坡度、坡角

合集下载

沪科九年级数学上册第23章2 第4课时 坡角、坡度问题

沪科九年级数学上册第23章2 第4课时 坡角、坡度问题
2m .
(3)若斜坡AB的坡度 i = 1∶2.5,l = 5 m,则 h =
B
h
C
l
A
知识回顾
利用解直角三角形的知识解决实际问题的一般过程:
(1)将实际问题抽象为数学问题;(画出平面图形,转
化为解直角三角形的问题)
(2)根据条件的特点,适当选用锐角三角函数等去解直
角三角形;
(3)得到数学问题的答案;
k
x2 x1
α
O
x
1.如图,直线y=2x+1向上的方向与x轴的正方向所夹的锐角为α.那么
(1)tan α=
2
;(2) sin α=
2 5
5 ;(3) cos α=
y
α
O
x
5
5
.
2. 在 平 面 直 角 坐 标 系 的 第 一 象 限 中 , 有 一 点 P(x , y) , 记
r=|OP|= ² + ².
要计算斜坡AB的坡角α,其中坡度与坡角之间的关系是tan α=i=1:3;
要计算AD,又有AD=AE+EF+FD,EF=BC=6 m,只要再分别求出AE和FD即可;
还要计算AB,在Rt△ABE中求解即可.
α
β
E F
A
23
6
B C
D
解:分别过点B、C作垂线,交AD于E、F点,垂足分别为E点、F点,则有
D
2.如图,水库大坝的横断面是四边形ABCD,BC∥AD,坝顶宽为6 m,
坝高为23 m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i'=1∶2.5,求:
(1)斜坡AB的坡角α的值(精确到1°);
(2)坝底宽AD和斜坡AB的值(精确到0.1 m).

坡度与坡角解析

坡度与坡角解析

第二步:利用正弦,通过坡角、斜边求对边

M
牛刀小试
1、某水坝的坡度为i = 1∶ 3 ,则坡角为 30°。
2、已知 ABC 中,∠C = 90°, ∠A的坡度i=1∶1, 则
∠A= 45° 。 第一二题:利用正切,通过坡度求坡角
3、如图,高2米的某地下车库的入口处有斜坡AB,其坡度
i=1∶2,则AB的长为 2 5 米。 B 第一步:利用正切,通过坡度
P
lM
查表可求得 ∠α 约为29°3′ ;第一步:利用正切,通过坡度求坡角
在直角三角形PMN中, ∠M=90°∠P= 29°3′ 。 PN=240m.由于NM是∠P的对边,PN是斜边,因此,
sin
α
=
NM PN
=
NM 240
.
即MN=
240·sinα
;可求
N
得 NM 240sin 293 116.5m.. 240米
坡度越大,山坡越陡.
(1)
(2)
自学指导
例6.一山坡的坡度i=1:1.8,小刚从山坡脚下点P上 坡走了240m到达点N,他上升了多少米(精确到 0.1m)?这座山坡的坡角是多少度(精确到1')?
分析
N
已知坡度i = 1:1.8,用α 表示坡角的大小,
h
由于 tan α =
1 1.8
0.5556.

5、斜坡的坡度是1:3,斜坡长=100米,求斜坡高为
_______米。
如果桃源水库某大坝的横断为等腰梯形,
大坝的顶宽(即等腰梯形的上底长)为11.6m,
巩固练习
大坝的坡度i=1:1.6,等腰梯形的高为12m.你能 求出坝基的底宽AB和坡角α吗?

坡度 坡角分析

坡度  坡角分析
B
2.8米
C
A
D
一段河坝的断面为梯形ABCD,BC=4.5米, 。 4米,试根据图中的数据,求出坝底宽 高为 AD。
B i=1:2 A F C
i=1:3
E
D
ቤተ መጻሕፍቲ ባይዱ 、
达标测试
1、斜坡的坡比是1: 3 , 则坡角α=______度。 2、如图,梯形 ABCD是拦水坝的横断面图(图中的i 1 : 3是指坡面 的铅垂高度DE与水平宽度CE的比),B 60° , AB 6,AD 4, 求拦水坝的横断面 ABCD 的面积。
解直角三角形(2)
---------坡度 坡角
学习目标:
1、理解坡度(坡比)、坡角的概念。 2、会运用解直角三角形有关知识解决与坡度、 坡角有关的实际问题。
理解概念
坡面的铅垂高度( h)和水平长度(l )的比值。 坡度(坡比):
记作i
h 即i = l
坡角: 坡面与水平面的夹角,记作α ,
h i tan l
α
L
h
1、斜坡的坡比是1:1 ,则坡角α=______度。
2、斜坡的坡角是600 ,则坡比是 _______。 3、传送带和地面所成的斜坡的坡比为1:2,把物体 从地面送到离地面9米高的地方,则物体通过的路 程为 _______米。
一段铁路路基的横断面为等腰梯形ABCD,路基顶宽 BC为2.8米,路基高为1.2米,斜坡AB的坡度i=1:1.6 , 求(1)路基的下底宽 (2)坡角;
A D
i 1: 3
B
C
F E (2题图)
本节课你有什么收获? 课堂小结:
(1)内容总结:
坡角和坡度的概念: 坡角与坡度之间的关系是:
h i tan l

28.2 应用举例 方位角、坡度、坡角

28.2 应用举例 方位角、坡度、坡角
解:设 BC=x 米,在 Rt△ABC 中,∠CAB=180°-∠EAC=50°,所以 AB= BC ≈ BC = 5 x(米), tan 50 1.20 6
因为在 Rt△EBD 中,i=DB∶EB=1∶1, 所以 BD=EB,所以 CD+BC=AE+AB, 即 2+x=4+ 5 x,解得 x=12,所以 BC=12 米.
上,则船C到海岸线l的距离是
km. 3
4.(2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供 的方案是水坝加高2米(即CD=2米),背水坡DE的坡度i=1∶1(即DB∶EB=1∶1),如图所示,已 知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin 50°≈0.77, cos 50°≈0.64,tan 50°≈1.20)
探究点二:坡度与坡角问题 【例2】 如图,水坝的横断面为梯形ABCD,已知上底长CB=5米,迎水面坡度为1∶ 面坡度为1∶1,坝高为4米,求:坝底AD和迎水面CD的长及坡角α 和β .
,背3 水
【导学探究】 1.作CE⊥AD,BF⊥AD,由坡度可得,CE∶ DE =1∶ 2.由坡度是坡角的 正切 值可得坡角.
第2课时 方位角、坡度、坡角
一、方位角 1.平面测量时,经常以正北、正南方向为基准描述物体运动的方向,这种表示方向的角叫 做方位角. 2.如图,射线OA,OB,OC,OD分别表示北偏东30°,南偏东70°,南偏西50°,北偏西35°.
二、坡度、坡角 1.坡度:坡面的铅直高度(h)与水平宽度(l)的比叫做坡面的坡度(或坡比),记作 i,即 i= h .
在 Rt△BCD 中,∠CBD=30°,tan 30°= CD = 3 ,所以 CD= 3 BD≈115(km),

坡度和坡角

坡度和坡角

D
4.2米 A
32 °
12.51米
C
28 ° B
9
D
12.51米
C
4.2米 A
32 ° E


28 °
F
B
解:作DE AB,CF AB,垂足分别为E、F .由题意可知
DE CF 4.(2 米),CD EF 12.5(1 米).
在Rt△ADE中, i DE 4.2 tan 32 , AE AE
α
A
EF
D
=184′,AD=132.5 m,AB=23 10 m
3
问题探究
4
如图,坡面的铅锤高度( h)和水平长度( l) 的比叫做坡面坡度(或坡比),记作 i ,即 i h .
l 坡度通常写成 1 : m 的形式,如 i 1 : 6
坡面与水平面的夹角叫做坡角,记作 .
i h:l h
l
5
7
④堤坝横断面是等腰梯形,(如图所示)
若AB=10,CD=4,高h=4,则坡度i=__43___,AD=
____5___;
若AB=10,CD=4,i= 1
5
3
,则h=___5___.
D
C
h
i


AE
F
B
8
例1:如图,一段路基的横断面是梯形,高为4.2 米,上底的宽是12.51米,路基的坡面与地面的倾角 分别是32°和28°.求路基下底的宽.(精确到0.1米)
完成该工程需要多少土方?
ED C
α FA
B
11
解:作DG AB于G,作EH AB于H . CD∥AB, EH DG 5米.
ED C
DG 1 , AG 6米. AG 1.2

解直角三角形的应用——坡度、坡角

解直角三角形的应用——坡度、坡角

3.坡度与坡角的关系:
i=h:l=tanα
坡度越大,坡角就越 大 ,坡面 就越陡
自学检测:
知识点一 坡度与坡角
1.以下对坡度的描述正确的是( B )
A.坡度是指斜坡与水平线夹角的度数
B.斜坡是指斜坡的铅垂高度与水平宽度的比
C.斜坡式指斜坡的水平宽度与铅垂高度的比
D.坡度是指倾斜角度的度数
2、若斜坡的坡角为 5 6 ∘ 1 9 、,坡度i=3:2,则( C )
x- 2
AF =
=
°=
ta n ∠ D A F
ta n 3 0
3 (x - 2 )
AF=BE=BC+CE
即 3 (x - 2) = 2 3 &6.
DE=6米
物体通过的路程为 3 5 .
再试牛刀:
知识点二 坡度、坡角及实际问题
1. 如图,河堤横切面迎水坡AB的坡比是1:
,堤
3
高BC=10m,则坡面AB的长度是( C )
A.15m
B. m 2 0 3
C.20m
D. 1 0 3 m
2、如图是拦水坝的横切面,斜坡AB的水平宽度为
12m,斜面坡度为1:2,则斜坡AB的长为( B )
拓展提升:
如图,某校综合实践活动小组的同学欲测量公园内 一颗树DE的高度,他们在这棵树正前方一座楼亭前 的台阶上A点处测得树顶端D的仰角为30度,朝着这 棵树的方向走到台阶下的点C处,测得树顶端D的仰 角为60,已知A点的高度AB为2米,台阶AC的坡度为 1: 3 ,且B、C、E三点在同一条直线上,请根据以上 条件求出树DE的高度(测角器的高度忽略不计)
A. 4 3 m
B.6 5 m
C. 1 2 5 m

初三上数学课件(华东师大)-坡度与坡角

初三上数学课件(华东师大)-坡度与坡角

h
坡度 (或坡比),记作 i,即 i= l .坡度一般写成 1∶m 的形式.坡面
与水平面的夹角叫做 坡角 ,记作 α,有 i=hl = tanα α 就 越大 ,坡面就 越陡 .
.坡度越大,坡角
1.下列对坡度的描述正确的是( B )
A.坡度是指斜坡与水平线夹角的度数
B.坡度是指斜坡的铅垂高度与水平宽度的比
解:(1)∵FD∥CG,∴∠BDF=∠BAC=45°,∵斜坡 AB 长 60 2米,D 是 AB 的中点,∴BD=30 2米,∴DF=BD·cos∠BDF=30 2× 22=30(米), BF=DF=30 米.∵斜坡 BE 的坡比为 3∶1,∴BEFF= 13,∴EF=10 3米, ∴DE=DF-EF=(30-10 3)米,∴休闲平台 DE 的长是(30-10 3)米; (2)设 GH=x 米,则 MH=GH-GM=(x-30)米,DM=AG+AP=33+30 =63(米),在 Rt△DMH 中,tan30°=MDMH,即x-6330= 33,解得 x=30+21 3, ∴建筑物 GH 的高为(30+21 3)米.
11.为邓小平诞辰 110 周年献礼,广安市政府 对城市建设进行了整改.如图,斜坡 AB 长 60 2 米,坡角(即∠BAC)为 45°,BC⊥AC,现计划 在斜坡中点 D 处挖去部分斜坡,修建一个平行 于水平线 CA 的休闲平台 DE 和一条新的斜坡 BE(下面两个小题结果都保留根号). (1)若修建的斜坡 BE 的坡比为 3∶1,求休闲平台 DE 的长; (2)一座建筑物 GH 距离 A 点 33 米远(即 AG=33 米),小亮在 D 点测得建筑 物顶部 H 的仰角(即∠HDM)为 30°.点 B、C、A、G、H 在同一个平面内, 点 C、A、G 在同一条直线上,且 HG⊥CG,问建筑物 GH 高为多少米?

坡度坡角问题

坡度坡角问题

1、斜坡的坡度为1:3 ,则坡角a=_____. 2、斜坡的坡角为60°,则坡比为______.
3、斜坡的坡长为10米,坡高为5米,则坡比为___, 坡角为______. 4、斜坡的坡度为1:3,斜坡长为100米,则斜坡的 高为______米。
【例1】如图所示,一段路基的横断面是梯形,高 为4.2米,上底的宽是12.51米,路基的坡面与地面 的倾角分别是32°、28°,求路基下底的宽.(精确 到0.1米) 参考数据:tan32°≈0.6249, tan28°≈0.5317
D C
A
32 °
28 °
B
【例2】某商场为方便顾客使用购物车,准备将 滚动电梯的坡面坡度由1:1.8改为1:2.4(如图). 如果改动后电梯的坡面长为13米,求改动后电梯 水平宽度增加部分BC的长.
பைடு நூலகம்
【例3】如图,某防洪指挥部发现长江边一处长 500米,高10米,背水坡的坡角为45°的防洪大堤 (横断面为梯形ABCD)急需加固.经调查论证, 防洪指挥部专家组制定的加固方案是:背水坡面用 土石进行加固,并使上底加宽3米,加固后背水坡 EF的坡比i=1: 3 . (1)求加固后坝底增加的宽度AF; (2)求完成这项工程需要土石多少立方米? (结果保留根号)
学习目标:
1、理解“坡角、坡比(坡度)”意义,掌握坡角、 坡比(坡度)间的关系 2、能根据直角三角形的知识解决与坡角、坡比 (坡度)有关的实际问题;
3、能够借助辅助线解决实际问题,掌握数形结合、 抽象归纳的思想方法.
坡度、坡角
坡面的铅垂高度h和水平宽度的比叫做坡 度(或叫做坡比),一般用i表示.把坡面与 水平面的夹角α叫做坡角.
【2011•随州】如图,防洪大堤的横断面是梯形, 背水坡AB的坡比i=1: 3 ),且AB=20m.身高为 1.7m的小明站在大堤A点,测得髙压电线杆顶端点 D的仰角为30°.已知地面CB宽30m,求髙压电线杆 CD的髙度(结果保留三个有效数字, 3 ≈1.732)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h L α课题: 解直角三角形的应用三
学习目标:
1、 知道坡角、坡比(坡度)的意义.
2、能将有关实际问题转化为解直角三角形的问题
自学自探:
认真看课本第115页到第116页,注意理解坡角、坡度的意义及它们的关系,例题的解题格式。

自学检测:
1、坡面的铅垂高度(h )与水平宽度(L )的比叫做 (或 ),记作,i 即L h i =. 坡度通常写成 的形式.
2、坡面与水平面的夹角叫做 ,记作α.
3、坡度与坡角的关系:
根据定义,你能用坡度来刻画斜坡的倾斜、即陡的程度吗?
答:
4、斜坡的坡度是
,则坡角α=______度
5、斜坡的坡角是450 ,则坡度是 _______
6、斜坡长是12米,坡高6米,则坡度是_______
7、某人沿坡度为i=120m ,则该人升高了 8、水库拦水坝的横断面为梯形ABCD ,背水坡CD 的坡比i=1,•已知背水坡的坡长CD=24m ,求背水坡的坡角α及拦水坝的高度.
教师点拨:
理解坡度坡角的概念,在复杂图形中求解时要结合图形,理解题意,运用所学知识通过构造直角三角形求解。

3:1
当堂检测
1、如图,沿倾斜角为30°的山坡植树,•要求相邻两棵树间的水平距离AC为2m,那么
相邻两棵树的斜坡距离AB约为_______m(•≈1.73)2、如图,防洪大堤的横断面是梯形,坝高AC=6米,背水坡AB的坡度i=1:2,则斜坡
AB的长为_______米.
3.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.
4.(2015•四川广安)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为i FC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.。

相关文档
最新文档