(完整版)双相不锈钢焊接知识

合集下载

双相不锈钢焊接工艺要点

双相不锈钢焊接工艺要点

双相不锈钢焊接工艺要点
双相不锈钢是一种具有很高的耐腐蚀及耐热性能的材料,所以在
工业领域中得到了广泛应用。

焊接是双相不锈钢的常见加工方法之一,下面介绍几个双相不锈钢焊接工艺的要点。

1. 焊接前的预处理:在双相不锈钢板材或管道上进行焊接前,
必须进行严格的加热处理。

预处理温度一般在1000℃以上,时间要根
据板厚、孔径大小、管子长度等因素来确定。

2. 焊接设备:在进行双相不锈钢焊接时,需要使用直流电弧焊
机和专门针对双相不锈钢的焊丝。

其焊丝的成分应该与基材成分一致,以保证焊接质量。

3. 焊接位置:焊接双相不锈钢时,大部分情况下采用横向焊接
的方式。

如果采用竖直位置焊接,需要加大电弧电流和电弧长度,以
保证焊接质量。

4. 焊接工艺:推荐采用氩弧焊接法进行双相不锈钢的焊接,其
中采用保护气体是关键。

氩气压力一般在0.2~0.4MPa之间,其流量大
小应该根据想要达到的焊接速度来调整。

综上所述,焊接双相不锈钢有以下几个要点:焊接前的预处理、
使用专门的设备和材料、适当选定焊接位置和采用氩弧焊接法。

只有
在严格遵守这些要点的前提下,才能够保证焊接质量以及双相不锈钢
的使用寿命。

双相不锈钢焊接

双相不锈钢焊接

MIG 焊接
焊丝
SAF 2304和SAF 2205可选择Sandvik 22.8.3.L,而对于SAF 2507要选择Sandvik 25.10.4.L焊丝。
埋弧焊
焊丝和焊剂
对于焊丝,参见“TIG焊” 对于三种双相不锈钢,推荐Sandvik 15W焊剂。
保护气体
喷射弧:氩气+CO 2 (1-3%),氩气+1-3%O 2 。 短弧:氩气or Ar-He-O 2 混合气
保护气体
氩气 ,氩 气+1 -2 % 氮气 或氩 氦混合 气。
典型参数设置
焊条直径 mm 2.0 2.5 3.25 电流,A 22.9.3.LR 25.10.4.LR 35–55 50–75 70–120 90–160 – 55–85 70–110 110–150 电压, V 22–28 22–28 22–28 22–28
V型坡口
t mm MMA 3–15 TIG 2.5–8 MIG 3–12 SAW* 4–12 d mm 2–3 2–3 2–3 2–3 k α mm 1–2 1–2 1–2 1–2 60–70 60–70 60–70 80–90 α
t d k
U型坡口
标准的不锈钢焊接方法也适用双相不锈钢。 焊接参数及坡口设计的差别将在随后介绍。 t d k mm mm mm MMA >12 TIG >6 MIG >12 SAW* >10
层间温度 无实际限制, 最高250℃ 最高150℃
SAF 2205 SAF 2507
V型坡口
t mm MMA TIG MIG SAW 4–15 2.5–8 5–12 5–12 d mm 1–3 1–3 1–3 1–3 k mm 1–2 1–2 1–2 1–2 α 60–70 60–70 60–70 80–90 α

双相不锈钢焊接工艺要点

双相不锈钢焊接工艺要点

双相不锈钢焊接工艺要点
双相不锈钢焊接工艺要点主要包括以下几点:
1. 选择合适的焊接方法:双相不锈钢可以采用氩弧焊、埋弧焊、激光焊等多种焊接方法,但是要根据具体情况选择合适的焊接方法。

2. 熟练掌握焊接技术:在焊接双相不锈钢时,需要对焊接技术有熟练的掌握,包括预热、加热、焊接速度、电流电压等焊接参数。

3. 保证焊接质量:焊接完毕后需要进行外观检查和力学性能检测,以保证焊接质量。

4. 选择合适的焊接材料:双相不锈钢的焊接材料要选择与基材相同或相近的焊接材料,以避免产生微观裂纹和变形等问题。

5. 焊接过程中保护焊缝:焊接过程中,需要采用适当的保护措施,以避免焊缝污染和氧化。

6. 焊接完毕后进行退火处理:焊接完毕后,需要进行退火处理,以消除残余应力,提高焊接质量和力学性能。

总体来说,双相不锈钢焊接过程中需要掌握一系列的工艺要点,以保证焊接质量和力学性能。

2205双相不锈钢的焊接

2205双相不锈钢的焊接

2205双相不锈钢的焊接不锈钢焊接易出现的缺陷:焊缝区的腐蚀:为防止其发生晶间腐蚀,首先要控制焊缝金属的化学成分。

主要是降低含碳量和添加足够的TI或NB;其次是控制焊缝隙的组织状态——即金相组织。

敏化区腐蚀:是指热影响区是峰值温度处于敏化温度区间内所发生的腐蚀。

刀状腐蚀:只出现在TI或NB类18-8的焊接接头中,并一定是发生器在紧邻焊缝过热区中。

焊接采取的措施:1.合理的选用焊材。

2.控制焊接的输入热能。

3.调整焊接程序。

4.缩短焊接电弧(焊接时尽量不要摆动防止合金元素烧损)5.合理调整焊缝位置在制定焊接参数时要考虑保证输入热在600~18000J/cm内,输入热的计算(J/cm)=电流(A)*电压(V)/焊接速度(cm/min)焊接层数焊条牌号规格D/mm电流I/A电压U/V速度Vcm/min极性1AVESTA2205AC/DC 3.2100~11023~259~11直流反接2AVESTA2205AC/DC 3.2100~11023~259~11直流反接清根AVESTA2205AC/DC 3.2100~11023~259~11直流反接根据标准节点法(ASTME562)对焊缝及执热影响区进行α相数测定。

焊接A体不锈钢与双相不锈钢的区别:不同点:焊接A不锈钢时要适当增加δ相的数量:打乱A的柱状结晶方向,从而避免产生贫Cr区贯穿于晶粒之间;δ相富Cr,而Cr在δ相中容易扩散,碳化铬在δ相内部边缘沉淀,由于供Cr条件好,不会在A晶粒间形成贫Cr层。

所以增加δ相有利于提高焊缝的抗晶间腐蚀能力。

在焊接双相不锈钢时要控制δ相的数量:由于双相不锈钢中δ相较多,如不控制其含量则会产生σ相脆化现象和δ相选择性腐蚀。

不锈钢焊接后:热影响区会出现敏化腐蚀,要控制输入热量,故最后一道焊缝要求焊接输入量要小、且安排在不与介质接触的一面。

双相不锈钢焊接后:要防止晶粒粗化和单相铁素体化。

故最后一道焊缝为了防止晶粒粗化及单相铁素体化,安排在与介质接触的一面。

(完整版)双相不锈钢焊接知识

(完整版)双相不锈钢焊接知识
双相不锈钢焊接知识
1双相不锈钢的成分、组织和性能
1.1 主要成分:Cr、Ni、Mo、N。 其中, Cr、Mo—铁素体形成元素
Ni、N —奥氏体形成元素 N—主要固溶强化元素 Cr、Mo、N—提高耐氯化物点蚀性能 耐点蚀当量:PREN=ω(Cr)+3.3 ω(Mo)+ 16 ω(N)
正常含Mo双相不锈钢: PREN=30~36 超级双相不锈钢: PREN>40
双相不锈钢热裂纹的敏感性比奥氏体不锈钢小得多。这是由于含镍量不高,易形 成低熔点共晶的杂质极少,不易产生低熔点液膜。另外,晶粒在高温下没有急剧长大 的危险。冷裂纹的敏感性也比一般低合金高强钢小得多。 热影响区脆化
双相不锈钢焊接的主要问题不在焊缝,而在热影响区。因为在焊接热循环作用下, 热影响区处于快冷非平衡态,冷却后总是保留更多的铁素体,从而增大了腐蚀倾向和 氢致裂纹(脆化)的敏感性。
⑶ 高 合 金 型 , 25%Cr+(0-2.5%)Cu 双 相 不 锈 钢 : Cr:25-27%
Ni:4-7% Mo:1.5-3.3% N:0.15-0.25%
PREN=32~40 ⑷ 25%Cr超级双相不锈钢:Cr:25-26% Ni:6-7%
Mo:3.5-4% N:0.25-0.28%
PREN>40
在正常焊接条件下一般不会析出,但在制定焊接工 艺时应注意避免HAZ在高温停留时间过长,导致σ相脆化 和失去耐腐蚀性能。
3 双相不锈钢的焊接性
双相不锈钢焊接性兼有奥氏体钢和铁素体钢各自的优点,并减少了其各自的不足, 焊接冷裂纹和热裂纹的敏感性都较小,具有良好的焊接性。通常焊前不预热,焊后不 热处理。由于有较高的氮含量,热影响区的单相铁素体化倾向较小,当焊接材料选择 合理,焊接线能量控制适当时,焊接接头具有良好的综合性能。 热裂纹

双相不锈钢焊接

双相不锈钢焊接

2205双相不锈钢焊接1、初步焊接试验为了了解2205双相不锈钢的性能特点,进行了初步焊接试验,对拟采用的GTAW方法打底、SMA W填充并盖面组合焊接方法焊接接头的理化性能进行测试,初步掌握其力学性能水平,同时对这两种焊接方法的工艺性能进行了解,为制定管道现场焊接工艺方案提供依据。

1.1 试验材料试验母材为瑞典Avesta公司生产的12mm板材,焊材为英国曼彻特公司生产的2205双相不锈钢配套焊材ULTRAMET 2205包括氩弧焊焊丝和手弧焊焊条。

1.2 试验过程及结果对试件加工单面V型坡口,坡口角度65°,钝边尺寸0.5~1.0mm,焊前用丙酮对剖口及其两侧进行清洗,然后进行焊接,焊条在焊前进行了烘干处理,试样、焊接记录已给管材所提供。

1.3 试验结论通过试验可以得出如下初步结论:(1)采用的GTA W方法打底、SMA W填充并盖面组合焊接方法得到的焊接接头的强度、塑性、硬度良好,铁素体含量适中(按WRC图计算),韧性不高,略高于ASTM A923要求的34J;(2)化学成分中抗点蚀元素含量较低,与母材不匹配,尤其是N含量较低。

(3)采用的GTA W方法打底、SMAW填充并盖面组合焊接方法,焊接及背面采用纯氩保护,焊接工艺良好,焊缝背面成型质量好,酸性焊条的电弧稳定、脱渣性良好,无气孔产生,这种组合方法可以在管道施工中应用。

(4)采用的GTA W方法打底、SMA W填充并盖面组合焊接方法,如果背面不加气体保护,焊缝背面严重氧化、焊缝金属表面发渣,成型很差。

可见,采用GTAW打底焊,如果背面不采取气体保护,或者保护效果不良,焊缝成型很差,焊缝及热影响区氧化严重,将严重影响其耐蚀性,背面气体有效保护的实施是2205双相不锈钢管道焊接质量的关键。

(5)采用SMAW打底+SMA W盖面工艺,如果背面不加气体保护,成型较好,但焊缝背面氧化也比较严重。

通过点蚀试验证明,这种氧化色对焊接接头的抗点蚀性能没影响,对背面确实无法通气保护的收口焊缝和焊缝返修可以考虑使用该工艺。

双相不锈钢焊接知识

双相不锈钢焊接知识
2)具有良好的抗点蚀和缝隙腐蚀性能,优于奥氏体不锈钢; 3)有良好的耐腐蚀疲劳和耐磨损腐蚀性能;
4)综合力学性能好。有较高的强度(包括疲劳强度),屈服强度 是普通Cr-Ni奥氏体不锈钢的2倍;
5)焊接性好,热裂倾向小。一般不需要焊前预热和焊后热处理,
可与18-8型奥氏体不锈钢及碳钢进行异种钢焊接; 6) 低铬(ωCr18%)的双相不锈钢热加工温度范围比 18-8 型奥氏
例如:700℃下冷速为70℃/s时, 含N量0.130%的钢,HAZ中α含量达85%; 含N量0.396%的钢,HAZ中α含量仅43%。仍能保持满意的
力学性能和耐腐蚀性能。
Φ(α)为85%
Φ(α)为43%
不同N含量双相不锈钢的HAZ组织
结论: 含 N 量较高的双相不锈钢采用低热输入的焊接
工艺,不会对HAZ 组织产生不良影响,且无需进行焊后固 溶退火处理。
σ相析出 双相不锈钢焊接接头有析出σ相脆化的可能,σ相是铬和铁的金属间化合 物,它的形成温度范围600~1 000℃。不同钢种形成σ相的温度不同,如 00Cr18Ni5Mo3Si2钢在800~900℃,而双相不锈钢00Cr25Ni7Mo3CuN在 750~900℃形成, 850℃最敏感。形成σ相需经一定的时间,一般1~2min萌生, 3~5min σ相增多并长大,因此,焊接时应采用小热量输入,快速冷却。消除 应力处理时,采用较低的温度,如550~600℃为宜。这样可以防止σ相的产生。
根据成分和PREN值分类: ⑴ 低 合 金 型 , 23%Cr 无 Mo 双 相 不 锈 钢 : Cr:23% Ni:4% N:0.1-0.2% Mo:3% N:0.14-0.17% PREN=24~25 PREN=30~36 ⑵ 中 合 金 型 , 22%Cr 标 准 双 相 不 锈 钢 : Cr:22% Ni:5-5.5% ⑶ 高 合 金 型 , 25%Cr+(0-2.5%)Cu 双 相 不 锈 钢 : Cr:25-27% Ni:4-7% Mo:1.5-3.3% N:0.15-0.25% PREN=32~40 ⑷ 25%Cr超级双相不锈钢:Cr:25-26% Ni:6-7% Mo:3.5-4% N:0.25-0.28% PREN>40

双相不锈钢的焊接工艺

双相不锈钢的焊接工艺

双相不锈钢的焊接技术及工艺要求1. 双相不锈钢的特性1.1双相钢亦称奥氏体—铁素体不锈钢,一般认为其铁素40%~60%,其余奥氏体.1.2双相金属组织具有较高的强度和抗腐蚀能力。

1.3双相钢在整个焊接过程容易形成焊缝及热影响区的相位变化。

1.4双相钢物理性能:1.4.1热传导性:碳钢—47; CrNi 钢—15;双相钢—141.4.2.热膨胀:碳钢—12; CrNi钢—17:双相钢—131.5 双相钢中铁索体含量:1.5.1 F<25%:强度下降,抵抗应力腐蚀开裂能力下降。

1.5.2 F>60—70%:降低抗点蚀能力及韧性,增强抗氢致延迟裂纹2. 焊接材料的选用2.1为了确保焊缝焊后奥氏体—铁素体比例的平衡,双相钢的焊接通常选用铬镍含量比母材略高的双相填充金属。

2.2不得采用与母体金属成分一致的焊接材料焊接或母体材料自熔焊接,否则,会造成焊缝金属的双相不平衡,从而导致金属镍过量稀释、铁素体含量过高。

2.3需采用高一级的焊材,应用奥氏体元素(Ni, N)来超合金化。

如母材为2205双相不锈钢的焊接材料一般选用焊材成分为“2309”的牌号。

2.4两种双相不锈钢同种钢焊接的焊丝与焊条见表:(仅供参考)3. 坡口的设计和加工3.1双相钢对接接头坡口的设计、加工应满足焊缝充分焊透又不能烧穿的要求,坡口的设计应避免小角度。

3.2双相钢的焊接都应开坡口、留间隙、加填充金属焊接,禁止焊缝自熔焊接和同材质填充材料焊接。

3.3双相钢焊接时钢水的流动性和润湿性比一般奥氏体钢差,所以,双相钢坡口角度比一般奥氏体钢的坡口角度要大一些,建议手工焊接一般坡口角度30o ~35o ,机械焊接坡口角度一般为35o ~40o .3.4双相钢焊缝坡口一般采用等离子切割+软质砂轮打磨的加工方法加工成形。

双相钢典型坡口形式及匹配焊接方法见下例图示。

焊接方法:SMAW 、FCAW 焊接方法:SAW 焊接方法:FCAW 、FCAW+ SAW 、 FCAW+ SMAW5≤t ≤20mm 5≤t ≤20mm 5≤t ≤20mmA=2.0-2.5 mm B=4~6mm A=4-6 mm B=1.5-2.0mm B=1.5~2.0mm3.5双相钢与CCS异种钢的对接焊缝坡口型式根据双相钢而定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双相不锈钢焊接知识
1双相不锈钢的成分、组织和性能
1.1 主要成分:Cr、Ni、Mo、N。 其中, Cr、Mo—铁素体形成元素
Ni、N —奥氏体形成元素 N—主要固溶强化元素 Cr、Mo、N—提高耐氯化物点蚀性能 耐点蚀当量:PREN=ω(Cr)+3.3 ω(Mo)+ 16 ω(N)
正常含Mo双相不锈钢: PREN=30~36 超级双相不锈钢: PREN>40
焊缝室温组织预测: ⑴ Schaeffler图:
铁素体含量的精度±4% ⑵ DeLong图:
铁素体含量的精度±2% ⑶ WRC1992组织图
—美国焊接研究委员会 推荐
Creq=Cr%+Mo%+1.5×Si%+0.5×Nb% Nieq=Ni%+30×C%+30×N%+0. 5×Mn%
舍夫勒组织图
Creq=Cr%+Mo%+1.5×Si%+0.5×Nb% Nieq=Ni%+30×C%+30×N%+0. 5×Mn%
根据成分和PREN值分类:
⑴ 低 合 金 型 , 23%Cr 无 Mo 双 相 不 锈 钢 : Cr:23% Ni:4%
N:0.1-0.2%
PREN=24~25
⑵ 中 合 金 型 , 22%Cr 标 准 双 相 不 锈 钢 : Cr:22% Ni:5-5.5%
Mo:3% N:0.14-0.17%
PREN=30~36
冷却到1300℃:α→γ 在固态下γ在α晶粒边界形核和生长。
冷却到室温:α+γ
其中,γ相的形态和数量:①化学成分 ②冷却速度
基于TTT图:冷却速度增加→γ相含量减少。
织形态。
在焊缝快速冷却条件下形成的γ相,一般呈魏氏组
合金元素的作用: 合金元素直接影响焊缝金属的组成,Creq越大,Nieq越小,焊缝中
析出相会影响到焊缝金属中的力学性能及耐腐蚀性。
A.当焊缝成分与母材相同时:降低焊缝的冷却速度。 冷却速度过快时,焊缝中γ相含量不足,而α相含量可 超过80%,导致焊缝韧性下降,氢脆敏感性增加。 B.当焊缝的冷却速度难以降低时,提高焊缝中Ni、Mn、N 等奥氏体形成元素含量,其中N的作用最为显著。 通过焊缝过合金化,促使γ相增加,使焊缝获得与母材同 样的组织。 N对α→γ转变的作用:(由TTT图) 例如:焊缝和母材为获得60%α+40%γ的双相组织:要求 焊缝0.219%N,而母材只需0.141%N。 注:焊缝中α相体积分数一般推荐为22-70%。为获得足够 的耐腐蚀性并避免氢致裂纹,α相最大含量应限制在60%。
德龙图
2.2 热影响区的组织转变
早期双相不锈钢:焊后HAZ中α相含量过高,甚至接近单相 α组织(γ<5%),导致脆化和耐腐蚀性下降。
现代双相不锈钢:通过提高N含量和控制Cr/Ni当量,使钢中 α/γ接近于1,保证焊后HAZ不会出现单相α组织。
B=Creq-Nieq-11.59 当B‹7时,焊接热影响区过热区的组织为比较理想的奥氏体 +铁素体的双相组织。但是,单道焊时, B‹7,奥氏体只是在部 分铁素体的晶界析出,晶内析出大量的氮化物,影响钢的塑、 韧性及耐腐蚀性。当 B‹4时,才能保证单道焊时焊接热影响区 过热区的组织为比较理想的奥氏体+铁素体双相组织。但多层焊 时,B‹7仍然有效。
4)综合力学性能好。有较高的强度(包括疲劳强度),屈服强度 是普通Cr-Ni奥氏体不锈钢的2倍;
5)焊接性好,热裂倾向小。一般不需要焊前预热和焊后热处理, 可与18-8型奥氏体不锈钢及碳钢进行异种钢焊接;
6)低铬(ωCr18%)的双相不锈钢热加工温度范围比18-8型奥氏 体不锈钢宽,抗力小,高铬(ωCr25%)的双相不锈钢热加工比 18-8型奥氏体不锈钢困难;
⑶ 高 合 金 型 , 25%Cr+(0-2.5%)Cu 双 相 不 锈 钢 : Cr:25-27%
Ni:4-7% Mo:1.5-3.3% N:0.15-0.25%
PREN=32~40 ⑷ 25%Cr超级双相不锈钢:Cr:25-26% Ni:6-7%
Mo:3.5-4% N:0.25-0.28%
PREN>40
不锈钢的PREN值的比较
1.2 组织 α相(铁素体)+γ相(奥氏体)双相组织,其中α相与γ相
的体积分数之比(α/γ)约各占50%。 其中:铁素体—提供高的屈服强度、耐氯化物应力腐蚀性能;
奥氏体—提供好的韧性和耐全腐蚀性能。 α相含量过高—引起脆化; γ相含量过高—降低耐应力腐蚀性能。
1.3 性能 1)具有良好的耐氯化物应力腐蚀的能力; 2)具有良好的抗点蚀和缝隙腐蚀性能,优于奥氏体不锈钢; 3)有良好的耐腐蚀疲劳和耐磨损腐蚀性能;
Creq=ωCr+ωMo+1.5ωSi
Nieq=ωNi+30ωC+N+0.5ωMn
2 双相不锈钢的焊接冶金
2.1 焊缝凝固与奥氏体形成 母材组织:(50%)Vα相+(50%)Vγ相,其中γ相呈长条
状分布在α相基体中。 焊缝组织:焊接熔化后形成铸态组织。
Fe-的重要问题: ——如何控制焊接热影响区的组织?
问题一:HAZ中α相析出过多问题。 近缝HAZ加热至接近熔化温度,处于α单相组织状态; 随后冷却速度较快,α→γ转变来不及进行,在HAZ中保有 较多α相。 影响因素:1)钢中N含量
7)双相不锈钢比18-8型奥氏体不锈钢加工硬化效应大; 8)与奥氏体不锈钢相比,双相不锈钢的热导率大,线胀系数小; 9)仍有高铬铁素体不锈钢的各种脆化倾向,不宜在高于300°C 的温度下使用。若含铬量较低,脆性相析出危害性较小。
奥氏体-铁素体双相不锈钢的性能主要受铁素体和奥氏体比例的 影响,奥氏体和铁素体各占50%时,具有良好的耐腐蚀性和 焊接性。在平衡状态下,两相的比例主要由钢中的合金元素, 即铬当量和镍当量来决定。
奥氏体含量越少。 合金元素在铁素体和奥氏体所占的比例也不一样。
焊接参数的作用: 由于焊接参数影响到冷却速度,即影响到合金元素的扩散,所以, 也影响到合金元素在两相中的分配,焊接线能量越大,冷却速度越 慢,由于扩散比较充分,铁素体向奥氏体转变进行的就比较充分,
奥氏体含量增加,合金元素在两相中的含量差别也会拉大。 析出相的问题:
相关文档
最新文档