最新小学奥数几何专地题目

合集下载

小学奥数四五年级几何专项

小学奥数四五年级几何专项
36 37
10 17
5
A D
E B F
O C
1
学而思培优
【例四】如图,正方形 ABCD 的面积等于 625 平方厘米,DE 与 CF 相交于点 G 。已知 S△ADE S△CDG 等 于 125 平方厘米,求: △BFG 的面积。
D C
G F
A
E
B
【例五】如图,四边形 ABCD 中, AD∥BC , AD : BC 1: 2 , S△AOF : S△DOE 1: 3 , S△BEF 24 平方厘 米,求: △AOF 的面积。
A D
F
O
E
B
C
【例六】如图,直角三角形 ABC 中,三角形 ADF ,三角形 BED 和三角形 CFE 分别是以 A 、 B 、C 为 顶点的等腰三角形, AC 17 厘米, BC 15 厘米,那么三角形 DEF 的面积是______平方厘米。
A
F
D
B
E
C
2
学而思培优
【例七】如图,四边形 ABCD 的面积为 6 ,点 M 、 N 、 P 、 Q 分别为各边的中点,点 O 为 ABCD 内 一点。联结 OM 并延长至 E 点,使得 2OM ME 。同样的方式可得点 F 、G 、 H ,求:四边形 EFGH 的面积。
E G H D
A
B
F
C
【例二】如图,△ABC 和 △CDE 均为等腰直角三角形, AB 21 厘米,CD 35 厘米, AE 与 BD 相交 于 O 点,那么图中阴影部分的面积为多少平方厘米?
D A
O
B
C
E
【例三】如图,长方形 ABCD 中,点 E 为 AB 边上靠近点 B 的四等分点,点 F 为 BC 边上靠近点 C 的 四等分点,对角线 AC 交线段 DF 于 O 点,已知三角形 COD 的面积比四边形 AOFE 的面积少 2016 , 则长方形 ABCD 的面积为______。

最新小学奥数几何专题训练附答案

最新小学奥数几何专题训练附答案

学习奥数的重要性1. 学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

六年级几何专题复习如图,已知AB =40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是_____cm2。

(π取3.14)(几何)有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,则至少需要绳子_____分米。

(结头处绳长不计,π取 3.14)图中的阴影部分的面积是________平方厘米。

小学奥数几何专题--巧求周长(六年级)竞赛测试.doc

小学奥数几何专题--巧求周长(六年级)竞赛测试.doc

小学奥数几何专题--巧求周长(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】求图中所有线段的总长(单位:厘米)【答案】48【解析】要注意到,题目所求的是图中所有线段的总长,而图中的线段,并不仅仅是、、、四段,还包括、等等,因此不能简单地将图中标示的线段长度进行求和.同时应该注意到,;,等等.因此,为了计算图中所有线段的总长,需要先计算AB、BC、CD 、DE这四条线段分别被累加了几次.这里,可以按照每条线段分别是由几部分组成的加以讨论:由1段组成的线段共有4条,即AB、BC、CD、DE,而求和过程中AB、BC、CD、DE这四条线段各被累加了1次.类似地考虑到,由2段组成的线段共有3条,求和过程中AB、DE各被累加了1次,BC、CD各被累加了2次.由3段组成的线段共有2条,求和过程中AB、DE各被累加了1次,BC、CD各被累加了2次.由4段组成的线段只有AE,其中AB、BC、CD、DE各被计算了1次.综上所述,AB、DE各被计算了4次,BC、CD各被计算了6次.因而图中所有线段的总长度为:{{9}l先考虑大长方形的长上各边:应用上一道题目的结论,每条边上长为4、3、1、2的线段分别被计算了4、6、6、4次.然后再考虑大长方形的宽:因为共有个长方形,所以长度为2的宽被计算了次.故总周长可以用下式计算得到:.【题文】如图,正方形的边长为,被分割成如下个小长方形,求这个小长方形的所有周长之和.评卷人得分【答案】56【解析】.【题文】如右图,正方形的边长是厘米,过正方形内的任意两点画直线,可把正方形分成个小长方形。

这个小长方形的周长之和是多少厘米?【答案】72【解析】从总体考虑,在求这个小长方形的周长之和时,、、、这四条边被用了次,其余四条虚线被用了次,所以个小长方形的周长之和是:(厘米)。

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。

小学数学竞赛《几何图形》专题训练30道题含答案

小学数学竞赛《几何图形》专题训练30道题含答案

小学数学竞赛《几何图形》专题训练30题含答一、单选题1.如图,一串黑白相间的珠子,被盒子遮住了一部分.如果这串珠子中白珠子有20个,那么黑珠子共有()A.19B.20C.212.一个三角形三个内角度数的比是2:1:1,这个三角形是()A.钝角三角形B.锐角三角形C.等腰三角形D.等边三角形3.下图中的∠1和∠2相比,()。

A.∠1大B.一样大C.∠2大D.无法确定4.一条直线和它上面的两点组成的图形中含有()条射线。

A.2B.3C.45.用()这几根小棒可以围成一个长方形。

A.6cm、2cm、6cm、2cm B.5cm、3cm、5cm、2cm C.5cm、2cm、6cm、6cm二、填空题6.看一看,写一写,填一填。

(1)(2)个十个一7.(如图)把底面半径3厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体。

这个长方体的表面积是平方厘米,体积是立方厘米。

8.一些相同的小方块放在桌面上,小明从正面、上面、左面三个方向观察,图形都是一样的(如图)。

这些小方块最多有个,最少有个。

9.求角的度数.∠2=°10.观察下列各数组成的三角形,根据各数阵的排列规律,写出第五行的数(从左到右填写)11.求下面花园的面积与周长.周长m面积m212.数一数,填一填。

个,个,个,个。

13.把一个棱长为4dm的正方体木块外面涂上红色,然后切割成棱长是1dm的小正方体,一面涂红色的小正方体有块,两面涂红色的小正方体有块。

14.在下图中,一共有个小正方体,从面看到的形状是。

三、作图题15.下面是一个正方形,共16个方格。

其中有4个方格中分别画了一只小兔,请你把这个正方形分成大小、形状完全相同的4块,使每一块中都有1只小兔应怎样分割?(画粗线)16.根据要求在下列图形中分别画一条线段.(1)将图1分成两个钝角三角形.(2)将图2分成一个平行四边形和一个三角形.四、解答题17.填一填,想一想18.找规律填数.19.观察下面数的排列规律。

小学奥数几何专地题目

小学奥数几何专地题目

小学几何面积问题一 姓名引理:如图1中;P 是AD 上一点,连接PB,PC 则S △PBC =S △ABP +S △pcD =21S ABCD 1,是PC △ABP =4,求:平行四边形ABCD 的面积 4..四边形ABCD 中,BF=EF=ED,如图1 若S 四边形ABCD 则S 阴 =2若S △AEF + S △BFC =15 则S 四边形ABCD =3若S △AEF= 3 S △BFC =2 则S 四边形ABCD =5. 四边形ABCD 的对角线BD 被E,F,G 三点四等份,如图若四边形AECG=15 则S 四边形ABCD =6.四边形ABCD 的对角线BD 被E,F,G 三点四等份, 则S 四边形ABCD =7.若ABCD 为正方形,F 是DC 的中点,已知:S △BFC = 11则S 四边形ADFB =2 S △DFE =3 S △AEB =8.直角梯形ABCD 中.AE=ED,BC=18,AD=8,CD=6,且=小学几何面积问题二姓名 1.如图S △AEF= 2, AB=3AE CF=3EF 则S △ABC=2. 如图S △BDE=30 ,AB=2AE, DC=4AC图1 适应长方形、正方形BB ABE AB第1题 第2题B C则S△ABC=3.正方形ABCD中,E,F,G为BC边上四等份点,M,N,P为对角线AC上的四等份点如图若S正方形ABCD=32 则S△NGP=4.已知:S△ABC=30 D是BC的中点AE=2ED 则S△BDE=5. 已知:AD=DB DE=3EC AF=3FE若S△ABC=160求S△EFC=6.已知:在△ABC中,FC=3AF EC=2BE BD=DF 若S△DFE=3则S△ABC=为平行四边形,AG=GC,BE=EF=FC,若S△GEF=2,则 S ABCD =是梯形,AD ABCD 是梯形,AD如图若△DFE的面积等于1 则△ABC的面积为第11题小学几何面积问题三姓名CBCFC1.在梯形ABCD中,AD 在梯形ABCD中,AD梯形ABCD中,ADA若直线L1图二△ACM的AC边上的高H1是△NCB的CB边上的高H2的一半,且AC=CB,若S△NBC =100 则S△ACM=3.把下面的三角形分成三个小三角形,4.△ABC是等边三角形,AD是BC边上的高,若S△ABC =2,则S△=5. △ABC是等边三角形,D是AB的中点,且DH垂直于BC,H为垂足.若S△BDH =2,则S△ABC=CEA FC D Bj F小学几何面积问题四 姓名1.在△ABC 中,AE=BE,BD=2DC,FC=3AF 若△ABC 的面积为1,则S △EFD =2.△ABC 中,三边BC,CA,AB 上分别有点D,E,F,且BC=3CD AB=2BE AC=4AF若△ABC 的面积为240平方厘米,则S △DEF 平方厘米.3.. 如图BD=DE, EC=3EF AF=2FD若△DFE 的面积等于1 则△ABC4.两个正方形拼成如图,则阴影部分的面积为5.两个正方形拼成如图,则阴影部分的面积为6.三个正方形拼成如图,求阴影部分的面积为7.如图ABCD 是矩形,EF ∥AB 如果S 矩形ABCD =24 则S 阴= 8.在平行四边形ABCD 中,EF ∥AC,若 △AED 是平行四边形.直线CF 与AB 交于E,与DA 于4cm 2,那么三角形EDA 阴影部分的面积是 cm 小学几何面积问题五 姓名1.有两种自然放法,将正方形内接于等腰直角三角形.如果按左图的放法,那么可求得这个正方形面积为441. 如果按右图的放法,那么可求得这个正方形面积应为2.下图是一块长方形的草地,长方形的长是18米.宽是10米.中间有两条宽2米的路,一条是长方形,另一条是平行四边形,那么草地的面积是 平方米.第2题图3.如图大正方形的边长是20厘米.E,F,G,H 分别是各边中点,问:中间小正方形的面积是 平方厘米.4.“十字架”由五个边长相等的正方形拼成,若AB=20厘米. 求:这个“十字架”的面积是 平方厘米.5.一个边长为21厘米的正方形,被分成了四个长方形如图它们的面积分别是这个正方形面积的101,51,103,52在占52的这一4 5D1厘米块长方形里有一个小正方形是阴影部分.求这个阴影部分的面积为 平方厘米. 6.一个面积小于100的整数的长方形中,它的内部有三个小正方形,边长都是整数.已知正方形二的边长是长方形长的2/5,正方形一的边长是长方形宽的1/8;那么图中阴影部分的面积为 平方单位7. 如图所示ABCD 为正方形,且AB 、8.在长方形ABCD 中,长是宽的4倍,对角线BD=17厘米,求该长方形的面积是 .小学几何面积问题六姓名 1.一个长方形ABCD,向它的形外分别作正方形如图若所作的四边形的周长之和为264厘米,面积之和是1378求原来的长方形的面积是 平方厘米.2. 两个长方形叠放如图,小长方形宽是2厘米,A 是大长方形一边的中点,△ABC 是等腰直角三角形,图中阴影部分的面积和为 平方厘米.3.在边长为10的正方形的四边上分别取E,F,G,H.已知E 与G 的水平距离是5厘米,H 与F 的水平距离是4厘米,求四边形EFGH 的面积为 平方厘米.4.长方形ABCD 的长DC 是8厘米,宽方形,5.如图在直角梯形中,AB=10厘米,梯形面积的一半.6.已知:ABCD 是平行四边形,P 在AD 米,CP=6厘米;米.7. 梯形ABCD 与梯形A /B /C /D /大小相同若EC=4厘米,D /C /=24厘米,高EF=5求阴影部分的面积是 8.在一个梯形内,别是6平方厘米和8平方厘米,阴影部分的面积和是7厘米EBA小学几何面积问题七 姓名1.求图中阴影部分的面积2. 求图中阴影部分的面积3.已知:EF 是梯形ABCD 的中位线,4.求梯形的面积5.求下图四边形的面积6.在下图中,长方形内有一个钝角三形,按照图示的数,求这个三角形的面.7.三个边长为10厘米、12厘米、8厘米的正方形拼放在一起,直线BC 将整个图形面积平分,求线段AB 的长. 8. 如图有两个边长都是10厘米的正方形ABCD 和A /B /C /D /,且正方形A /B /C /D /的顶点A /恰好是正方形ABCD 的中心,那么:阴影部分的面积是 平方厘米.小学几何面积问题八 姓名1. 平行四边形ABCD 的面积是32厘米,AD=8B=45○,求阴影部分的面积是平方厘米.2.如图所示平行四边形ABCD 中阴影部分的面积为7平方厘米,那么,面积是 平方厘米.3.平行四边形ABCD 已知:三角形AHB 米,三角形DFC 的面积是6平方厘米.求阴的面积是 平方厘米. 4. 平行四边形ABCD 中有一点E,已知,三角形ABE 的面积是73平方厘米,三角形BEC 的面积是10平方厘米;求阴影部分三角形BED 的面积是 平方厘米.5.一个45度的直角三角板.最长边为12厘米,那么,它的面积为 平方厘米.6.如图长方形内画了一些直线,已知边上有三块面积分别为13平方厘米,35平方厘米,49平方厘米,那么图中的阴影部分面积是 平方厘米.7.在长方形ABCD 中,DE,DF 份,即三角形ADE 的面积等于三角形DFC BEDF 的面积.如果这个长方形的面积是54平方厘米,那么三角形BEF 的面积是 平方厘米.8.如图三角形ABC 是等腰直角三角形.它与一个正方形叠放在一起;已知AE,EF,FB,三条线段相等.三角形EFD 阴影部分面积是15平方厘米,求:S △ABC = 小学几何面积问题九姓名1..已知平行四边形ABCD 的面积是18平方厘米形DEF 的面积阴影部分是 平方厘米.2.在直角梯形ABCD 中AD=8厘米,DC=6厘米,BC=10厘米,且S △ADE =S △AFB =S 四AFCE 求三角形EFC 的面积为 平方厘米.DCCEC3.已知P 是长方形ABCD 的对角线上一点,M 为线段PC 的中点,如果三角形APB 的面积是2平方厘米,那么三角形BMC 的面积是 平方厘米. 4.长方形ABCD 的面积是48平方厘米; S △ABE =8cm 2 S △AFD =6cm 2求三角形EFC 的 面积是 平方厘米.5. 如图长方形ABCD 中,宽AD=6厘米,长DC=8厘米;E 在DC 的延长线上,AE 交BC 于F 点,如果三角形BFE 的面积是8平方厘米;求:阴影部分的面积是 平方厘米.6.把四边形ABCD 的各边延长一倍,得到一个大四边形A /B /C /D /,如果四边形ABCD 的面积是3平方厘米,那么大四边形A /B /C /D /的面积是 平方厘米.7.四边形ABCD 两条对角线交于E,延长CA 到F,使AF=AE;延长DB 到E,使BE=DE.如果四边形ABCD 的面积是3平方厘米. 求三角形EFG 的面积为 平方厘米.8.如图△ABC 中BD=2DC,AE=2ED,如果FC=12厘米. 那么:AF= 厘米.9.如图△ABC 中,△AEF,△ABE,△EBD 的面积分别是5cm 2,10cm 2,8cm 2 求四边形EDCF 的面积是 平方厘米.小学几何面积问题十 姓名1.如图长方形ABCD 中,AB=15厘米,BC=8厘米,三角形AFD 的面积比三角形FEC 的面积大30平方厘米,求CE 的长是 厘米.2. 如图正方形ABCD 中,边长为6厘米,三角形AFD FEC 的面积小6平方厘米,求CE 的长是 厘米.3.如图ABCD 是长方形,AD=4厘米,AB=9厘米,阴影部分△DEF 的面积是6平方厘米,求梯形ABED 的面积是平方厘米.4.如图,已知阴影部分的面积是120平方厘米,E,F 分别是AB,BC 的中点,长方形宽AB 为16厘米,那么,长方形的长AD 为 厘米.5.如图,ABCD 是梯形,BECE,AD=9厘米, BE ⊥EC,BE=8米,EC=6厘米.求这个梯形的面积是 平方厘米. 6.长方形ABCD 中,E 为BC 的中点, 阴影部分△AFD 的面积是4平方厘米.是 平方厘米.7.正方形ABCD 中,E 为BC 的中点,F 为DC 的中点 已知正方形边长是5厘米.则阴影部分△AGD 积是 平方厘米.8. 正方形ABCD 中,E 为BC 上的四等份点,F 为DC 的中点已知正方形边长是4厘米.则阴影部分△AGB 的面积是 平方厘米.。

最新小学奥数之立体几何问题

最新小学奥数之立体几何问题

立体图形⑴ 立体图形的表面积和体积公式长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED BA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?改.又是多少?【例 2】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)练习:在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 3】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例 4】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?(锯一次增加两个面)练习.一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.表面积最小:互相重合的面最多时表面积最小【例 5】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?体积:例1. 如图11-6,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?例2. 某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如图11-9所示在三个方向上加固.所用尼龙编织条的长分别为365厘米、405厘米、485厘米.若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?⑵不规则立体图形的表面积整体观照法例1. 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.例2. 如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.例3.把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.例4.用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?例5.下图是由18个边长为1厘米的小正方体拼成的,求它的表面积。

小学奥数专题之几何专题

小学奥数专题之几何专题

小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。

3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。

已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。

解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学几何面积问题一姓名引理:如图1ABCD 中。

P 是AD 上一点,连接PB,PC 则S △PBC =S △ABP +S △pcD =21S ABCD1.已知:四边形ABCD 为平行四边形,图中的阴影部份面积占平行四边形ABCD 的面积的几分之几?2. 的面积为18,E 是PC 的中点,求图中的阴影部份面积3. 在中,CD 的延长线上的一点E ,DC=2DE,连接BE 交AC 于P 点,(如图)知S △PDE =1, S △ABP =4,求:平行四边形ABCD 的面积4..四边形ABCD 中,BF=EF=ED,(如图)(1) 若S 四边形ABCD =15则S 阴 = (2)若S △AEF + S △BFC =15 则S 四边形ABCD =(第一题图)(3)若S △AEF= 3 S △BFC =2 则S 四边形ABCD =5. 四边形ABCD 的对角线BD 被E,F ,G 三点四等份,(如图)若四边形AECG=15 则S 四边形ABCD =E P 图1ADCB (适应长方形、正方形)BGB F C A E D6.四边形ABCD 的对角线BD 被E,F ,G 三点四等份,(如图)若阴影部份面积为15 则S 四边形ABCD =7.若ABCD 为正方形,F 是DC 的中点,已知:S △BFC = 1 (1)则S 四边形ADFB =(2) S △DFE =(3) S △AEB =8.直角梯形ABCD 中.AE=ED,BC=18,AD=8,CD=6,且BF=2FC,S △GED =S △GFC .求S 阴=小学几何面积问题二姓名 1.如图S △AEF= 2, AB=3AE CF=3EF 则S △ABC=2. 如图S △BDE=30 ,AB=2AE , DC=4AC 则S △ABC=3.正方形ABCD 中,E,F,G 为BC 边上四等份点, M,N,P 为对角线AC 上的四等份点(如图) 若S 正方形ABCD=32 则S △NGP=4.已知:S △ABC=30 D 是BC 的中点 AE=2ED 则S △BDE=ACBD第1题第2题5. 已知:AD=DB DE=3EC AF=3FE 若S △ABC =160 求S △EFC =6.已知:在△ABC 中,FC=3AF EC=2BE BD=DF 若S △DFE=3则S △ABC=7.ABCD 为平行四边形,AG=GC,BE=EF=FC,若S △GEF =2,则S ABCD =8.ABCD 是梯形,AD // BC(如图)则S △AOB= S △AOD= (第8题)9. ABCD 是梯形,AD // BC(如图)则S △DOC= S △BOC= (第9题)10.ABCD 是梯形,AD // BC(如图),且BO=3OD, S △AOB=15则S 梯ABCD=(第10题)BACACC CB CCCCB C L 2L 1N11. 如图BD=DE, EC=3EF AF=2FD若△DFE 的面积等于1 则△ABC 的面积为(第11题)小学几何面积问题三姓名1.在梯形ABCD 中,AD//BC,图中阴影部分的面积为4,OC=2AO, 求 S 梯ABCD =2在梯形ABCD 中,AD//BC,S △BOC=14 OC=2AO 求 S 梯ABCD =3. 在梯形ABCD 中,AD//BC,S △AOB=14 OC=3AO 求 S 梯ABCD =4.在梯形ABCD 中,AD//BC,图中阴影部分的面积为30,OC=3AO,S △AOB =6求S 空=5.读一读:A 若直线L 1//L 2 (如图一)一.当高不变,底扩大(或缩小)K 倍。

其面积也同时扩大(或缩小)K 倍例:BC=2 AB=4 AB 是BC 扩大2倍而得所以面积Ⅰ就是面积Ⅱ的2倍 (图一)ABC Ⅱ ⅠACBMHHC.若直线L 1//L 2 (如图二)二.当底不变,高扩大(或缩小)K 倍。

其面积也同时扩大(或缩小)K 倍例:AC=BC H 1=2H 2 (图二) 那么:S △NBC =2S △MAC练一练:1如图(一):L 1//L 2 AB=10 BC=5若S △HAB =2.如图(二)△ACM 的AC 边上的高H 1是△NCB 的CB 边上的高H 2的一半,且AC=CB, 若S △NBC =100 则S △ACM =3.把下面的三角形分成三个小三角形,使它们的面积的比为1:2:34.△ABC 是等边三角形,AD 是BC 边上的高,若S △ABC =2,则S △ADC =5. △ABC 是等边三角形,D 是AB 的中点,且DH 垂直于BC ,H 为垂足. 若S △BDH =2,则S △ABC=_ C__B CEAFCDB小学几何面积问题四姓名1.在△ABC 中,AE=BE,BD=2DC,FC=3AF 若△ABC 的面积为1,则S △EFD =2.△ABC 中,三边BC,CA,AB 上分别有点D,E,F,且BC=3CD AB=2BE AC=4AF 若△ABC 的面积为240平方厘米,则S △DEF 平方厘米.3.. 如图BD=DE, EC=3EF AF=2FD若△DFE 的面积等于1 则△ABC 的面积为4.两个正方形拼成如图,则阴影部分的面积为______。

5.两个正方形拼成如图,则阴影部分的面积为______。

6D CFE BA6.三个正方形拼成如图,求阴影部分的面积为______。

7.如图ABCD是矩形,EF∥AB如果S矩形ABCD=24 则S阴=8.在平行四边形ABCD中,EF∥AC,若△AED的面积为72平方厘米,则S△DCF=9.ABCD是平行四边形.直线CF与AB交于E,与DA的延长线交于F,连BF,若三角形BEF的面积等于4cm2,那么三角形EDA(阴影部分)的面积是 cm2小学几何面积问题五姓名1.有两种自然放法,将正方形内接于等腰直角三角形.如果按左图的放法,那么可求得这个正方形面积为441. 如果按右图的放法,那么可求得这个正方形面积应为2.下图是一块长方形的草地,长方形的长是18米.宽是10米.中间有两条宽2米的路,一条是长方形,另一条是平行四边形,那么草地的面积是平方米.44 5jF(第2题图)3.如图大正方形的边长是20厘米.E,F,G,H 分别是各边中点,问:中间小正方形的面积是 平方厘米.4.“十字架”由五个边长相等的正方形拼成,若AB=20厘米.求:这个“十字架”的面积是 平方厘米.5.一个边长为21厘米的正方形,被分成了四个长方形(如图)它们的面积分别是这个正方形面积的101,51,103,52在占52的这一块长方形里有一个小正方形是阴影部分.求这个阴影部分的面积为 平方厘米.6.一个面积小于100的整数的长方形中,它的内部有三个小正方形,边长都是整数.已知正方形(二)的边长是长方形长的2/5,正方形(一)的边长是长方形宽的1/8。

那么图中阴影部分的面积为 (平方单位)cmCBC1厘米CBDA7. 如图所示ABCD 为正方形,且AB//EF ,BF=1厘米 则:阴影部分的面积= 平方厘米.、8.在长方形ABCD 中,长是宽的4倍,对角线BD=17厘米,求该长方形的面积是 .小学几何面积问题六 姓名1.一个长方形ABCD ,向它的形外分别作正方形(如图)若所作的四边形的周长之和为264厘米,面积之和是1378平方厘米,求原来的长方形的面积是 平方厘米.2. 两个长方形叠放如图,小长方形宽是2厘米,A 是大长方形一边的中点,△ABC 是等腰直角三角形,图中阴影部分的面积和为 平方厘米.3.在边长为10的正方形的四边上分别取E,F,G,H.已知E 与G 的水平距离是5厘米,H 与F 的水平距离是4厘米,求四边形EFGH 的面积为 平方厘米.EDCBFABA10厘米FED'C'B'A'DCBA8平方厘米6平方厘米DCBAPDCBA684.长方形ABCD 的长DC 是8厘米,宽AD 是4厘米. EFCA 也是长方形,它的面积是多少平方厘米?答:是 平方厘米.5.如图在直角梯形中,AB=10厘米,阴影部分的面积是这个直角梯形面积的一半.求这个直角梯形面积是 平方厘米6.已知:ABCD 是平行四边形,P 在AD 上, BP ⊥CP,且BP=8厘米,CP=6厘米。

求图中的阴影部分的面积 平方厘米.7. 梯形ABCD 与梯形A /B /C /D /大小相同,如图重合(叠) 若EC=4厘米,D /C /=24厘米,高EF=5厘米. 求阴影部分的面积是 平方厘米.8.在一个梯形内,有两个三角形的面积分别是6平方厘米和8平方厘米,梯形的下底长是上底长的2倍,求:阴影部分的面积和是 平方厘米.8平方厘米12厘米4厘米EDCBA24cm28cm2EDCBAGC7厘米C21厘米小学几何面积问题七姓名1.求图中阴影部分的面积2. 求图中阴影部分的面积3.已知:EF 是梯形ABCD 的中位线,求梯形ABCD 的面积4.求梯形的面积5.求下图四边形的面积B'EDFA6.在下图中,长方形内有一个钝角三角形,按照图示的数,求这个三角形的面积.7.三个边长为10厘米、12厘米、8厘米的正方形拼放在一起,直线BC 将整个图形面积平分,求线段AB 的长.8. 如图有两个边长都是10厘米的正方形ABCD 和A /B /C /D /,且正方形A /B /C /D /的顶点A /恰好是正方形ABCD 的中心,那么:阴影部分的面积是 平方厘米.小学几何面积问题八姓名1. 平行四边形ABCD 的面积是32厘米,AD=8厘米,∠B=45○,求阴影部分的面积是 平方厘米.2.如图所示平行四边形ABCD 中,CH=DE=FB=GC ,如果阴影部分的面积为7平方厘米,那么,这个平行四边形的面积是 平方厘米.D354913FEDCBA3.平行四边形ABCD 已知:三角形AHB 的面积是8平方厘米,三角形DFC 的面积是6平方厘米.求阴影部分的面积是 平方厘米.4. 平行四边形ABCD 中有一点E ,已知,三角形ABE 的面积是73平方厘米,三角形BEC 的面积是10平方厘米。

求阴影部分三角形BED 的面积是 平方厘米.5.一个45度的直角三角板.最长边为12厘米,那么,它的面积为 平方厘米.6.如图长方形内画了一些直线,已知边上有三块面积分别为13平方厘米,35平方厘米,49平方厘米,那么图中的阴影部分面积是 平方厘米.7.在长方形ABCD 中,DE,DF 把这个长方形平均分成了三份,即三角形ADE 的面积等于三角形DFC的面积等于四边形BEDF 的面积.如果这个长方形的面积是54平方厘米,那么三角形BEF 的面积是 平方厘米.FB10厘米E6厘米DCFCB8.如图三角形ABC 是等腰直角三角形.它与一个正方形叠放在一起。

相关文档
最新文档