实变函数与泛函分析概要第1~3章复习
实变函数与泛函分析概要第1~3章复习

2020/4/20
40
第五节 集的势·序集
2020/4/20
41
5. 连续势集的定义
定义:与[0,1]区间对等的集合称为连续势集,
其势记为 , 显然:n 0
例:1)R~ (0,1) ~ [0,1] ~ [0,1) ~ R+~ (a,b)
存在大量既不开又不闭的集合,如: E=[0,1)
2020/4/20
25
定理3.3 任何集E的导集 E`为闭集
2020/4/20
26
闭集性质:
任意一簇闭集之交为闭集; 任意有限个闭集之并仍为闭集。
2020/4/20
27
例8 f(x)是直线上的连续函数当且仅当 对任意实数a,E={x|f(x)≤a}和 E1={x|f(x)≥a}都是闭集
2020/4/20
48
2 连续势集的性质(卡氏积)
有限个、可数个连续势的卡氏积仍为连续势集
定理:设A {(x1, x2, , xn, ) : xi (0,1)},则A
2020/4/20
49
推论 n维Euclid空间Rn的势为
平面与直线有“相同多”的点
2020/4/20
50
推论
例1 闭区间[0,1]与闭正方形[0,1;0,1]
(即可数集 是无限集中具有最小势的集合)
2020/4/20
15
可数集的性质(并集) •有限集与可数集的并仍为可数集 •有限个可数集的并仍为可数集 •可数个可数集的并仍为可数集
2020/4/20
16
例:有限个可数集的卡氏积是可数集
设A,B是可数集,则A×B也是可数集
实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x mA χ,所以1)(in f=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(i n f su p =≥∈x mA nm N b χ ,即)(i nf lim x nA nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互不相交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 互不相交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈所以 })(|{}1)(|{1a x f x E n a x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即ka a x f 1)(+≤≤,且E x ∈因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,k a x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n nk +≤∞=9设f(x)是定义于e 上的实变函数,a 为常数,证明e(x){f(x)>=a}=∩e{x/f(x)>a -1/n} 由于对任意n 都有e{f(x)≥a}⊂e{f(x)>a-1/n},故e{f(x)≥a}⊂∩e{f(x)>a -1/n} 又对任意x ∈∩e{f(x)>a -1/n},有f(x)>a-1/n,令n→∞,可得f(x)≥a(详细:如果f(x)<a ,则令δ=a -f(x)>0,当N>[1/δ]+1时,得f(x)>f(x),矛盾) 所以x ∈e{f(x)≥a},因此∩e{f(x)>a -1/n}⊂e{f(x)≥a},综上 e{f(x)≥a}=∩e{f(x)>a-1/n}8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是可数的。
实变与泛函分析初步自学考试大纲

实变与泛函分析初步自学考试大纲第一章集合(一)重点集合的概念、集合的表示、子集、真子集;集合的并、交、余、 D.Morgan 法则、集合的直积;上限集、下限集、极限集、单调集列及其极限集;单射、满射、一一映射、映射基本性质、集合的势、对等、对等基本性质、基数、基数的比较、伯恩斯坦定理;可数集、可数集性质、有理数集;不可数集存在性、连续集及其性质、不存在基数最大的无限集;R n中的距离、邻域、区间、开球、闭球、球面;开集、开集性质、内点、内核、边界点、边界;收敛点列、聚点、聚点的等价定义、孤立点、孤立点集、导集、闭集、闭集性质;G 集合、F 集合、G 集合和F 集合的性质、Borel 集;R1中开集与闭集的构造、R n中开集与闭集的构造。
识记:集合的概念、集合的表示、子集、真子集;集合的并、交、余、 D.Morgan 法则、集合的直积;上限集、下限集、极限集、单调集列及其极限集;单射、满射、一一映射、集合的势、对等、对等基本性质、基数、基数的比较、伯恩斯坦定理;可数集、可数集性质、有理数集;不可数集存在性、连续集及其性质、不存在基数最大的无限集;R n中的距离、邻域、区间、开球、闭球、球面;开集、开集性质、内点、内核、边界点、边界;收敛点列、聚点、孤立点、孤立点集、导集、闭集、闭集性质、G 集合、F 集合、G 集合和F 集合的性质、Borel集;R1中开集与闭集的构造、R n中开集与闭集的构造。
理解:集合的表示、子集、真子集;集合的并、交、余、 D.Morgan 法则、集合的直积;上限集、下限集、极限集、单调集列及其极限集;一一映射、映射基本性质、集合对等的基本性质、基数的比较、伯恩斯坦定理;可数集、可数集性质、有理数集;不可数集存在性、连续集及其性质;R n中的距离、邻域、开球、闭球、球面;开集、开集性质、内点、内核、边界点、边界;聚点、聚点的等价定义、孤立点、孤立点集、导集、闭集、闭集性质;G 集合和F集合的性质、Borel集;R1中开集与闭集的构造、R n中开集与闭集的构造。
实变函数及泛函分析概要第1~3章复习

定义
称集合:E {E的孤立点全体} E E
' '
为E的闭包, 记为E.
E' E
若 E E ,则称 E为完全集.
'
2019/1/25 福州大学数学与计算机学院聂建英
定义3.3
闭集的(等价)定义 若EE ,则E为闭集.
R中只有空集和R既开又闭, 存在大量既不开又不闭的集合,如: E=[0,1)
福州大学数学与计算机学院聂建英
第三节一维开 集· 闭集 及其性质
2019/1/25 福州大学数学与计算机学院聂建英
定义3.1 若集合 E 的每一个点都 E 的内点, 则称E为开集。
2019/1/25
福州大学数学与计算机学院聂建英
4.开集的性质
A
B
定理3.1 a. 空集,R为开集; b. 任意多个开集之并仍为开集; c. 有限个开集之交仍为开集。
2019/1/25 福州大学数学与计算机学院聂建英
可数集的性质(并集) •有限集与可数集的并仍为可数集 •有限个可数集的并仍为可数集 •可数个可数集的并仍为可数集
2019/1/25
福州大学数学与计算机学院聂建英
例:有限个可数集的卡氏积是可数集 设A,B是可数集,则A×B也是可数集
A B {( x, y) | x A, y B}
E ( A ) ( E A )
2019/1/25
福州大学数学与计算机学院聂建英
定理1.2 (De Morgan公式)
( A )
c
A
c
( A )
c
A
c
019/1/25 福州大学数学与计算机学院聂建英
泛函分析复习与总结

《泛函分析》复习与总结第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。
以下几点是对第一部分内容的归纳和总结。
一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。
距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。
(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。
赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。
(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。
实变函数与泛函分析基础(第三版)-----第三章_复习指导

实变函数与泛函分析基础(第三版)-----第三章_复习指导主要内容本章介绍了勒贝格可测集和勒贝格测度的性质.外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别.我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求.本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论.本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和型集逼近.正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用.本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集.复习题一、判断题1、对任意nE R ?,*m E 都存在。
(√ )2、对任意nE R ?,mE 都存在。
(× )3、设nE R ?,则*m E 可能小于零。
(× )4、设A B ?,则**m A m B ≤。
(√ ) 5、设A B ?,则**m A m B <。
(× ) 6、**11()n n n n m S m S ∞∞===∑。
实变函数与泛函分析基础第三版

书籍目录:第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集.第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫(EropoB)定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼(Fubini)定理第五章习题第六章微分与不定积分1 维它利(Vitali)定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯(Stieltjes)积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射”4 柯西(CaHcLy)点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫(Banach)空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理l 泛函延拓定理2 C[a,b)的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题。
《应用泛函分析》前四章重点复习大纲

《应用泛函分析》前四章重点复习大纲1第1章预备知识1.1集合的一般知识1.1.1概念、集合的运算上限集、上极限下限集、下极限1.1.2映射与逆映射1.1.3可列集可列集集合的对等关系~(定义1.1)1.2实数集的基本结构1.2.1建立实数的原则及实数的序关系阿基米德有序域(定义1.4)1.2.2确界与确界原理上确界sup E(定义1.5)下确界inf E确界原理(定理1.7)1.2.3实数集的度量结构数列极限与函数极限单调有界原理区间套定理Bolzano-Weierstrass定理Heine-Bore定理Cauchy收敛准则1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛逐点收敛(定义1.11)一致收敛(定义1.12)Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质极限与积分可交换次序1.4 Lebesgue积分1.4.1一维点集的测度开集、闭集有界开集、闭集的测度m G m F外测度内测度可测集(定义1.16)1.4.2可测函数简单函数(定义1.18)零测度集按测度收敛1.4.3 Lebesgue积分有界可测集上的Lebesgue积分Levi引理Lebesgue控制收敛定理(性质1.9)R可积、L可积1.4.4 Rn空间上的Lebesgue定理1.5 空间Lp空间(定义1.28)Holder不等式Minkowski不等式(性质1.16)2第2章度量空间与赋范线性空间2.1度量空间的基本概念2.1.1距离空间度量函数度量空间(X,ρ)2.1.2距离空间中点列的收敛性点列一致收敛按度量收敛2.2度量空间中的开、闭集与连续映射2.2.1度量空间中的开集、闭集开球、闭球内点、外点、边界点、聚点开集、闭集2.2.2度量空间上的连续映射度量空间中的连续映射(定义2.7)同胚映射2.3度量空间中的可分性、完备性与列紧性2.3.1度量空间的可分性稠密子集(定义2.9)可分性2.3.2度量空间的完备性度量空间中Cauchy列(定义2.11)完备性完备子空间距离空间中的闭球套定理(定理2.9)闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性列紧集、紧集(定义2.13)全有界集2.4 Banach压缩映射原理压缩映像不动点Banach压缩映射原理(定理2.16)2.4.1应用隐函数存在性定理(例2.31)2.5 线性空间2.5.1线性空间的定义线性空间(定义2.17)维数与基、直和2.5.2线性算子与线性泛函线性算子线性泛函(定义2.18)零空间ker(T)与值域空间R(T) 2.6 赋范线性空间2.6.1赋范线性空间的定义及例子赋范线性空间Banach空间(定义2.20)2.6.2赋范线性空间的性质收敛性——一致收敛绝对收敛连续性与有界性2.6.3有限维赋范线性空间N维实赋范线性空间3Riesz定理(引理2.2)第3章连续线性算子与连续线性泛函3.1连续线性算子与有界线性算子算子、线性算子、泛函、线性泛函线性算子连续←→有界有解线性算子的范数(定义3.3)有界线性算子空间L(X, Y)L(X, Y)的完备性3.2共鸣定理及其应用有界线性算子列的一致收敛、强收敛稀疏集、第一纲Baire纲定理算子列的一致有界原理(定理3.8)算子范数的有界→强收敛3.3 Hahn-Banach定理次可加正齐次泛函Hahn-Banach定理(定理3.12)Banach保范延拓定理(定理3.14)3.4共轭空间与共轭算子3.4.1共轭空间共轭空间(注定理3.6 p.93)嵌入子空间、等距同构(定义3.7)自反空间(定义3.8)嵌入算子(定理3.15)弱收敛点列(定义3.9)共轭空间上泛函的收敛(定义3.10)线性算子列弱收敛3.4.2共轭算子共轭算子(定义3.12)共轭算子的性质3.5开映射、逆算子及闭图像定理逆算子的有界性开映射Banach开映射定理Banach逆算子定理乘积赋范线性空间闭图像闭算子闭图像定理→算子连续3.6算子谱理论简介复Banach 空间线性算子的正则点谱点:特征值、连续谱、剩余谱正则集——开集谱——有界闭集谱半径(定义3.17)全连续算子(定义3.18)Riesz-Schauder定理4第4章内积空间4.1基本概念内积空间Schwaraz不等式内积空间 Hilbert空间4.2内积空间中元素的直交与直交分解4.2.1直交及其性质直交、直交补(定义4.2)直交投影最佳逼近元极小化向量定理(定理4.2)4.2.2投影定理投影定理(定理4.3)直交分解4.3直交系标准直交系元素x 关于的Fourier级数(定义4.6)Bessel不等式(定理4.5)标准直交系是完全的(定义4.7)Parseval等式(定理4.7)Gram-Schmidt标准正交化法4.4 Hilbert空间上的有界线性泛函4.4.1 Riesz定理Riesz定理4.4.2Hilbert空间上的共轭算子共轭算子(定义4.8)共轭算子的性质4.5自共轭算子自共轭算子(定理4.13)4.6投影算子、正算子和酉算子投影算子(定义4.10)投影算子<->自共轭算子<->幂等算子(定理4.19)正算子(定义4.11)平方根算子(定理4.21)酉算子(定理4.22)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州大学数学与计算机学院聂建英
4 无最大势定理
定理5.1(Cantor定理): 设A是一个任意的非空集合,则2 A A.
从而说明无限也是分很多层次, 且不存在最大的集合.
定义域 D(f) 值域 R(f)
2016/12/7
原 像
像
福州大学数学与计算机学院聂建英
单射,满射,一一对应(一一映射)
若x1, x2 X , x1 x2 , 有f ( x1 ) f ( x2 )
称f为单射;
若( f X)=Y , 即y Y , x X , 有f ( x) y
()
x0
2016/12/7 福州大学数学与计算机学院聂建英
第四节 开集的构造
目的:掌握Cantor集的构造, 熟悉直线上开集与闭集的构造。 重点与难点:Cantor集的构造。
2016/12/7
福州大学数学与计算机学院聂建英
定义4.1 设G是直线上有界开集,如果开区 间满足下面条件:
( , ) G ,
2016/12/7 福州大学数学与计算机学院聂建英
差:A B或A \ B {x : x A但x B}
余:Cs A S A (其中S为全集),简记为Ac
A B
注:A B A B
c
( A B) B A不一定成立
2016/12/7 福州大学数学与计算机学院聂建英
{( x, y) | y B}
xA
x固定,y在变 从而A×B也是可数集(可数个可数集的并) 利用数学归纳法即得有限个乘积的情形
2016/12/7 福州大学数学与计算机学院聂建英
例 4 代数数全体是可数集
整系数多项式方程的实根称为代数数; 不是代数数的实数称为超越数。 常见可数集举例:
2016/12/7
2016/12/7 福州大学数学与计算机学院聂建英
f(x0)+ε f(x0) f(x0)-ε a
()
x0
即O(x0 , δ) ∈ E ={x|f(x)>a},
即x0为E的内点,从而E为开集;
类似可证{x|f(x)<a}为开集, 从而{x|f(x)≥a} ={x|f(x)<a}c是闭集
f(x0)+ε f(x0) f(x0)-ε a
2016/12/7 福州大学数学与计算机学院聂建英
从而 0, 使得 O( x0 , ) {x:f ( x0 ) f ( x) f ( x0 ) } (因为x0是{x:f ( x0 ) f ( x) f ( x0 ) }的内点)
也即当| x x0 | 时,有| f ( x) f ( x0 ) | 所以f ( x)在x0处连续。
2016/12/7 福州大学数学与计算机学院聂建英
定理3.3
任何集E的导集 E`为闭集
2016/12/7
福州大学数学与计算机学院聂建英
闭集性质: 任意一簇闭集之交为闭集; 任意有限个闭集之并仍为闭集。
2016/12/7
福州大学数学与计算机学院聂建英
例8 f(x)是直线上的连续函数当且仅当 对任意实数a,E={x|f(x)≤a}和 E1={x|f(x)≥a}都是闭集
i
2016/12/7
福州大学数学与计算机学院聂建英
第二节 映射.集的对等.可 列集
2016/12/7 福州大学数学与计算机学院聂建英
一.映射
1.定义
Def 2.1 设集合X, Y , f - -对应规则, x X, 有唯一 确定的y与之对应, 则称f为定义在X上的一个映射 f , 记为f : X Y , x X , f ( x) : x y f ( x)
2016/12/7 福州大学数学与计算机学院聂建英
可数集的性质(并集) •有限集与可数集的并仍为可数集 •有限个可数集的并仍为可数集 •可数个可数集的并仍为可数集
2016/12/7
福州大学数学与计算机学院聂建英
例:有限个可数集的卡氏积是可数集 设A,B是可数集,则A×B也是可数集
A B {( x, y) | x A, y B}
则称f为满射;
2016/12/7 福州大学数学与计算机学院聂建英
若f既为单射又是满射,则称f为一一映射。
2 对等与势
定义2.2 设A,B是两非空集合,若存在 着A到B的一一映射f(f既单又满), 则称A与B对等,
记作
A ~ B
~ 约定 注:称与A对等的集合为与A有相同 的势(基数),记作 A
势是对有限集元素个数概念的推广
2016/12/7
福州大学数学与计算机学院聂建英
二.自密集、疏朗集、完备(全)集
定义
(i)若 E E ,即 E 的每一点都是 自身的聚点,则称 E 是自密集; (ii)若 E E ,则称 E 是完备(全)集。
2016/12/7
福州大学数学与计算机学院聂建英
定义
若E是实直线R的子集 ,若 E R , 则称E为R中稠密集. 当 E 的补集在R中稠密时,则称 E 为 疏朗集.
笛卡尔乘积
A B {(a, b) : a A, b B}
A
i 1
n
i
{( x1 , x2 ,, xn ) : xi Ai , i 1,2,, n}
{( x1 , x2 ,, xn ,) : xi Ai , i 1,2,, n,}
A
i 1
定义
称集合:E {E的孤立点全体} E E
' '
为E的闭包, 记为E.
E' E
若 E E ,则称 E为完全集.
'
2016/12/7 福州大学数学与计算机学院聂建英
定义3.3
闭集的(等价)定义 若EE ,则E为闭集.
R中只有空集和R既开又闭, 存在大量既不开又不闭的集合,如: E=[0,1)
证明:我们先证充分性:
由条件知对任意实数 c, {x:f ( x) c}, {x:f ( x) c}都为开集, 任取x0 R,下证f ( x)在x0处连续
0,{x:f ( x0 ) f ( x) f ( x0 ) } {x:f ( x0 ) f ( x)}{x:f ( x) f ( x0 ) }为开集,
2016/12/7 福州大学数学与计算机学院聂建英
5. 连续势集的定义
定义:与[0,1]区间对等的集合称为连续势集, 其势记为 , 显然: n 0 例:1)R~ (0,1) ~ [0,1] ~ [0,1) ~ R+~ (a,b) (a<b) 2)无理数集为连续势集
(无理数要比有理数多得多,同理超越数要比 代数数多得多)
E ( A ) ( E A )
2016/12/7
福州大学数学与计算机学院聂建英
定理1.2 (De Morgan公式)
( A )
c
A
c
( A )
c
A
c
注:通过取余集,使A与Ac,∪与∩互相转换
A {a1 , a2 ,, an }
M { x x所具有的特征}
有限集 无限集
组成这个集合的事物称为该集合的元素. 一般说来,我们总用小写字母a,b,x,y… 表示集合中的元素。
2016/12/7 福州大学数学与计算机学院聂建英
定理1.1 分配律
E ( A ) ( E A )
2016/12/7
福州大学数学与计算机学院聂建英
必要性:若f(x)是直线上的实值连续函 数,只要证对任意常数a, E={x|f(x)>a}与E1={x|f(x)<a}是开集
而要证E={x|f(x)>a}是开集,只要证E中 的点都为内点 任取x0 ∈ E ={x|f(x)>a},则 f(x0 )>a, 由f(x)在x0处连续及极限的保号性知, 存在δ>0,当|x-x0|< δ时,有f(x)>a
注:第n次共去掉2n-1个长为1/3n 的开区间
2016/12/7 福州大学数学与计算机学院聂建英
c. P没有内点
d. P中的点全为聚点,没有孤 立点, P为完备(全)集.
e. P~ (0,1) ~ [0,1] ~ R+~ (a,b) (a<b)
2016/12/7
福州大学数学与计算机学院聂建英
第五节 集的势·序集
1 2 0, , ,1 3 3
9
再次
9
如此继续下去,最终剩下的点集记作P,称之 为Cantor集。
2016/12/7 福州大学数学与计算机学院聂建英
9 9
Cantor集的性质
a. P是闭集. b. mP=0. 去掉的区间长度和
1 1 n 1 3 2 1 n 2 1 3 n 1 3
例:1)Z = {0,1,-1,2,-2,3,-3, …} 2)[0,1]中的有理数全体
={0,1,1/2,1/3,2/3,1/4,3/4,1/5,2/5, …}
2016/12/7 福州大学数学与计算机学院聂建英
可数集性质: 定理2.1 任何无穷集都包含一个可 数子集。 (即可数集 是无限集中具有最小势的集合)
2016/12/7 福州大学数学与计算机学院聂建英
基数的大小比较
定义5.1
1)若A ~ B, 则称A B;
2)若A ~ B1 B, 则称 A B; 相当于:A到B有一个单射.
2016/12/7 福州大学数学与计算机学院聂建英
3).假设A、B是两个集合,若A与B
的某个真子集B*对等,但不与B对等,则说