 弧板切除,并将其遗留的坡口打磨光滑。 2.5 拼装(法兰拼装、大节拼装) 对于法兰节的拼装工作,务必在特定的拼装地点进行拼装。在进行拼装前,首先要对瓦片与 法兰接口处的管口的周长进行测量,并对错边量的大小进行估计。拼装时演讲法兰有坡口的

风力发电塔筒防腐施工方案样本

风力发电塔筒防腐施工方案模板

*********风电场 塔筒防腐工程 施工方案 编制单位: 江苏三里港高空建筑防腐有限公司 编制: 周荣东 电话: 二O一七年一十月三十日 (一)、工程概况 1、项目概况 本工程为***************风电场风机防腐处理涂装工作, 要求风电塔

筒修复表面处理采用手工机械除锈, 局部锈蚀部位的表面处理、表面刷漆。塔筒外表面按C5-M环境设计执行, 干膜总厚度不低于320μm, 20 年内腐蚀深度不超过0.5mm, 富锌底漆Zn(R)中锌粉在干膜中的重量含量不低于80%。防腐涂料本公司选用海虹老人的产品。 2、设备概况 *********风电场位于****县东北部的和安镇境内, 地理坐标位于在N 20°31′~20°38′和E 110°19′~110°24′之间, 距离***县直线距离36km, 距离湛江市直线距离73km, 风场采用重庆海装生产的H87N-2.0MW 风电机组, 共25台。 单台塔筒主要技术参数 塔筒类型: 圆锥形钢制塔筒 塔筒高度: 77.261m 塔筒节数: 4节 塔筒立柱面积; 837.1435㎡ 塔筒各分节长度和重量技术参数见下表。 当前塔筒油漆方案

在机组巡视过程中发现机组塔筒局部表面出现点蚀、油漆脱落、腐蚀较为严重等现象。该风电场离海边不远, 空气湿度大, 含盐份大, 塔筒的钢构架在严酷的海洋大气腐蚀条件下, 腐蚀速度较快, 这对风机塔筒受力以及寿命有很大影响, 不能满足塔筒20年寿命的要求, 若不及时对腐蚀的塔筒做合适的防腐处理将会在以后的生产工作中存在重大安全隐患。江苏三里港高空建筑防腐有限公司周荣东 ( 二) 编制依据 1、编制简要 依据我公司已经过的国际质量管理体系( IS09001: ) 、国际环境管理体系( IS014001: 1996) 、职业健康安全管理体系( GB/T28001— ) 标准所发布的有关工程管理文件。参照国家相关施工及验收规范、质量验评标准、有关安全技术操作规程,结合现场条件和工程特点, 以及我公司多年的施工经验, 当前的施工技术力量和施工设备生产能力进行编制。江苏三里港高空建筑防腐有限公司周荣东 2、引用规范 应遵循的主要现行标准、规范,必须符合下列标准, 但不限于此: 508-1996《钢结构防腐涂装工艺标准》 SY/T0407-1997 《涂装前钢材表面处理规范》 YB/T9256-1996《钢结构、管道涂装技术规程》 GB /T 8 9 23-1988 《涂装前钢材表面锈蚀等级和除锈等级》 GBT 18839.3《涂覆涂料前钢材表面处理表面处理方法》手工和动力工具

风电塔筒制造工艺

目录 1.塔筒制造工艺流程图 2.制造工艺 3.塔架防腐 4.吊装 5.运输

一、塔架制造工艺流程图 (一)基础段工艺流程图 1.基础筒节:H原材料入厂检验→R材料复验→R数控切割下料(包括开孔)→尺寸检验→R加工坡口→卷圆→R校圆→100%UT检测。 2.基础下法兰:H原材料入厂检验→R材料复验→R数控切割下料→R法兰拼缝焊接→H拼缝100%UT检测→将拼缝打磨至与母材齐平→热校平(校平后不平度≤2mm)→H拼缝再次100%UT检测→加工钻孔→与筒节焊接→H角焊缝100%UT检测→校平(校平后不平度≤3mm)→角焊缝100%磁粉检测。 3.基础上法兰:外协成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT 检测→H平面检测。 4.基础段组装:基础上法兰与筒节部件组焊→100UT%检测→H平面度检测→划好分度线组焊挂点→整体检验→喷砂→防腐处理→包装发运。 (二)塔架制造工艺流程图 1.筒节:H原材料入厂检验→R材料复验→钢板预处理→R数控切割下料→尺寸检验→R加工坡口→卷圆→R组焊纵缝→R校圆→100%UT检测。 2.顶法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测→二次加工法兰上表面(平面度超标者)。 3.其余法兰:成品法兰→H入厂检验及试件复验→与筒节组焊→100%UT检测→平面度检测。 4.塔架组装:各筒节及法兰短节组对→R检验→R焊接→100%UT检测→R检验→H划出内件位置线→H检验→组焊内件→H防腐处理→内件装配→包装发运。 二、塔架制造工艺 (一)工艺要求: 1.焊接要求 (1)筒体纵缝、平板拼接及焊接试板,均应设置引、收弧板。焊件装配尽量避免强行组装及防止焊缝裂纹和减少内应力,焊件的装配质量经检验合格后方许进

风电塔筒常识

风电塔筒 一、塔筒概述 风电塔筒就是风力发电的塔杆,在风力发电机组中主要起支撑作用,同时吸收机组震动。 海风风电塔筒 风电塔筒的生产工艺流程一般如下:数控切割机下料,厚板需要开坡口,卷板机卷板成型后,点焊,定位,确认后进行内外纵缝的焊接,圆度检查后,如有问题进行二次较圆,单节筒体焊接完成后,采用液压组对滚轮架进行组对点焊后,焊接内外环缝,直线度等公差检查后,焊接法兰后,进行焊缝无损探伤和平面度检查,喷砂,喷漆处理后,完成内件安装和成品检验后,运输至安装现场。 二、风电塔筒产生锈蚀的原因: 1、因涂层使用寿命超限产生的旧涂层粉化、脱落、起泡、松动等造成的; 2、原始施工时表面处理不彻底或没有进行表面处理的情况下进行了油漆施工而造成的涂层脱落、松动、污物潮湿空气浸透至底材所造成的; 3、涂装施工过程中施工时没得到很好的控制使漆膜厚度不均匀出现大面积底漆膜现象没有起到很好的防腐效果所造成的; 4、设计防腐配套系统失败所造成的涂层过早失效; 5、由于自然灾害(特大风沙等)使得涂层损伤; 6、运输、吊装过程中没有得到很好的保护造成涂层损伤 三、塔筒维修方案及施工工艺的意义: 海风风电科技有限公司进行专业的塔筒外表面维修步骤: 1、局部锈蚀部位表面处理,采用喷射的方法完全去除锈蚀部位被氧化的锈蚀层和旧涂层露出金属母材达到S2.5级,被处理部位边缘采用动力砂轮打磨形成有梯度的过渡层以便进行油漆施工后有一个平滑光顺的表面。(喷射的方法较传统的手工打磨相比,它可以完全彻底地去除被氧化甚至

产生坑蚀钢板深层的锈蚀和旧涂层并可以形成良好的锚链型的粗糙纹,有利于与底漆形成良好的结合力) 2、喷射处理后应按原始配套方案手刷(滚涂)底漆达到规定的漆膜厚度。(手刷、滚涂可以控制底漆施工时的部位控制,不污染边缘的原始涂层,也可以有效地控制底漆的消耗) 3、中涂漆施工可采用刷涂或喷涂达到原始配套的施工漆膜厚度,采用喷涂需对边缘区域进行保护遮挡,遮挡的形状应为“口”字形,形成有规则的外观效果(中涂漆施工进行边缘保护即可以有效的控制消耗又可以保证外观效果) 4、面漆施工:如果采取局部修补的方案,在中间漆施工达到厚度标准且满足第3点要求后可直接喷涂或刷涂面漆达到原始的设计厚度要求。如果采取全部施工面漆的方案在中间漆施工达到厚度标准后应对整个塔筒外边面进行彻底的清洁。清洁方法采用80-100目的砂布进行被涂表面磨砂,去除旧涂层外表的粉化层、灰垢、污物,存在油垢的部位采用化学清洗的方法去除油污,使得被涂表面彻底清洁后整体进行面漆的喷涂。 四、配套油漆的作用: 1、底漆:环氧富锌底漆或低表面处理环氧树脂漆:环氧富锌适用于大面积整体进行涂装施工所采用,它具有良好的防腐效果可提供阴极保护作用,低表面处理环氧树脂漆对局部修补具有优良的特性,也可应用在大面积施工,它对偏低的底材表面处理有相当的容忍性同时也有优越的屏蔽作用,可以起到对钢板良好的保护。 2、中间漆:中间漆一般采用含云母氧化铁成分的环氧厚浆型涂料,它的功能主要是起到屏蔽作用,有效地对底漆进行封闭,保护底漆不受外界的侵蚀。 3、面漆: 一是起美观作用,品质好的面漆可以使得塔筒外观颜色长久靓丽光泽;二也可以起到一定的封闭作用。

风机塔筒涂装施工工艺

. 风机塔筒涂装工艺 1.适用范围风机塔筒的本工艺措施适用于辉腾梁一期工程 FD70B-1500KW. 涂装 2.编制依据 风力发电机组塔筒制造技术协议及塔架施工图纸 2.12.2<<风力透平Protec MD涂装规范>>及相关技术标准GB8923-88. 3涂装工艺内容 3.1每段塔筒制造完毕后用喷砂除锈,再分三层喷漆防腐,其寿命不低于20年,寿命期内腐蚀深度不超过0.5mm. 3.2塔筒主体、门采用喷漆防腐;组装的平台应拆开分别防腐,其余可拆卸附件(梯子和梯子支撑、电缆筒、螺栓等)采用热镀锌。热镀锌处理后必须修整飞边、毛刺等。 3.3喷漆前采用干喷砂除锈,基体表面粗糙度40-80um,喷砂用压缩空气必须干燥,砂料必须有棱角,清洁,干燥,不允许有油污,可溶性盐的游离物和长石,粒度在0.5mm-2mm之间(GB9795-88);喷砂防锈表面达到:钢材表面无可见的油脂、污垢、氧化皮、铁锈和油漆涂层等附着物,任何残留的轻微色斑(GB8923-88),喷砂表面应尽快喷涂,间隔不超过12小时。

3.4筒体喷涂前的处理和油漆工艺严格按油漆厂家要求。 3.5筒体外表面喷涂层及干膜厚度要求: . . 50um 膜厚度:底漆:环氧富锌漆 180um 干膜厚度:中间漆:环氧漆 50um 干膜厚度:面漆:聚氨酯漆 外观:浅灰色 280um 油漆干膜总厚度:筒体内表面喷涂层及干膜厚度要求:干膜厚度:底漆:环氧富锌漆50um 中间漆:环氧漆干膜厚度:150m 外观:浅灰色 油漆干膜总厚度:200m 油漆表面分布均匀。 风塔基础段从法兰上表面以下600mm范围内防腐喷漆同塔筒一致。下部埋入混凝土,不作防腐处理。 风塔法兰对接触面及螺栓沉孔喷砂后,只喷环氧富锌底漆70um. 油漆品牌:式玛卡龙牌 牌号:底漆:环氧富锌漆102HS 中间漆:环氧漆410

风电塔筒制作工艺

塔筒制作工艺 1、塔筒制作需注意问题: 1)、塔筒制作整个工序必须按照工艺传递卡严格执行,并实行“三检”制度,每个工序又准人负责。 2)、下料后必须对钢板实行钢字码标识,具体内容包括材质零件号,字高7~10mm,要求清晰、无误,并进行材料跟踪。 3)、坡口必须按照下料图纸要求进行备置,小于16mm,不予开坡口,大于16mm。按照下料图开坡口,要求内部表面光滑平整呈金属光泽。 4)、卷板前必须清理钢板上杂物,铁屑,氧化咋,卷板过程中必须用严格控制弧度与样板间隙和椭圆度,样板长度不小于1200mm, 5)、单节组对,焊接矫正,卷板的同时进行单节筒体的纵缝组对,当管节卷制弧度大刀要求时,检查管节扭曲,周长等,然后进行管节的纵焊缝的点焊加固,组对筒体时,控制筒体对接间隙0-1mm,错口量为1/4t,且不大于1.5mm。焊完后管节再次吊进卷板机进行回圆,筒体回圆后菱角度检查时用内弧样板检查,圆度检查样板弦长为1200mm,样板与筒体之间间隙不超过3mm,管节成型后要求其内表面无压痕,拉伤现象,尺寸精度φ±6mm。椭圆度小于0.3%。 6)、法兰与管节组对:首先确定法兰的配对性,并仔细检查筒节与法兰的椭圆度,筒节的椭圆度不大于3mm,否则必须进行校圆并达到要求后才能组装。 A、筒节与法兰组对前仔细检查椭圆度,要求椭圆度不大于3mm,否则必须进行调整大刀要求后组装。 B\、同一台套上的连接法兰必须是出厂时的成对法兰。 C\、反向平衡法兰的纵缝与筒体的纵缝相错180度。 D、组对前塔体及法兰坡口内极其两侧各50mm用磨光机打磨除锈,油等杂质。 E、组装后要求坡口间隙小于2mm,错边小于2mm。 7)、筒节组装:筒节组装前必须仔细检查筒节的椭圆度不大于6mm。 A、筒节之间组装前仔细检查筒节椭圆度,不大于6MM。否则必须进行校圆并达到要求后组装,组装后坡口间隙要求小于2MM,错边小于3MM. B、相邻筒节纵焊缝相错180度。 C\、管节对接错边及翘边小于2MM。 D、法兰的组装要求符合法兰与单节管节组装的要求 E、同轴度要求小于3MM。 F、上下管口平行度小于4MM。 G、单段塔筒直线度10MM。 组拼方法:将校圆合格的单节分别放置在组对机及焊接滚轮架上,采用组对机与焊接滚轮架配合进行组对。组对时先将管节中心线调平,使管节中心线在同一水平线上,然后用线坠调整两端法兰0度,90度,180度,270度。方位线,使两头法兰方位线对齐,调整合格后房可对大口,相邻筒节纵向焊缝要求错开180度,然后进行定位汗。 8)、门框组装“塔筒门框与相邻筒节纵缝环峰应相互错开,筒节环峰应尽量位于门框中部,纵缝与门框中心线相错度不小于90度。 9)、附件组装:严格按照图纸执行,与筒体配合处的间隙小于1MM后才能施焊。 10)、所有焊工必须出具焊工合格证并在有效期内。 11)、在塔筒、法兰及门框边缘50MM处,打上焊工钢印,防腐后也能看见。 12)、所有纵缝必须带引熄护板,长度不小于120MM,并且去引弧板才用气泡后打磨。

对风电塔筒运输过程中的质量保证及防护

对风电塔筒运输过程中的质量保证及防护 摘要:伴随着风电技术的不断进步,发电机组的容量和设备也逐渐大型化,叶片、塔筒、发电机的增大,给我国山地风电场的机组运输和安装带来了很大困难,道路、吊装平台的工程量与项目投资存在着较强的敏感性,因此选择合理的运输 方式与主要吊装设备进行组合具有关键的指导作用。 关键词:塔筒;运输;质量 风电塔筒就是风力发电的塔杆,在风力发电机组中主要起支撑作用.同时吸 收机组震动。目前国内外百千瓦级以上大型风力发电机组塔架大部分采用钢制圆柱.圆锥以及圆柱和圆锥结合的筒形塔架.简体板材主要使用高级优质、热轧低 合金高强度结构钢.连接法兰均采用整体锻造。 一、塔筒制造关键工艺 在塔筒的制造过程中,以下几道制造关键工艺决定了整个塔架的制作成败。 1.材料复验:所有法兰进厂必须进行机械、化学等项目的复验,法兰供应商 应按要求另外提供一整套复验用试样,复验合格后方可使用。筒体材料应按不同 的炉批次进行机械、化学、冲击等项目的复验,供应商应按炉批次提供复验用材料。 2.塔筒的钢板下料:塔筒是由塔节组成,每节只允许由一张钢板组成。塔节 高度允许有正偏差,每节高度方向应保留3.0mm的收缩量。 3.门框制作:门框要求整块钢板下料,不允许拼接。门框装配焊接时,除了 保证门框的正确装配外,修磨坡口钝边应与门框安装同时进行,应仔细修磨坡口 钝边,使得门框四周与孔边缘形成的间隙保持在0~2mm。 4.塔筒焊接防变形措施:法兰与筒体焊后变形较大,会影响法兰的平面度和 基本尺寸,所以在焊接前要采取措施防止法兰变形。 5.法兰平面度和倾斜度测量。首先采购法兰入厂后应做平面度的测量,法兰 的圆锥倾斜度,可以用钢性较强的铝合金方管,贴紧法兰上表面沿360°方向目测 或塞尺即可测量内倾斜度。允许法兰上表面局部内倾斜度有1±1mm误差。一旦 塔筒现场安装竖起,联接法兰之间间隙最小0.5mm。 二、运输方式与吊装方案组合 1.包装运输方案。塔筒制造检验合格后.塔筒所有配件安装完成后运输到现 场塔体附件采用集中或装箱包装。安装在塔筒主体上的附件必须在发运清单 上表述清楚.装箱附件(包括链接紧固件)按件号及数量包装.分别附相应的包 装清单后装箱.并按装箱清单封箱(箱里同时有一份),加挂防潮防锈标志在发 运清单上注明各种附件的规格及数量。装箱清单由装箱人和发运人签字确认。所 有备品备件应装在箱内,采取防尘、防潮、防止损坏等措施,同时标注“备品备件”,以区别于本体,并于主设备一并发运为了防止法兰在运输过程中变形.塔架上、下法兰采用l0号槽钢米字型支撑固定塔筒在铆焊车间交出时必须打好支撑。 喷砂、喷漆时可暂时拆下,但喷砂、喷漆后必须立即打好支撑(尤其是倒运过程中,必须打好支撑)。以防法兰变形。 2.常规运输加履带吊。(1)道路设计方案。机组叶片、塔筒均采用常规运输,道路平曲线最小半径为35m,对沿线弯道路边高度大于2.0m的构筑物需清除, 以保证叶片在运输拐弯时15m范围内不能有其他任何障碍物侵占。道路纵坡一般不超过14%,在受地形条件限制无法展线时,纵坡控制在18%以内,同时采取合 适的辅助牵引措施。为配合履带吊车在场内安全运行及高效进行吊装作业,直线

风电塔筒制造工艺

风电塔筒制造工艺 一,编制依据: 《钢结构工程施工貭量验收规范》GB50205-2001 《钢制压力容器制作标准》GB150-91 《建筑钢结构焊接规程》JGJ81-2002 《形状和位置公差及末注公差》GB/T1184-1996 《钢制压力容器无损检测》JB4730-94 DIN/EN和AWS标准 本工艺适用于风电场风力发电塔架制造。 二,风电塔筒制造工艺流程 塔筒制造中关键技术有三点: 1)塔筒总长度一般在55M-76M,直径在4.2M-2.3M,制造中同轴度不得大于15 mm,整体塔筒共分四段23节,组对过程中必须保证单节筒体端面平行度≤3 mm。 2)由于同轴度要求严格,各段塔筒连接是采用内法兰连接,法兰的焊接变形不得大于3 mm。 3)焊接貭量的控制,要滿足产品貭量要求。

注:法兰外购。 三,塔筒下料工艺: 1,技术交底 1)审图人员必须从设计总配置图开始,逐亇图号、逐亇部位核对, 找清相应安装或装配关糸,再核对外形几何尺寸、各部件之间尺寸能否相亙衔接。之后,再逐亇核对各接点、孔距、孔位、孔径等相关尺寸。 2)认真核对施工图零件数量、单重和总重, 3)审图时应将主要构件计萛出用科幅面,按每节塔筒展开料直接与 供应商订货。

4)审图时发现的问题要及时向设计部门请示,经设计部门修改,不 得擅自修改。 5)施工图低必须经专业人員认真审核后,下达生产车间,专业技术 人員汇同车间技术员对生产者进行技术交底。 2,放样设施及条 1)放样前,放样人員必须熟悉施工图和工艺要求,核对构件与构件相应连接的几何尺寸及连接有否不当之处。 2)放样使用的钢下、弯展、盘尺,必须经计量单位检验合格,丈量尺寸时应分段叠加,不得分段测量后加累计全长。 3)放样应在平整的放样台上进行。凡放大样的构仲,应以1:1的比例放出实样:当构件较大时可绘制下料图。 3,大样检查与施工图未尽尺寸的获取 1)施工图没有注明和无法注明的尺寸与角度,应在放样时取得。 2)大样完成后应由有矣技术人员和貭检人员认真检查。 4,号料 1)下料规格的合理排列,也就是说,在需要切割的每一张钢板上如何合理安排所用规格,使之不剩料边、料头,尽量提高材料的利用率。下料工将同材貭、同厚度的用料,按宽度、长度、数量汇总,作出排板图,套裁切割后再用油漆写明图号。 5.切割 1)割口量与组对间隙的计萛 塔筒实际下料尺寸=名义尺寸﹢割口量﹢公差尺寸﹢焊接收

风电塔筒法兰焊接变形控制的工艺措施分析

风电塔筒法兰焊接变形控制的工艺措施分析 发表时间:2018-07-09T10:32:51.313Z 来源:《电力设备》2018年第8期作者:王令宾[导读] 摘要:随着不可再生资源的不断减少,我们为了节约资源,发电的方式有了很大的改变,例如可以通过水力、风力等可再生资源来发电。 广东水电二局股份有限公司 摘要:随着不可再生资源的不断减少,我们为了节约资源,发电的方式有了很大的改变,例如可以通过水力、风力等可再生资源来发电。在风力发电设备中,它最关键的部件就是风力发电塔架,它连接着风机中的重要部件,它主要起到的是承受作用。塔架中法兰的好坏会直接影响到风机的运行,所以对法兰的焊接工艺就成为了主要研究对象,根据查阅相关文献与资料,本文通过法兰焊接时要控制的三个指标入手来进行讨论与分析,希望对以后的研究可以有所帮助。 关键词:风力发电机、塔筒、法兰焊接、变形控制、工艺措施 影响法兰焊接的三个指标分别为:法兰的平面度、法兰的内倾量、法兰的椭圆度,在焊接过程中保证了这三个指标的完成,可以为我们带来很大的经济效益。可是在我们平常的焊接工艺中常常会出现法兰外翻变形等现象,这就要求我们要根据筒体焊接过程中出现的问题,对传统工艺措施进行控制和改变,现在我们就根据法兰焊接变形的原因进行分析,提出有效措施,希望这些措施可以得到广泛的推广。 一、法兰的含义和作用 法兰,它是一个将设备中的轴与轴或设备与设备连接起来的零部件,主要用于管端部位,适用范围广阔,它可以适用于建筑工程、轻重工业、电力设备等等方面,零件材质为不锈钢、碳钢、镍钢等为主。法兰主要分为三种类型:丝扣连接法兰、焊接法兰、卡夹法兰,通常在风力发电机的塔筒中我们主要采用焊接法兰。需要注意的是,在使用过程法兰一般都是以成对的形式使用,根据不同的压力导致法兰的厚度和使用的螺旋都有所不同。正如它的含义所叙述一般,法兰的作用是连接,轴与轴的连接或者设备与设备之间的连接。 二、风电塔筒焊接后对法兰的质量要求 由于不同的压力影响,设备中法兰这个零部件的厚度也会不同。风力发电机中塔筒是通过三或四段的直筒或圆锥筒焊接形成的,这个焊接过程就需要通过高强螺栓把两端的法兰来连接起来,这样就完成了一个塔筒的建造。在塔筒成段焊接中,要按照法兰的平面度、法兰的内倾量、法兰的椭圆度这三个标准来挑选适合的法兰,其中法兰的平面度要求顶法兰的厚度为0.8毫米,剩下的法兰为1.5毫米至2毫米之间,具体厚度按风机厂的要求为主;法兰的椭圆度为3毫米;所有的法兰在焊接后不允许有内翘的现象,只允许存在微小的内凹偏差,其中法兰的内翻顶法兰偏差不超过0.5毫米,其余法兰的偏差也不超过1.5毫米。最后在焊接完毕之后,两端法兰的平行角度和同轴度,通过相关仪器测量圆周四个象限的斜边长的相对差值不超过3毫米。 二、法兰与风电塔筒焊接变形的原因 根据资料数据显示,我国各个风机厂的主要制造材料为低合金钢,法兰对低合金钢的含碳量要求小于0.45%,因为这时的焊接性能最好。它的主要焊接工序为三个步骤:第一步是焊接风电塔筒的内围,并对塔筒外进行清根做出直角的坡口,对坡口还要用砂轮工具打磨平整;第二步和第三步为了让风电塔架有很好的载荷能力,我们要对塔架的外部进行焊接,法兰的焊接缝隙一定要保证有足够的强度和韧性。可是在焊接过程中常常会出现法兰内翘、塔筒两端的法兰不在一个平行线上、焊接工艺不佳的问题。 1.法兰内翘:在焊接工序第一步中的清根环节会把焊接的内应力释放到外圈中,可是外圈的内应力在增大,就会之焊接截面不对称层次不合理,最后形成法兰内翘的现象。 2.塔筒两端的法兰不在一个平行线上:法兰都是以组对的形式出现,在组对前都会对两端的管口进行切割修正,有时不注意会修正的很不整齐。为了保证两端在法兰在一个平行线上只能调整对接间隙,在调整过程中容易造成间隙过大或间隙不一致的现象。 3.焊接工艺不佳:当焊接出现间隙可以进行修补,可是没有按照严格的焊接顺序和控制好焊接电流、电压以及焊接的速度才是导致焊接工艺出现问题的主要因素。 三、控制风电塔筒法兰焊接变形的有效措施 (一)反变形法 根据不同风机厂的制作要求和图纸设计,我们可以在对法兰进行加工的时候就把它做成内倾,就算以后有内凹现象也可以起到缓解的作用。需要注意的一点是,法兰的内倾量要根据和它相连接的板厚度来决定。可能在焊接完毕后,法兰会出现回弹,这个回弹范围我们要控制在合理的范围内。焊接的过程争取一次完成,避免出现间断。 (二)刚性固定法 当法兰和单一筒节组对完毕后,要和相匹配的法兰把在一起。在这个过程中要注意两点:一是要选择特制的把紧工具;二是运用六个夹紧工具来分布。这个方法比较简单,对于焊接的要求比较低。 (三)焊接顺序要合理科学 在焊接过程中一定要注意焊接的顺序先后,合理科学的焊接顺序是可以帮助我们加强其稳固性,减少变形的影响。焊接顺序主要为:将法兰和塔筒的外圈对接整齐,用二氧化碳保护固定点焊→将外圈埋弧自动连续焊接两道→在内圈焊接处刨清根→对内圈埋弧自动连续焊接一道→外圈埋弧自动连续焊接两道加强稳固。 (四)选择适当的焊接方法和工艺参数 在焊接过程中,焊接热输入是影响其变形的一个重要因素,我们需要选择一个适当的焊接方法来避免这个问题,例如可以选择一个能量集中且热输入相对降低的方法来降低法兰变形的概率。在焊接过程中还要时刻注意调节工艺参数,选择一个最精确的参数,注意输出的热能要一致。 (五)提高工作人员的素质和业务能力 企业可以多多为工作人员提供外出学习与交流的机会,随着科技的快速发展,新兴技术也在不断的提高。很多工作人员或管理人员的能力还停留在传统工艺方面,更不上时代的步伐,不能对出现的问题给出很好的解决方案。这就要求我们需要对其经常进行业务培训,提高他们本身的专业素质水平,提高他们学习知识技能的主动性和积极性。

相关文档
最新文档