13平面向量数量积最值问题的求解策略教师版
求解平面向量最值问题的几个措施

探索探索与与研研究究图1B (-1,0),C (1,0),设x ,3-y ),PB =(-1-+PC )=2x 2-23y +2直线BC 为x 轴、.求得若∠AOB =150°,OA +n OB ,则3m -n 33θ),其中0°≤θ≤150°.设A (1,0),则θ=2sin æèöøθ+π3,2.故选C .以圆心为原点,两.设将问题我们无法快速求将目将问题转化为函数求得平面向量的最θ,向量c =æèöøcos 2θ2⋅,cos θ=2x -1,图2探索探索与与研研究究可得|c |2=[xa +(1-x )b]2=x 2+2x (1-x )(2x -1)+(1-x )2=-4x 3+8x 2-4x +1.令f (x )=-4x 3+8x 2-4x +1,x ∈[0,1],则f ′(x )=-4(3x -1)(x -1),由f ′(x )=0,得x =13或1.当0≤x <13时,f ′(x )<0,此时函数单调递减;当13<x <1时,f ′(x )>0,此时函数单调递增.所以f (x )min =f æèöø13=1127,故|c |min=.通过换元,将|c |2的表达式转化为关于x 的一元三次函数式.再对函数求导,根据导函数与单调性之间的关系判断出函数的单调性,求得函数的最小值,即可求得|c |min .三、利用向量的几何意义向量兼有数与形的“双重身份”,是联系代数与几何的纽带.在求解平面向量最值问题时,可根据平面向量的几何意义,如加法的三角形法则、平行四边形法则,向量的模即为向量所在线段的长,两个向量的数量积即为一个向量的模与其在另一个向量所在方向上的投影的乘积,来构造几何图形,进而根据图形的几何特征与性质求最值.例4.已知P 是边长为2的正六边形ABCDEF 内的一点,则 AP ∙AB 的取值范围是().A.(-2,6)B.(-6,2)C.(-2,4)D.(-4,6)图3解:过C 作CC ′⊥AB ,设垂足为C ′,过F 作FF ′⊥AB ,设垂足为F ′,如图3所示.因为|| AB =2,则 AP 在 AB 方向上的投影为||AP cos ∠PAB ,当P 与C 重合时,|| AP cos ∠PAB 的最大值为|||| AC ′=3,当P 与F 重合时,|| AP cos ∠PAB 的最小值为-||||F ′A =-1,故-1<|| AP cos ∠PAB <3,由向量数量积的几何意义可知, AP ⋅ AB 即为AB 的模与 AP 在 AB 方向上的投影的乘积,即 AP ⋅AB =|| AB ⋅||AP cos ∠PAB ,所以 AP ∙AB 的取值范围是(-2,6).故选A.解答本题,需灵活运用向量数量积的几何意义:AP ∙ AB 即为 AB 的模与 AP 在AB 方向上的投影的乘积,即 AP ∙ AB =|| AB ⋅|| AP cos ∠PAB .再添加辅助线,根据正六边形的结构特征,求得||AP cos ∠PAB 的取值范围,即可解题.四、利用等和线的性质等和线有如下性质:①当P 0在直线AB 上,且OP 垂直于等和线时,若 OP =k OP 0=x OA +yOB (k ,x ,y ∈R),则x +y =k .根据相似三角形的性质可知等和线之间的距离之比为|k |=|| OP|| OP 0(如图4).②当等和线恰为直线AB 时,k =1;③当等和线在点O 与直线AB 之间时,k ∈(0,1);④当直线AB 在点O 与等和线之间时,k ∈(1,+∞);⑤当等和线经过点O 时,k =0;⑥当两等和线关于点O 对称时,对应的两个定值k 互为相反数.利用等和线的性质求解最值问题的一般步骤为:(1)找到等和线为1的情形;(2)平移等和线到可行域内;(3)利用平面几何知识求出最值.例5.在矩形ABCD 中,AB =1,AD =2,动点P 在以C 为圆心且与BD 相切的圆上.若 AP =λ AB +μAD ,则λ+μ的最大值为().A.3B.2C.2D.25图5解:如图5,设BD 与圆的相切点为P 1,则点A 到BD 的距离等于|P 1C |.当P 在P 1处时,λ+μ=1;当P 在P 1关于点C 对称的点P 2处时,λ+μ最大,此时(λ+μ)max =|P 1P 2|+|P 1C ||P 1C |=3.故选A .平面向量OP 满足: OP =λ OA +μ OB (λ,μ∈R),则点P 在直线AB上或在平行于AB 的直线上,可知图449一一一一一一一一一一一一一一一一一一λ+μ=k (定值),此时直线AB 及平行于AB 的直线为等和线,即可根据等和线的性质求得最值.五、利用极化恒等式极化恒等式:a ⋅b =14[(a +b )2-(a -b )2]是解答向量问题的重要工具.当遇到共起点的两向量的数量积最值问题时,可以考虑根据三角形法则和平行四边形法则,将两个向量的数量积的最值问题转化为两个向量的和、差的最值问题,利用极化恒等式求解.例6.如图6,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且 AD =λ BC ,AD ∙ AB =-32,则实数λ的值为,若M ,N 是线段BC 上的动点,且MN =1,则DM ∙DN 的最小值为.图6解:由 AD ∙ AB =-32,得(λ BC )∙ AB =λ| BC || AB |cos ∠B=λ×6×3æèöø-12=-32,解得λ=16.分别过D ,A 作BC 的垂线,垂足分别为E ,F ,由极化恒等式得,DM ∙ DN =||DQ 2-||QM 2=|| DQ 2-æèöø122≥|| DE 2-æèöø122=|| AF 2-æèöø122=132.一般地,若在三角形ABC 中,M 为BD 的中点,由极化恒等式可得: AB ∙ AD =| AM |2-| BM |2;在平行四边形ABCD 中, AB ∙ AD =14(| AC |2-| BD |2),这样就将向量的数量积问题转化为两条线段长度的平方差问题.解答本题,需先找到定点,再根据动点的变化情况求最值可见,求解平面向量最值问题的措施很多.解题的关键是要根据解题的需求,建立合适的平面直角坐标系和关系式,灵活运用函数的性质、等和线的性质、向量的几何意义、极化恒等式进行求解.(作者单位:云南省曲靖市会泽县茚旺高级中学)探索探索与与研研究究比较函数式的大小问题通常会综合考查一次函数、二次函数、指数函数、对数函数、幂函数的性质和图象.解答这类问题的常用方法有:特殊值法、放缩法、中间值法、基本不等式法等.在解题时,若能选用恰当的方法,就能达到事半功倍的效果.本文主要谈一谈下列三种比较函数式大小的思路.一、利用重要不等式在比较函数式的大小时,可根据已有的经验和不等式结论来进行比较,这样能有效地提升解题的效率.常用的重要不等式有:(1)基本不等式及其变形式:若ab >0,a 、b >0,则a +b ≥2ab 、21a +1b≤ab ≤a +b 2≤,当且仅当a =b 时等号成立;(2)切线不等式:e x +1、ln x ≤x -1;(3)柯西不等式:a ,b ,x ,y ∈R ,()a2+b 2()x 2+y 2≥(ax +by )2,(ax -by )2≥()a 2-b 2()x 2-y 2;等等.例1.设a =0.1e 0.1,b =19,c =-ln 0.9,请比较a ,b ,c的大小.解:由于b =19=109-1,c =-ln 0.9=ln 109,令x =-0.1,由切线不等式:e x ≥x +1,当且仅当x =0时等号成立,可得e -0.1>-0.1+1=0.9,则e 0.1<109,所以0.1e 0.1<0.1×109=19,即a <b ,令x =109,由切线不等式:e x≥x +1,得:ln 109<109-1=19,即c <b ,而e 0.1>0.1+1=1.1,则0.1e 0.1>0.1×1.1=0.11,由重要不等式:当x >1时,恒有ln x <12(x -1x )成立,可知-ln 0.9=ln 109<12(109-910)=19180<0.11,50。
平面向量的最值问题

平面向量的最值问题
平面向量的最值问题指的是求平面向量的最大值和最小值的问题。
在求解平面向量的最值问题时,一般可以通过以下几种常用的方法进行求解:
1. 向量的模的最大值和最小值:对于平面向量a=(x,y),其模的最大值和最小值分别为:
最大值:|a| = √(x^2 + y^2)
最小值:|a| = 0
2. 向量的投影的最大值和最小值:对于平面向量a=(x,y),其在某个方向上的投影的最大值和最小值分别为:
最大值:|proj_u a| = |a|·cosθ,其中θ为a与u的夹角
最小值:|proj_u a| = 0
3. 向量的点乘的最大值和最小值:对于平面向量a=(x1,y1)和b=(x2,y2),其点乘的最大值和最小值分别为:
最大值:a·b = |a|·|b|·cosθ,其中θ为a与b的夹角
最小值:a·b = |a|·|b|·cosθmin,其中θmin为a与b的夹角的最小值,即θmin=0时
需要注意的是,以上方法中的最大值和最小值都是相对于给定的条件和向量范围的。
具体在实际问题中求解向量的最值时,需要根据具体的条件和向量的性质进行分析和计算。
平面向量数量积运算的解题方法和策略word资料5页

平面向量数量积运算的解题方法与策略平面向量数量积运算一直是高考热点内容,它在处理线段长度、垂直等问题的方式方法上尤为有突出的表现,而正确理解数量积的定义和几何意义是求解的关键,同时平面向量数量积的运算结果是实数而不是向量,因此要注意数量积运算和实数运算律的差异,本文仅举数例谈谈求解向量数量积运算的方法和策略。
1.利用数量积运算公式求解在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛,即(a +b )2=a 2+2a ·b +b 2,(a -b )2=a 2-2a ·b +b 2上述两公式以及(a +b )(a -b )=a 2-b 2这一类似于实数平方差的公式在解题过程中可以直接应用.例1 已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |.解析:∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=22+2×(-3)+52=23∴|a +b |=23,∵(|a -b |)2=(a -b )2=a 2-2a ·b +b 2=22-2×(-3)×52=35,∴|a -b |=35.例2 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°).解析:∵(|a +b |)2=(a +b )2=a 2+2a ·b +b 2=|a |2+2|a |·|b |cosθ+|b |2 ∴162=82+2×8×10cosθ+102,∴cosθ=4023,∴θ≈55° 例3 已知a =(3,4),b =(4,3),求x ,y 的值使(xa +yb )⊥a ,且|xa +yb |=1.分析:这里两个条件互相制约,注意体现方程组思想.解:由a =(3,4),b =(4,3),有xa +yb =(3x +4y ,4x +3y )又(xa +yb )⊥a ⇔(xa +yb )·a =0⇔3(3x +4y )+4(4x +3y )=0即25x +24y =0 ①又|xa +yb |=1⇔|xa +yb |2=1⇔(3x +4y )2+(4x +3y )2=1整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2=1 ②由①②有24xy +25y 2=1 ③将①变形代入③可得:y =±75 再代回①得:⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==753524753524y x y x 和2. 利用定义直接求解.例4 若向量,a b=2=,,a b 的夹角为45°,则a a a b ⋅+⋅=______.解析:根据数量积的定义得a a a b ⋅+⋅22445cos 22220+=⨯+⨯=,例5 设向量2172e e t +与向量21e t e +的夹角为钝角,求实数t 的取值范围.解析:∵0))(72(2121<++e t e e e t ,故071522<++t t , 解之217-<<-t . 另有λλt t ==7,2,解之14,214-=-=λt , ∴)21,214()214,7(--⋃--∈t .例 6 如图, 已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( )(A )1213PP PP ⋅ (B )1214PP PP ⋅(C )1215PP PP ⋅ (D )1216PP PP ⋅解析:选项中均有向量12PP ,根据数量积的几何意义,要找121(3,4,5,6)i P P P P i ⋅=的最大值,只需求1(3,4,5,6)i PP i =在12PP 方向上的投影最大即可,画图可知只有13PP 在12PP 方向上的投影最大,故最大选A.3. 利用数量积的定义、性质、运算律求解例7 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2.分析:根据数量积的定义、性质、运算律,逐一判断.解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0;对于④:由数量积定义有|a·b|=|a|·|b|·|cosθ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0;对于⑥:由a·b=0可知a⊥b可以都非零;对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с),∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.4. 借助零向量. 即借助“围成一个封闭图形且首尾相接的向量的和为零向量”,再合理使用向量的移项以及平方等变形,求解数量积.例8 已知△ABC 中,===,,,若⋅=⋅=⋅,求证:△ABC为正三角形.证明:⋅=⋅ , ∴0)(=-a b c , 又∵0=++, )(b a c +-=, 故0))((=-+- , 知a =b , 同理可知b=c , 故a =b=c , 得证.例9 已知平面上三点A 、B 、C 满足3,4,5AB BC CA ===则AB BC BC CA CA AB⋅+⋅+⋅的值等于 。
平面向量数量积运算的解题方法与策略

平面向量数量积运算的解题方法与策略平面向量数量积运算一直是高考热点内容,它在处理线段长度、垂直等问题的方式方法上尤为有突出的表现,而正确理解数量积的定义和几何意义是求解的关键,同时平面向量数量积的运算结果是实数而不是向量,因此要注意数量积运算和实数运算律的差异,本文仅举数例谈谈求解向量数量积运算的方法和策略。
1.利用数量积运算公式求解在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛,即(a +b )2=a 2+2a ·b +b 2,(a -b )2=a 2-2a ·b +b 2上述两公式以及(a +b )(a -b )=a 2-b 2这一类似于实数平方差的公式在解题过程中可以直接应用.例1 已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |.解析:∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=22+2×(-3)+52=23∴|a +b |=23,∵(|a -b |)2=(a -b )2=a 2-2a ·b +b 2=22-2×(-3)×52=35,∴|a -b |=35.例2 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°).解析:∵(|a +b |)2=(a +b )2=a 2+2a ·b +b 2=|a |2+2|a |·|b |cosθ+|b |2 ∴162=82+2×8×10cosθ+102,∴cosθ=4023,∴θ≈55° 例3 已知a =(3,4),b =(4,3),求x ,y 的值使(xa +yb )⊥a ,且|xa +yb |=1.分析:这里两个条件互相制约,注意体现方程组思想.解:由a =(3,4),b =(4,3),有xa +yb =(3x +4y ,4x +3y )又(xa +yb )⊥a ⇔(xa +yb )·a =0⇔3(3x +4y )+4(4x +3y )=0即25x +24y =0 ①又|xa +yb |=1⇔|xa +yb |2=1⇔(3x +4y )2+(4x +3y )2=1整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2=1 ②由①②有24xy +25y 2=1 ③将①变形代入③可得:y =±75 再代回①得:⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==753524753524y x y x 和2. 利用定义直接求解.例4 若向量,a b 满足a b =2=,,a b 的夹角为45°,则a a a b ⋅+⋅=______.解析:根据数量积的定义得a a a b ⋅+⋅22445cos 22220+=⨯+⨯=,例5 设向量2172e e t +与向量21e t e +的夹角为钝角,求实数t 的取值范围.解析:∵0))(72(2121<++e t e e e t ,故071522<++t t ,解之217-<<-t . 另有λλt t ==7,2,解之14,214-=-=λt , ∴)21,214()214,7(--⋃--∈t . 例 6 如图, 已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( )(A )1213PP PP ⋅ (B )1214PP PP ⋅(C )1215PP PP ⋅ (D )1216PP PP ⋅解析:选项中均有向量12PP ,根据数量积的几何意义,要找121(3,4,5,6)i PP PP i ⋅=的最大值,只需求1(3,4,5,6)i PP i =在12PP 方向上的投影最大即可,画图可知只有13PP 在12PP 方向上的投影最大,故最大选A.3. 利用数量积的定义、性质、运算律求解例7 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2.分析:根据数量积的定义、性质、运算律,逐一判断.解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0;对于④:由数量积定义有|a·b|=|a|·|b|·|cosθ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0;对于⑥:由a·b=0可知a⊥b可以都非零;对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с),∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.4. 借助零向量. 即借助“围成一个封闭图形且首尾相接的向量的和为零向量”,再合理使用向量的移项以及平方等变形,求解数量积.例8 已知△ABC 中,c AB b CA a BC ===,,,若a c c b b a ⋅=⋅=⋅,求证:△ABC为正三角形.证明:a c c b ⋅=⋅ , ∴0)(=-a b c , 又∵0=++c b a , )(b a c +-=, 故0))((=-+-a b b a , 知a =b , 同理可知b=c , 故a =b=c , 得证.例9 已知平面上三点A 、B 、C 满足3,4,5AB BC CA ===则AB BC BC CA CA AB ⋅+⋅+⋅的值等于 。
平面向量数量积的最值求法分类解析

m = (m -
5 2 9
) - ꎬ
2
4
所以PBPC∈[ -
9
ꎬ4] ꎬ选 D.
4
→
例 10 在 矩 形 ABCD 中ꎬ 点 E 在 边 AB 上ꎬ 且 AE =
— 3 —
→
2 EBꎬM 是线段 CE 上一动点.
解 构造平行四边形 ABCD.
(1) 若 M 是线段 CE 的中
→
→
→
→
点ꎬAM = m AB + n ADꎬ求 m + n
be = - 2ꎬ | a + b | = 2ꎬ则 ab 的最大值为( ) .
解 依题意ꎬ设 e = (1ꎬ0) ꎬa = ( mꎬn) ꎬb = ( sꎬt) ꎬ由
ae = 1ꎬbe = - 2ꎬ得 m = 1ꎬs = - 2. 所以 a + b = ( - 1ꎬn +
(n + t) 2 3
平面向量数量积的最值求法分类解析
李秀元
( 湖北省武穴市实验高级中学 435400)
摘 要:平面向量数量积有基于几何意义的定义式ꎬ和基于代数运算的坐标式ꎬ其运算结果呈现多样性ꎬ
对最值求法进行分类解析ꎬ促进高效复习备考.
关键词:数量积ꎻ最值ꎻ分类解析
中图分类号:G632 文献标识码:A 文章编号:1008 - 0333(2020)31 - 0002 - 04
均值不等式是求最值的常用工具之一. 要想利用均
→
→
因此ꎬPBPC = ( a - 1ꎬ - 4) ( - 1ꎬb - 4) = 17 - ( a
C. [ - 8ꎬ36] D. [ - 12ꎬ36]
解 以点 A 为原点ꎬAB 为 x 轴ꎬAD 为 y 轴ꎬ建立平面
→
平面数量积最值问题 教案-2022届高三数学二轮复习微专题复习

微专题:平面向量数量积最值问题——2022年高三数学复习微专题微课一、本专题在高考中的地位1.课标对本专题的要求知识内容知识要求了解理解掌握平面向量1.平面向量的实际背景及基本概念(1)向量的实际背景√(2)平面向量的概念和两个向量相等的含义√(3)向量的几何表示√2.向量的线性运算(1)向量加法、减法运算,并理解其几何意义√(2)向量的数乘运算及其几何意义,理解两个向量共线的含义√(3)向量线性运算的性质及其几何意义√3.平面向量基本定理及坐标表示(1)平面向量的基本定理及其意义√(2)平面向量的正交分解及其坐标表示√(3)坐标表示平面向量的加减法与数乘运算√(4)用坐标表示的平面向量共线的条件√4.平面向量数量积(1)平面向量数量积的含义及其物理意义√(2)平面向量的数量积与向量投影的关系√(3)数量积的坐标表达式,会进行平面向量数量积的运算√(4)运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系√5.向量的应用(1)向量法解决某些简单的平面几何问题√(2)向量方法解决简单的力学问题与其他一些实际问题√明确《考试大纲》对知识的要求层次。
“理解”“掌握”这两个层次要求的知识点往往是高考命题的首选,尤其是“掌握”,通常高考命题会进行深度挖掘,所以在复习时要重视和强化。
2.近五年全国卷考查情况分析年份题序题型考点明细单独命题综合命题分值难易程度2016年全国卷I(理) 3 选择题向量加法坐标运算与垂直√ 5 易2017年全国卷I(理) 13 填空题 向量的模长和数量积应用√ 5 易 2018年全国卷I(理) 6 选择题 向量线性运算 √ 5 易 2018年全国卷I(理) 8 选择题 抛物线、直线及数量积 √ 5 中 2019年课标全国卷I(理) 7 选择题 向量数量积、夹角 √ 5 中 2020年课标全国卷I(理) 14 填空题 向量的数量积与模 √ 5 易 2020年课标全国卷I (文)14 填空题 向量数量积与向量垂直的充要条件 √ 5 易 2021·新高考Ⅱ卷13填空题向量的数量积与模√5易二、真题回顾1.(2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 2.(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a ·b =1,则|b |=________. 3.(2021·新高考Ⅱ卷)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________.4.(2020·课标全国Ⅰ高考)设a ,b 为单位向量,且|a+b|=1,则|a-b|= .5.(2020·课标全国Ⅱ高考)已知单位向量a ,b 的夹角为45°,ka -b 与a 垂直,则k = .三.要点提炼考点 平面向量的数量积1.若a =(x ,y),则|a |=a ·a =x 2+y 2. 2.若A(x 1,y 1),B(x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.四.典型例题:例1.(2021·福建六校联考)已知P 为边长为2的正方形ABCD 所在平面内一点,则PC →·(PB →+PD →)的最小值为________. 【解析】 建立如图所示的平面直角坐标系, 则A (0,0),B (2,0),C (2,2),D (0,2),设P (x ,y ),则PC →=(2-x ,2-y ),PB →+PD →=(2-x ,-y )+(-x ,2-y )=(2-2x ,2-2y ),∴PC →·(PB →+PD →)=(2-x )(2-2x )+(2-y )(2-2y )=2⎝⎛⎭⎫x -322-12+2⎝⎛⎭⎫y -322-12=2⎝⎛⎭⎫x -322+2⎝⎛⎭⎫y -322-1. ∴当x =y =32时,PC →·(PB →+PD →)取得最小值-1.【探究】 数量积的计算主要有基底法和坐标法,另外解方程也行,数量积的最值问题往往要用到函数思想和数形结合思想,结合求值域的方法求解.变式练习:1.已知四边形ABCD 中,AD ∥BC ,∠BAD =90°,AD =1,BC =2,M 是AB 边上的动点,则|MC →+2MD →|的最小值为________.例2.(2021·益阳模拟考试)如图所示为边长为2的正△ABC ,以BC 的中点O 为圆心,BC 为直径在三角形外部作半圆弧BC ︵,点P 在圆弧上运动,则AB →·AP →的取值范围为( )A .[2,33]B .[4,33]C .[2,4]D .[2,5]答案 D解析 由题可知当点P 在点C 处时AB →·AP →最小,此时AB →·AP →=|AB →|·|AC →|·cos π3=2×2×12=2,过圆心O 作OP ∥AB 交圆弧于点P ,连接AP ,此时AB →·AP →最大,此时AB →·AP →=2×⎝⎛⎭⎫32+1=5,所以AB →·AP →的取值范围为[2,5].故选D.【探究】 本题利用数量积的定义,结合数量量积的几何意义AP →在AB →上的投影,当当点P 在点C 处时AB →·AP →最小,过圆心O 作OP ∥AB 交圆弧于点P ,连接AP ,此时AB →·AP →最大。
如何解答平面向量最值问题

4x 4y
4
解题宝典
性运算法则、数量积公式来求向量模的表达式,再求
该表达式的最值,即可求得向量的模的最值.还可以根
据向量的几何意义构造出几何图形,将所求向量的模
y
≥ 1 (5 + 2 ∙4x ) = 9 ,
x y
4
4
看作三角形、四边形的一条边长,确定向量的模取最
当且仅当
∠ADC = 90°,
例3.已知直角梯形 ABCD 中,AD//BC,
1
= AM +
AN,
4x
4y
图1
有些平面向量最值问题中含有参数,要求参数的
最值或取值范围,需根据题意建立关于参数的关系
式,将问题转化为求代数式的最值问题,利用基本不
等式、函数的性质来求最值.还可以根据题意和向量加
减法的几何意义:三角形法则和平行四边形法则,画
a
(1)数列的通项公式 n ;
解:
(1)要使 C
{
-A
2m - 2
11 - 3m
2
数学篇
40
76
77
77
77
因 为 77 - 15 =(76 + 1) - 15 = 76 + C177·76 + ⋯
+C - 15 = 76(76 + C ·76 + ⋯ + C ) + 1 - 15 = 4 × 19
因为 BM = x BA + y BD = 2x BE + y BD ,
y
所以 λBN = 2x BE + y BD ,
平面向量数量积问题的解决策略

平面向量数量积问题的解决策略
向量是一个既有大小又有方向的量,这也是向量的核心,既可以定性也可以定量。
从地位上讲,向量是一个重要的代数与几何运算工具,是沟通代数与几何的桥梁。
学会用向量的工具来解决代数或几何问题,显得尤为重要。
向量的数量积,是最经常考察的重难点之一,今天主要讲讲解决向量数量积问题的重要方法,包括基底法,坐标法,几何法,投影法,并渗透向量问题中的几个重要恒等式。
遇到起点不统一的数量积尽量统一顶点。
极化恒等式和向量三角不等式(柯西二维不等式的向量形式)在向量数量积求值和求范围中很重要。
需要提醒的是,向量的一些基本模型,例如三角形,矩形,四边形,圆等,在考试中也经常出现,需要加以熟悉。
在方法的策略选择上,各种方法都有所侧重,基底法本质是向量的代数运算,坐标
法是解析几何的核心,几何法源于向量的几何意义,投影法则是回归数量积的定义上,是处理向量数量积问题的一大利器,灵活加以选择应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量数量积最值问题的求解策略
近几年,平面向量数量积的最值问题频频出现在各地的高考卷上,成为高考中的一个热点问题,现以几例具体阐述此类问题的解决途径.
一、利用函数思想方法求解
例1、给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o
.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中
,x y R ∈,则x y +的最大值是________.
分析:寻求刻画C 点变化的变量,建立目标x y +
与此变量的函数关系是解决最值问题的常用途径。
解:设AOC θ∠=,以点O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A ,1(2B -,(cos ,sin )C θθ。
,OC xOA yOB =+
1(cos ,sin )(1,0)(,22
x y θθ∴=+-即
cos 2sin y x θθ⎧-=⎪⎪
= cos 2sin()6x y πθθθ∴+==+2(0)3
π
θ≤≤。
因此,当3
πθ=
时,x y +取最大值2。
例2、已知(1,7),(5,1),(2,1),OA OB OP ===点Q 为射线OP 上的一个动点,当
QA QB 取最小值时,求.OQ
分析:因为点Q 在射线OP 上,向量OQ 与OP 同向,故可以得到关于OQ 坐标的一个关系式,再根据QA QB 取最小值求.OQ
解:设(2,),(0)OQ xOP x x x ==≥,则(12,7),(52,1)QA x x QB x x =--=--
图 1
2
2
(12)(52)(7)(1)520125(2)8
QA QB x x x x x x x ∴=--+--=-+=--
∴当2x =时,QA QB 取最小值-8,此时(4,2).OQ =
二、利用向量的数量积n m n m
⋅≤⋅求最值
例3、ABC ∆三边长为a 、b 、c ,以A 为圆心,r 为半径作圆,PQ 为直径,试判断P 、Q 在什么位置时,BP CQ 有最大值。
分析:用已知向量表示未知向量,然后用数量积的性质求解。
解:
,AB BP AP AC CQ AQ AP +=+==-
2
22
()()()BP CQ AP AB AP AC r AB AC AP AB AC r AB AC AP CB AB AC AP CB r ∴=---=-++-=-++≤+-
当且仅当AP 与CB 同向时,BP CQ 有最大值。
三、利用向量模的性质a b a b a b -≤+≤+求解
例4:已知2,(cos ,sin ),a b b θθ-==求a 的最大值与最小值。
分析:注意到()a a b b =-+,考虑用向量模的性质求解。
解:由条件知1b =。
设a b c -=,则a =b c +,
c b c b c b -≤+≤+, ∴13a ≤≤。
所以当b 与c 同向时,a 取最大值3;当b 与c 反向时,a 取最小值1。
四、利用几何意义,数形结合求解
例5、如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是 (A )1213PP PP ⋅ (B )1214PP PP ⋅ (C )1215PP PP ⋅ (D )1216PP PP ⋅
分析:平面向量数量积121(1,2,3,4,5,6)i PP PP i =的几何意义为121
i PP PP 等于1
2PP 的长度与
图 2
图3
1i PP 在12PP
方向上的投影1121cos ,i i PP PP PP 的乘积。
显然,由图可知,13PP 在12PP 方向上的投影最大,故选(A )。
例6、a b 与是两个夹角为1200的单位向量,且p+q=1(p 、q ∈R ),则pa qb +的最小值是
分析: 如图3,设,,OA a OB b OC ===p a q b +则(1)OC pOA p OB
=+-即
BC pBA = 因此点C 在直线AB 上,显然当OC ⊥AB 时,pa qb +最小,其最小值为12。
【经典例题赏析】
一、借助基本的向量运算降低问题难度
例1:(05年江苏高考试题)在ABC ∆中,O 为中线AM 上一个动点,若2AM =,则
()OA OB OC ⋅+的最小值是__________.
分析:(如图)本题的突破口关键在于AM 为ABC ∆的中线,故易知
2OB OC OM +=,所以:()(2)2()OA OB OC OA OM OA OM ⋅+=⋅=⋅
从而把不共线向量数量积的问题转化为共线向量数量积的问题. 解:
AM 为ABC ∆的中线2OB OC OM ∴+=
()(2)2()2||||cos 2||||OA OB OC OA OM OA OM OA OM OA OM π∴⋅+=⋅=⋅=⋅=-⋅
又2
2||||||||||(
)124
OA OM AM OA OM ++≤==()2OA OB OC ∴⋅+≥-
O
A
图4 C
例2:(04年湖北高考试题)在Rt ABC ∆中,BC a =,若长为2a 的线段PQ 以A 点为中点,问PQ 与BC 的夹角θ取何值时BP CQ ⋅的值最大?并求出这个最大值.
分析:本题的突破口关键在于,,P A Q 三点共线,从而联想到把BP 和CQ
作如下的分解:12BP BA AP BA PQ =+=-, 1
2
CQ CA AQ CA PQ
=+=+分解之后,真可谓是海阔天空.211
()24
BP CQ BA CA PQ BA CA PQ ⋅=⋅+⋅--
故:222211
||||cos cos 22
BP CQ PQ BC a PQ BC a a a θθ⋅=⋅-=-=-
解:11
()()()()22BP CQ BA AP CA AQ BA PQ CA PQ ⋅=+⋅+=-⋅+
221111
()||2424BP CQ BA CA PQ BA CA PQ BA CA PQ BC PQ ∴⋅=⋅+⋅--=⋅+⋅-
又,||2,||BA CA PQ a BC a ⊥==
222211
||||cos cos 22
BP CQ PQ BC a PQ BC a a a θθ∴⋅=
⋅-=-=- ∴当cos 1θ=,即0θ=(PQ 与BC 同向)时,BP CQ ⋅取到最大值0.
二、建立直角坐标系降低问题门槛
对于上述两道高考试题,应用向量的基本运算把不共线的数量积问题转化为共线的或者是易求的数量积问题,从而达到解决问题的目的.但是从纯几何的角度出发,对学生的思维层次要求较高,对于此类问题我们还可以借助建立直角坐标系的方法,降低问题的难度.
例1:另解:以M 点为圆心,AM 所在直线为y 轴,建立如图所示的直角坐标系.
设(0,2),(,),(0,)A B x y O z ,则(,)C x y --
(0,2),(,),(,)OA z OB x y z OC x y z ∴=-=-=--- (0,2)OB OC z +=-(02)z ≤≤
2()(2)(2)2(1)2OA OB OC z z z ∴⋅+=--=--
故()OA OB OC ⋅+的最小值为2-
例2:另解:以A 点为原点,AB 边所在直线为x 轴,建立如图所示的直角坐标系. 设CAB α∠=,PQ 与AB 的夹角为β,则(cos ,0),(0,sin )B a C a αα
(cos ,sin ),(cos ,sin )P a a Q a a ββββ--
(cos cos ,sin ),(cos ,sin sin )BP a a a CQ a a a βαβββα∴=---=-
2222222
cos cos cos sin sin sin [1cos()]
BP CQ a a a a a βαββαβαβ∴⋅=---+=-++
∴当cos()1αβ+=-即αβπ+=(PQ 与BC 同向)时,BP CQ ⋅的最大值为0
点评:通过建立适当的直角坐标系,将向量的数量积坐标化,从而转化常见的求函数最值问题.读者可以试着用上述的两种方法来完成下面的练习.
练习:如图,已知等边ABC ∆的边长为2,又以A 为圆心,半径为1作圆,PQ 是直径,试求BP CQ ⋅的最大值,并指明此时四边形BCQP 的形状.
答案:BP CQ ⋅的最大值为3,此时四边形BCQP 为矩形.。