赋权法_

合集下载

正态分布赋权法

正态分布赋权法

正态分布赋权法引言:正态分布赋权法是一种用于数据分析和决策支持的方法,它基于正态分布理论,通过给不同数据点赋予不同的权重,从而更准确地描述数据的分布特征和进行预测。

本文将介绍正态分布赋权法的原理和应用,并通过实例说明其在实际问题中的有效性。

一、正态分布的基本概念正态分布,也称为高斯分布,是统计学中最重要的分布之一。

它的概率密度函数呈钟形曲线,以均值μ和标准差σ来描述。

正态分布具有许多重要的性质,如对称性、稳定性和中心极限定理等。

二、正态分布赋权法的原理正态分布赋权法的核心思想是根据数据点与均值的偏离程度赋予不同的权重。

偏离程度越大的数据点,其权重越低;偏离程度越小的数据点,其权重越高。

这是因为正态分布是以均值为中心对称的,离均值越远的数据点出现的概率较低,对整体分布的影响也较小。

三、正态分布赋权法的应用正态分布赋权法在实际问题中有广泛的应用,下面以金融风险评估为例进行说明。

金融风险评估是银行和投资机构中的重要任务之一。

在评估过程中,需要综合考虑多个指标,如资产回报率、市场波动率和流动性等。

传统的等权重方法无法准确地反映不同指标的重要性,而正态分布赋权法可以解决这一问题。

收集各项指标的历史数据,并计算其均值和标准差。

然后,根据正态分布的特性,可以确定一个合适的置信水平,例如95%。

根据置信水平,可以计算出对应的偏差值,即离均值多少个标准差。

接下来,根据偏差值,可以计算出每个指标的权重。

偏差值越小的指标,其权重越高;偏差值越大的指标,其权重越低。

通过这种方式,可以确保对重要指标给予更高的权重,从而更准确地评估金融风险。

使用正态分布赋权法得到的权重,可以进行风险评估和决策支持。

通过综合考虑不同指标的权重,可以更准确地评估风险并采取相应的措施,从而提高投资决策的准确性和效果。

四、正态分布赋权法的优势和局限性正态分布赋权法具有以下优势:1. 能够更准确地反映数据的分布特征,提高数据分析的准确性;2. 能够综合考虑多个指标的重要性,提高决策的科学性和可靠性;3. 简单易懂,易于操作和实施。

组合赋权法计算权重

组合赋权法计算权重

组合赋权法是一种根据多个指标的权重进行综合评价的方法。

在组合赋权法中,各个指标的权重是通过一定的方法计算得出的,这些方法包括如层次分析法、熵值法、主成分分析法等。

假设我们使用组合赋权法来计算权重,首先需要选择一个合适的权重计算方法。

这里我们以层次分析法为例,说明如何计算权重。

层次分析法是一种定性和定量相结合的方法,它通过构建判断矩阵来确定各个指标的权重。

具体步骤如下:1. 构建判断矩阵:首先,根据专家打分等方法,构建一个判断矩阵,该矩阵表示各个指标之间的相对重要性。

2. 计算权重向量:使用特定的方法(如最小二乘法)计算判断矩阵的特征向量,即可得到各个指标的权重。

值得注意的是,由于单一方法可能存在主观性和片面性,我们通常会使用多种方法进行赋权,并通过一定的方法(如加权平均、综合指数等)将它们的结果结合起来,形成最终的权重。

具体到如何将多种方法的权重进行组合,这需要根据具体情况进行选择。

一种常见的组合赋权方法为“平均权重法”,即每种方法的权重都相等。

另一种方法是“最大最小法”,它考虑了各种方法可能存在的极端结果,对极端方法的权重进行了限制。

还有“最小最大法”,它保证了各种方法的权重之和为1。

为了得到合理的权重分配,需要保证所选择的权重计算方法与所要解决的问题相匹配。

如果需要的是整体排序的权重,可以选择排序选择法或直观判断法等基于主观感受的赋权方法;如果需要的是能够解释实际结果与各指标的偏离程度大小的权重,那么基于变异系数法的赋权方式更为合适。

综合以上内容,组合赋权法的关键在于如何选择合适的权重计算方法和如何合理地将多种方法的权重进行组合。

这需要根据具体的评价问题和使用者的实际情况来进行选择和调整。

需要注意的是,任何一种赋权方法都不能做到完全客观和完美,因此在实际应用中还需要结合实际情况和评价需求进行选择和调整。

同时,还需要注意赋权方法的适用范围和局限性,避免过度依赖单一方法而导致评价结果的偏差。

组合赋权法计算权重

组合赋权法计算权重

组合赋权法计算权重全文共四篇示例,供读者参考第一篇示例:组合赋权法是一种用于计算权重的方法,它被广泛应用于投资组合管理、风险管理和决策分析等领域。

在实际应用中,通过对不同资产或因素的历史数据进行分析和比较,可以得出各个因素对整体组合的贡献度,进而确定各个因素的权重,从而构建一个有效的投资组合。

在组合赋权法中,最常用的方法是基于历史数据的统计分析来确定各个因素的权重。

这种方法的优点在于可以客观地分析不同因素对整体组合的贡献度,避免主观因素的影响。

通过合理选择历史数据和样本周期,可以使得模型更加稳健和可靠。

在计算权重时,通常会先对各个因素的历史数据进行标准化处理,以消除不同数据之间的单位差异和量纲差异。

然后,利用统计分析方法如协方差矩阵、协方差矩阵的特征值和特征向量等,来计算各个因素的风险贡献度和相关性。

根据各个因素的风险贡献度和相关性,可以得出各个因素的权重,从而构建一个有效的投资组合。

除了基于历史数据的统计分析外,还可以采用专家调查、专家打分、层次分析法等方法来确定权重。

但这些方法存在较强的主观性和人为干扰,在实际应用中需要谨慎使用。

组合赋权法是一种有效的计算权重的方法,可以帮助投资者更加科学地构建投资组合,降低风险,提高收益。

在使用过程中,需要注意选择合适的历史数据和统计方法,以确保模型的有效性和可靠性。

也需要不断的更新和优化模型,以适应市场变化和环境变化,从而实现长期稳健的投资收益。

第二篇示例:组合赋权法是一种计算权重的方法,主要用于确定不同因素在一个组合中的相对重要性。

它通常用于投资组合的构建和风险管理,以确保投资组合的收益最大化或者风险最小化。

在实际应用中,组合赋权法可以根据不同的情况和需求,确定不同因素的权重,从而构建一个符合投资人需求的投资组合。

组合赋权法的计算过程包括确定因素、设定权重和计算权重三个步骤。

确定因素是指在投资组合中影响收益或者风险的因素,比如不同的资产类别(股票、债券、房地产等)、不同的行业(科技、金融、制造等)或者不同的地区(国内、国外)等。

赋权方法

赋权方法

(2)计算各指标的变异系数的比重作为其权重。
XLL
二、客观赋权方法——主成分分析法
主成分分析法:指标权重等于以主成分的方差贡献率为权 重,对该指标在各主成分线性组合中的系数的加权平均的归一 化。 因此,要确定指标权重需要知道三点: (1)指标在各主成分线性组合中的系数 (2)主成分的方差贡献率 (3)指标权重的归一化
XLL
二、客观赋权方法——熵值法
熵值法步骤:
(1)数据处理
a. 标准化处理
xj x min x max xj x ' ij ; x ' ij x max x min x max x min
其中,xj为第j项指标值,xmax为第j项指标的最大值,xmin为 第j项指标的最小值, x’ij为标准化值。 若所用指标的值越大越好,则选用前一个公式。 若所用指标的值越小越好,则选用后一个公式。
XLL
一、主观赋权方法——AHP法
层次分析法(APH 法)步骤 : (1)构造判断矩阵 (2)权重及一致性检验的计算 参考文献: 层次分析法确定评价指标权重及Excel 计算——曹茂林
XLL
二、客观赋权方法
客观赋权法是利用数理统计的方法将各指标值经过分析处理 后得出权数的一类方法。
根据数理依据,这类方法又分为变异系数法、主成分分析法 、熵值法等。 这类方法根据样本指标值本身的特点来进行赋权,具有较好 的规范性。但其容易受到样本数据的影响,不同的样本会根据同 一方法得出不同的权数。 应用中,当样本各指标独立性很强时,可以选择采用变异系 数法; 而对于样本指标相互之间具有复杂联系的时候,采用熵值法 得出的权数较为理想; 而样本指标过多,计算量过大时,主成份法 无疑是一个很好的选择,使用该方法可以在较好的保持结果的准 确性的前提下,大幅减少工作量,因此该种方法被广泛采用。

极差最大化组合赋权法

极差最大化组合赋权法

极差最大化组合赋权法全文共四篇示例,供读者参考第一篇示例:极差最大化组合赋权法是一种用于评价多属性决策问题的方法,它通过对各属性的权重进行赋值,计算出各方案的得分,并找到最优的解决方案。

这种方法是在实际决策中经常使用的一种多属性评价技术。

极差最大化组合赋权法是基于极差最大化原则而提出的一种赋权方法。

极差最大化原则是指在多属性决策中,为了获得满意的决策结果,需要最大限度地利用各属性之间的差异性。

这种方法认为,各属性之间的差异性越大,对决策结果的影响越大。

在进行评价时,应该优先考虑差异性较大的属性,为其赋予更高的权重。

在实际应用中,极差最大化组合赋权法可以分为以下几个步骤:确定评价对象和评价指标。

评价对象是决策中需要进行评价和比较的对象,评价指标是用来评价评价对象的属性。

在确定评价指标时,应该尽可能选择具有差异性的指标,以便更好地反映评价对象之间的差异。

对各个评价指标进行标准化处理。

标准化是将不同属性的数据统一化处理,使得它们具有可比性。

通常采用的方法是将各属性值除以其最大值,得到相对指标得分。

然后,确定各个评价指标的权重。

权重是用来衡量各个评价指标对决策结果的影响程度的参数。

在确定权重时,可以采用主观赋权、客观赋权或者层次分析法等方法。

计算各个评价对象的得分,选取最高得分的对象作为最优解。

得分的计算通常是对各个属性的标准化得分乘以对应的权重,再将得到的结果相加得到最终的得分。

第二篇示例:极差最大化组合赋权法是一种用于选取最佳投资组合的方法,通过对不同资产进行赋权,以实现最大化收益和最小化风险的目标。

相比传统的等权重分配方法,极差最大化组合赋权法更加灵活有效,能够更好地满足投资者的需求。

极差最大化组合赋权法的核心思想是根据资产之间的相关性和风险来确定每个资产的权重,以达到整体投资组合的最优化。

具体来说,这种方法通过计算各资产的预期收益和波动率,结合资产之间的相关性,从而确定每个资产在整体投资组合中的比例,使得整体组合的风险最小,收益最大。

赋权法

赋权法

1.熵权法概述
• 熵原本是一热力学概念,它最先由申农 C. E.Shannon 引入信息论 ,称之为信息熵。现已在 工程技术,社会经济等领域得到十分广泛的应用。
• 申农定义的信息熵是一个独立于热力学熵的概念, 但具有热力学熵的基本性质(单值性、可加性和极 值性),并且具有更为广泛和普遍的意义,所以称 为广义熵。它是熵概念和熵理论在非热力学领域 泛化应用的一个基本概念。
(4)按照权重与待评价的各个指标之间相关程度划分,可 分为独立权重和相关权重。 独立权重是指评价指标的权重与该指标数值的大小无关, 在综合评价中较多地使用独立权重,以此权重建立的综合 评价模型称为“定权综合”模型。 相关权重是指评价指标的权重与该指标的数值具有函数关 系,例如,当某一评价的指标数值达到一定水平时,该指 标的重要性相应的减弱;或者当某一评价指标的数值达到 另一定水平时,该指标的重要性相应地增加。相关权重适 用于评价指标的重要性随着指标取值的不同而发生变化的 条件下,基于相关权重建立的综合评价模型被称为“变权 模型”。比如评估环境质量多采用“变权综合”模型。
1.1专家估测法
1.2 加权统计法
1.3 频数统计法
W=(0.275,0.5,0.075,0.185)
归一化处理得 W=(0.2657,0.4831,0.0725,0.1787)
二、变异系数法
变异系数法(Coefficient of variation method)是 直接利用各项指标所包含的信息,通过计算得到 指标的权重。是一种客观赋权的方法。此方法的 基本做法是:在评价指标体系中,指标取值差异 越大的指标,也就是越难以实现的指标,这样的 指标更能反映被评价单位的差距。例如,在评价 各个国家的经济发展状况时,选择人均国民生产 总值(人均GNP)作为评价的标准指标之一,是因 为人均GNP不仅能反映各个国家的经济发展水平, 还能反映一个国家的现代化程度。如果各个国家 的人均GNP没有多大的差别,则这个指标用来衡 量现代化程度、经济发展水平就失去了意义。

赋权方法

赋权方法
法(专家评分法或专家咨询法):采取匿名的方式 广泛征求专家的意见, 经过反复多次的信息交流和反馈修正, 使 专家的意见逐步趋向一致, 最后根据专家的综合意见, 对评价对 象做出评价的一种定量与定性相结合的预侧、评价方法。
步骤:
(1)编制专家咨询表。按评价内容的层次、评价指标的定义、 必须的填表说明, 绘制咨询表格。 (2)分轮咨询。根据咨询表对每位专家至少进行两轮反馈, 并 针对反馈结果组织小组讨论, 确定调查内容的结构。经过有控制 的2-4轮咨询后将每轮的专家意见汇总。 (3)结果处理。应用常规的统计分析方法, 分析专家对该项目 研究的关心程度( 回收率)、专家意见的集中程度、专家意见的 协调程度等来筛选指标或描述指标的重要程度( 即权重值)。
XLL
二、客观赋权方法——熵值法
(2)计算指标信息熵值e和信息效用值d
m
ej K yij ln yij i 1
dj 1 ej
式中,K为常数。
某项指标的信息效用价值取决于该指标的信息熵ej与1之间 的差值,它的值直接影响权重的大小,信息效用值越大,对评 价的重要性就越大,权重也就越大。
层次分析法确定评价指标权重及Excel 计算——曹茂林
XLL
二、客观赋权方法
客观赋权法是利用数理统计的方法将各指标值经过分析处理 后得出权数的一类方法。
根据数理依据,这类方法又分为变异系数法、主成分分析法 、熵值法等。
这类方法根据样本指标值本身的特点来进行赋权,具有较好 的规范性。但其容易受到样本数据的影响,不同的样本会根据同 一方法得出不同的权数。
XLL
二、客观赋权方法——熵值法
(3)计算评价指标权重 利用熵值法估算各指标的权重,其本质是利用该指标信息
的价值系数来计算,其价值系数越高,对评价的重要性就越大( 或称权重越大,对评价结果的贡献大)。

赋权的方法

赋权的方法

五种赋权法及其比较摘要:本文介绍了五种确定评估指标权重的方法及其比较。

权重是综合评价中的一个重要的指标体系,合理地分配权重是量化评估的关键,权重的构成是否合理,也直接影响到评估的科学性。

为了更好地选择确定权重的方法,我们给出了几种方法的详细计算过程,以便进行精确对比。

关键词:权重统计平均法变异系数法层次分析法德尔菲法排序法一、权重的概念权重是一个相对的概念,是针对某一指标而言。

某一指标的权重是指该指标在整体评价中的相对重要程度。

权重表示在评价过程中,是被评价对象的不同侧面的重要程度的定量分配,对各评价因子在总体评价中的作用进行区别对待。

事实上,没有重点的评价就不算是客观的评价,每个人员的性质和所处的层次不同,其工作的重点也肯定是不能一样的。

因此,相对工作所进行的业绩考评必须对不同内容对目标贡献的重要程度做出估计,即权重的确定。

二、3种主要的确定权重的方法(一) 统计平均法统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。

其基本步骤是:第一步,确定专家。

一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家;第二步,专家初评。

将待定权数的指标提交给各位专家,并请专家在不受外界干扰的前提下独立的给出各项指标的权数值;第三步,回收专家意见。

将各位专家的数据收回,并计算各项指标的权数均值和标准差;第四步,分别计算各项指标权重的平均数。

如果第一轮的专家意见比较集中,并且均值的离差在控制的范围之内,即可以用均值确定指标权数。

如果第一轮专家的意见比较分散,可以把第一轮的计算结果反馈给专家,并请他们重新给出自己的意见,直至各项指标的权重与其均值的离差不超过预先给定的标准为止,即达到各位专家的意见基本一致,才能将各项指标的权数的均值作为相应指标的权数。

(二) 变异系数法变异系数法(Coefficient of variation method)是直接利用各项指标所包含的信息,通过计算得到指标的权重。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

权重确定的主客观赋权法
组员:余芳云1011200110
卢玲婕1011200147
钟灵欢1011200148 一、引言
在多属性决策问题的求解过程中,属性的权重具有举足轻重的作用,它被用来反映属性的相对重要性。

很多多属性决策方法( 如简单加性加权法、TOPSIS 法、多属性效用理论等) 都涉及到属性权重,如何科学、合理地确定属性权重, 关系到多属性决策结果的可靠性与正确性。

目前已有许多确定属性权重的方法,这些方法可以分为三大类,即主观赋权法、客观赋权法和主客观综合赋权法( 或称组合赋权法)。

1、主观赋权法
主观赋权法是人们研究较早、较为成熟的方法, 它根据决策者( 专家)主观上对各属性的重视程度来确定属性权重,其原始数据由专家根据经验主观判断而得到。

决策或评价结果具有较强的主观随意性, 客观性较差, 同时增加了对决策分析者的负担, 应用中有很大局限性。

常用的主观赋权法有(1)层次分析法( AHP) 、(2)最小平方法、(3)TACTIC 法、(4)专家调查法( Delphi 法)、(5)二项系数法、(6)环比评分法等。

其中层次分析法是实际应用中使用得最多的方法, 它能将复杂问题层次化, 将定性问题定量化。

随着AHP 法的进一步完善, 利用AHP法进行主观赋权的方法将会更加合理, 更加符合实际情况。

2、客观赋权法
客观赋权法研究较晚,还很不完善, 它主要根据原始数据之间的关系来确定权重,不依赖于人的主观判断, 不增加决策分析者的负担,决策或评价结果具有较强的数学理论依据。

但这种赋权方法依赖于实际的问题域,因而通用性和决策人的可参与性较差, 计算方法大都比较繁琐,而且不能体现决策者对不同属性的重视程度,有时确定的权重会与属性的实际重要程度相悖。

常用的客观赋权法主要有(1)主成份分析法、(2)熵技术法、(3)离差及均(4)方差法、多目标规划法等。

其中熵技术法用得较多, 这种赋权法使用的数据是决策矩阵确定的属性权重反映了属性值的离散程度。

离差法确定的属性权重太粗糙, 一般不宜使用, 例如, 属性f i、fj 下各方案的属性值的最大离差vi , vj 相等时, 两属性下各方案的属性值的离散程度可能差别很大。

3、两者的比较
运用主观赋权法确定各指标间的权重系数,反映了决策者的意向,决策或评价结果具有
很大的主观随意性。

而运用客观赋权法确定各指标间的权重系数, 决策或评价结果虽然具有较强的数学理论依据,但没有考虑决策者的意向. 因此, 主、客观赋权法均具有一定的局限性。

针对主、客观赋权法各自的优缺点, 为兼顾决策者对属性的偏好, 同时又力争减少赋权的主观随意性,使对属性的赋权达到主观与客观的统一, 进而使决策结果更加真实、可靠,人们又提出了一类综合主、客观赋权结果的赋权方法, 即组合赋权法,这种赋权法体现了系统分析的思想。

目前我国学者已提出一些组合赋权的具体思想和方法。

二、原理与方法
设多属性决策问题的决策方案集为S = { S 1, S 2, …, S m} ,属性(或指标) 集为P = {P 1 , P 2, …, P n} ,方案S i 对属性P j 的属性值记为aij ( i = 1, 2,…, m; j = 1, 2, …, n) , 矩阵A =
( aij ) m×n 称为“决策矩阵”.通常, 属性有效益型、成本型、固定型及区间型之分,并且不同属性的“量纲”可能不同.为了便于分析计算,需要对决策矩阵A 进行规范化,记已规范化的决策矩阵为B = ( bi j ) m×n.
记由主观赋权法得出( 或由决策者直接给出) 的属性权重向量为W ′= ( W′1, W′2 ,…,W′n)T
且满足; 由客观赋权法得出的属性权重向量为W" = ( W″ 1 , W″ 2 ,…, W″n)T,且满足
记α、β分别表示W′和W″的重要程度.
考虑到将主观权重向量与客观权重向量进行综合,则令
W = αW′+ βW″
这就是主客观综合赋权法确定的权重.为了分析方便,设A、B满足单位化约束条件
根据多属性决策分析的加权法则,可求得各决策方案的评价目标值为
显然, di 总是愈大愈好.如果di > dj ,那么方案Si 优于S j .为此,构造如下多目标规划模型
显然,这是一个多目标决策规划问题.由于各决策方案之间是公平竞争, 不存在任何偏好关系,因此,上述多目标决策规划模型可用等权的线性权和法综合成如下等价的单目标最优化模型
三、结束语
本文针对多属性决策中属性权重的确定问题,给出了一种主客观赋权法,该方法是将主观权重与客观权重加权综合起来,其加权系数由数学规划模型求出。

本文的研究内容弥补了单纯采用主观赋权法或客观赋权法的不足, 使多属性决策问题的分析结果同时反映了主观程度和客观程度。

参考文献
樊治平,赵萱. 多属性决策中权重确定的主客观赋权法. 决策与决策支持系统,第7卷第4期1997年;
宋光兴, 杨德礼. 基于决策者偏好及赋权法一致性的组合赋权法. 系统工程与电子技术, 2004年9月第26卷第9 期;
徐泽水, 达庆利. 多属性决策的组合赋权方法研究 . 中国管理科学, 2002, 10( 2) : 84- 87.。

相关文档
最新文档