简易平方根的运算(教师)

合集下载

平方根的运算法则

平方根的运算法则

平方根的运算法则平方根是数学上常见的概念,它可以帮助我们求解一些与平方相关的问题。

在运算中,平方根也遵循一些特定的法则,掌握这些法则可以更加高效地进行计算。

本文将介绍平方根的运算法则,并举例说明。

一、平方根的定义平方根是指对一个非负数 a,找出在非负数集合中的一个数 b,使得 b 的平方等于 a,表示为b = √a。

其中,a 称为被开方数,b 称为平方根。

二、平方根的运算法则平方根的运算法则主要包括以下几个方面:1. 同底数相乘的平方根等于各底数的平方根相乘即:√(a*b) = √a * √b例如:√(4*9) = √4 * √9 = 2 * 3 = 62. 同底数相除的平方根等于各底数的平方根相除即:√(a/b) = √a / √b例如:√(16/4) = √16 / √4 = 4 / 2 = 23. 求一个数的平方根后再进行平方,等于其绝对值即:(√a)^2 = |a|例如:(√9)^2 = |9| = 94. 平方根的乘方等于被乘方数即:(√a)^n = a^(1/n)例如:(√64)^3 = 64^(1/3) = 4^3 = 645. 同一数的乘方根可以转化为同一数的乘方即:√(a^n) = a^(n/2)例如:√(5^4) = 5^(4/2) = 5^2 = 25三、应用示例下面将通过示例来进一步说明平方根的运算法则。

示例1:求解√(9*16) = ?按照第一个法则,可以分别计算√9 和√16,然后再相乘:√(9*16) = √9 * √16 = 3 * 4 = 12因此,√(9*16) = 12。

示例2:求解(√144)^2 = ?根据第三个法则,先计算√144,再进行平方:(√144)^2 = |144| = 144因此,(√144)^2 = 144。

示例3:求解√(5^6) = ?根据第五个法则,可以转化为同一数的乘方:√(5^6) = 5^(6/2) = 5^3 = 125因此,√(5^6) = 125。

2022年初中数学同步 7年级下册 第07课 算数平方根与平方根(教师版含解析)-

2022年初中数学同步 7年级下册 第07课  算数平方根与平方根(教师版含解析)-

第07课 算数平方根与平方根课程标准1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.知识点01 平方根和算术平方根的概念1.算术平方根的定义如果一个正数的平方等于,即,那么这个正数x 叫做的算术平方根(规定0的算术平方根还是0);的算术平方根记作a ,读作“a 的算术平方根”,叫做被开方数. 注意:(1)当式子有意义时,一定表示一个非负数,即≥0,≥0. (2)负数没有算数平方根;(3)算数平方根等于本身的数有:0和1; (4)算数平方根平方等于原来的数; (5)注意a 运算结果的非负性; 2.平方根的定义如果,那么x 叫做a 的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算.(≥0)的平方根的符号表达为,其中是的算术平方根.注意:(1)非负数才有平方根; (2)负数没有平方根;(3)平方根等于本身的数是:0;(4)一个正数有2个平方根,他们互为相反数; (5)平方根平方等于原来的数;x a 2x a =a a a a a a a 2x a =a a a (0)a a ±≥a a 目标导航知识精讲知识点02 平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:和 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0. 注意:算术平方根平方根定义若正数x ,2x a =,正数x 叫做a 的算术平方根,x a =若数x ,2x a =,数x 叫做a 的平方根,x a =±a 的范围 0a ≥0a ≥表示aa ±正数有一个算术平方根,是正数正数有两个平方根,它们互为相反数0的算术平方根是0 0的平方根是0 负数没有算术平方根负数没有平方根知识点03 平方根的性质(1)2a =,0||0,0,0a a a a a a >⎧⎪==⎨⎪-<⎩(2)2()a =,(0)a a ≥知识点04 平方根小数点位数移动规律被开方数的小数点向右(左)每移动两位,算术平方根的小数点向右(左)移动一位。

算术平方根教学设计10篇

算术平方根教学设计10篇

算术平方根教学设计10篇《平方根》教案篇一教学设计示例一.教学目标1.会用计算器求数的平方根;2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。

二.教学重点与难点教学重点:用计算器求一个正数的平方根的程序教学难点:准确用计算器求解一个正数的平方根三.教学方法讲练结合四.教学手段实物投影仪,计算器五.教学过程在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。

具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。

复习提问学生有关乘方如何用计算器运算的步骤。

熟悉计算器基本键的功能。

现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。

例1.用计算器求的值。

分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。

解:用计算器求的步骤如下:小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2F”的键来转换。

例2.用计算器求的值。

(保留4个有效数字)解:用计算器求的步骤如下:小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。

例3.用计算器求的'值。

解:用计算器求的步骤如下:因为计算结果要求保留4个有效数字,例4.用计算器求1360.57的平方根。

解:用计算器求1360.57平方根的步骤如下:因为计算结果要求保留4个有效数字,小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。

例5.用计算器求值:分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。

2023八年级数学上册第二章实数2平方根第2课时平方根教案(新版)北师大版

2023八年级数学上册第二章实数2平方根第2课时平方根教案(新版)北师大版
2.课程平台:学校教学管理系统、数学课程网站。
3.信息化资源:教学课件、动画演示、数学视频讲解、在线习题库。
4.教学手段:讲解、示范、引导、讨论、小组合作、练习、反馈。
教学实施过程
1.课前自主探索
教师活动:
-发布预习任务:通过在线平台或班级微信群,发布预习资料(如PPT、视频、文档等),明确预习目标和要求。
学生活动:
-听讲并思考:认真听讲,积极思考老师提出的问题。
-参与课堂活动:积极参与小组讨论、实际计算练习等活动,体验平方根的运算。
-提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
教学方法/手段/资源:
-讲授法:通过详细讲解,帮助学生理解平方根的概念和性质。
-实践活动法:设计实践活动,让学生在实践中掌握平方根的运算。
-提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
-自主学习法:引导学生自主思考,培养自主学习能力。
-信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
-预习资料:PPT、视频、文档等。
作用与目的:
-帮助学生提前了解平方根的概念和性质,为课堂学习做好准备。
本节课的教学目标包括:理解平方根的概念,掌握平方根的性质,能够熟练运用平方根进行计算。在教学过程中,需要注意引导学生通过观察、思考、探究来理解平方根的概念和性质,培养学生的逻辑思维能力和运算能力。同时,结合学生的实际情况,适当增加一些与生活实际相关的例题,提高学生的学习兴趣和积极性。
核心素养目标
本节课旨在培养学生的数学抽象、逻辑推理、数学建模等核心素养。通过平方根的概念探究,使学生能够抽象出平方根的定义,理解平方根的本质特征,提升数学抽象能力;通过平方根性质的探究,让学生学会运用逻辑推理的方法,得出平方根的性质,提高逻辑推理能力;同时,通过平方根运算的练习,让学生能够运用平方根解决实际问题,培养数学建模的核心素养。

平方根的运算法则

平方根的运算法则

平方根的运算法则平方根,在数学的世界里是一个常见而又重要的概念。

它在代数、几何、物理等众多领域都有着广泛的应用。

要想熟练掌握和运用平方根,了解其运算法则是必不可少的。

首先,咱们得明确什么是平方根。

如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根。

比如, 3 的平方是 9 ,所以 3 是 9 的平方根;同样,-3 的平方也是 9 ,所以-3 也是 9 的平方根。

也就是说,9 的平方根有两个,分别是 3 和-3 。

通常用符号“ ± ”来表示正负两个平方根,所以 9 的平方根可以写作 ± 3 。

接下来,咱们说说平方根的基本运算法则。

加法运算:两个平方根相加,比如√ 4 +√ 9 ,先求出每个平方根的值,√ 4 = 2 ,√ 9 = 3 ,所以√ 4 +√ 9 = 2 + 3 = 5 。

但要注意,如果被开方数不同,是不能直接将平方根相加的,比如√ 2 +√ 3 ,就不能直接得出结果。

减法运算:和加法类似,先求出每个平方根的值,然后再相减。

比如√ 16 √ 9 ,√ 16 = 4 ,√ 9 = 3 ,所以√ 16 √ 9 = 4 3 = 1 。

同样,如果被开方数不同,不能直接相减。

乘法运算:√ a × √ b =√ ( a × b )。

例如,√ 2 × √ 3 =√ ( 2 ×3 )=√ 6 。

但要注意,只有当 a 、 b 都为非负数时,这个法则才成立。

除法运算:√ a ÷ √ b =√ ( a ÷ b )(b ≠ 0 )。

比如,√ 8 ÷ √ 2 =√ ( 8 ÷ 2 )=√ 4 = 2 。

还有一个重要的法则是:(√ a )²= a (a ≥ 0 )。

这意味着,一个非负数的平方根再平方,就等于这个数本身。

在进行平方根运算时,我们还需要注意一些特殊情况。

当被开方数是负数时,在实数范围内,平方根是不存在的。

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。

本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。

(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。

重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。

二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。

因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。

②本节的难点是化简二次根式的方法与技巧。

难点分析化简二次根式,实际上是二次根式性质的综合运用。

化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。

所以对初学者来说,这一过程容易出现符号和计算出错的问题。

熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。

因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。

平方根教学设计(教案)

平方根教学设计(教案)

平方根教学设计(教案)章节一:平方根的概念引入教学目标:1. 让学生理解平方根的定义。

2. 让学生掌握求一个数的平方根的方法。

教学内容:1. 引入平方根的概念,通过举例让学生感受平方根的实际意义。

2. 讲解平方根的性质,如正数的平方根有两个,零的平方根是零,负数的平方根不存在。

教学活动:1. 利用实际问题引入平方根的概念,如“一个正方形的边长是a,求它的面积”。

2. 引导学生思考,如何求一个数的平方根,学生可以通过计算、估算等方式尝试求解。

章节二:平方根的运算规则教学目标:1. 让学生掌握平方根的运算规则。

2. 让学生能够熟练地进行平方根的计算。

教学内容:1. 讲解平方根的运算规则,如加减乘除的运算规则。

2. 通过例题让学生理解平方根的运算规则,并进行练习。

教学活动:1. 通过例题讲解平方根的运算规则,如(√a)²= a,(√a)×(√b)= √(ab)等。

2. 让学生进行平方根的计算练习,教师可以提供一些练习题,让学生进行计算和解答。

章节三:平方根的应用教学目标:1. 让学生理解平方根在实际问题中的应用。

2. 让学生能够运用平方根解决实际问题。

教学内容:1. 通过实际问题讲解平方根的应用,如求解方程、求解不等式等。

2. 通过例题让学生理解平方根的应用,并进行练习。

教学活动:1. 通过实际问题引入平方根的应用,如求解方程x²= 9。

2. 引导学生思考,如何运用平方根解决实际问题,学生可以通过计算、估算等方式尝试求解。

章节四:平方根的拓展教学目标:1. 让学生了解平方根的拓展知识。

2. 让学生能够运用平方根的拓展知识解决实际问题。

教学内容:1. 讲解平方根的拓展知识,如平方根的乘积、平方根的倒数等。

2. 通过例题让学生理解平方根的拓展知识,并进行练习。

教学活动:1. 通过例题讲解平方根的拓展知识,如(√a)×(√b)= √(ab),(√a)⁻¹= √a⁻¹等。

平方根与算数平方根(复习讲义)01(教师版)

平方根与算数平方根(复习讲义)01(教师版)

平方根与算数平方根(复习讲义)01【知识点讲解】 知识点一:算术平方根1、定义:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根,规定0的算术平方根是0。

2、表示方法:非负数a 的算术平方根记作“a ”,读作“根号a ”,其中a 叫做被开方数。

3、性质:正数a 的算术平方根为a ; 0的算术平方根是0,即00=; 负数没有算术平方根。

举例:2552=,那么5叫做25的算术平方根(或者说25的算术平方根是5)。

算术平方根a 具有双重非负性: 被开方数a 是非负数,即a ≥0;非负数a 的算术平方根a 是非负数,即a ≥0。

4、规律方法:求一个非负数的算术平方根与求一个非负数的平方恰好是互逆的过程。

算术平方根等于本身的数只有0和1。

被开方数越大,对应的算术平方根也越大,这个结论对所有正数都成立。

例1:求下列个数的算术平方根 ①:0.090.3②:2516 54 ③:()24-4④:0 0 ⑤:1010知识点二:估算算术平方根1、方法:求一个正数(非完全平方数)的算术平方根的近似值,一般采用夹逼法。

“夹”就是从两边确定取值范围;“逼”就是一点一点加强限制,使取值范围越来越小,从而达到理想的精确度。

2、依据:被开方数越大,对应的算术平方根也越大。

3、举例:估算10的大小,可以取与10最近的两个完全平方数9和16。

因为16109<<,所以16109<<,即4103<<4、估算一个正数(非完全平方数)的算术平方根是用有理数进行估计,利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小。

例2:估算7的近似值(精确到0.01)解:372974<<⇒<<76.66.22=、29.77.22=7.276.2<<⇒9696.664.22=、0225.765.22=65.2764.2<<⇒得:65.27≈知识点三:平方根的概念及性质 1、平方根:(1)定义:一般地,如果一个数x 的平方等于a ,即a x =2,那么这个数x 叫做a 的平方根或二次方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易平方根的运算
1
(1)利用平方根的乘法运算法则:
若a 、b 为正数,则 a ⨯b =ab 去计算两个正平方根的乘积。

(2)利用平方根的除法运算法则:
b
a =
b a 或a ÷b =b a ÷ (a b ,0≥>0) 去计算两个正平方根相除的商。

2
例1.化简下列各数: (1)(5)2 (2)25 (3)2)5(- (4)(5-)2
解:
【答:(1) 5 (2) 5 (3) 5 (4)-5】 例2.化简下列各数: (1)8 (2)24 (3)75 (4)84 (5)200
解:
【答:(1) 22 (2) 26 (3) 53 (4) 221 (5)102】 例3.化简下列各数: (1)95 (2)32 (3)124 (4)185 (5)3
22 解: 【答:(1) 35 (2) 36 (3) 33 (4) 610 (5) 3
62】 例4.求下列各式的积并化简: (1)133⨯ (2)326⨯ (3)287⨯ (4)3
152⨯ 解: 【答:(1) 39 (2) 2 (3) 27 (4) 15
30】
例5.求下列各式的商并化简: (1)2332÷ (2)281÷ (3)3216÷ (4)5
752÷ 解: 【答:(1)
32 (2) 4
1 (3) 26 (4) 714】
3 1.化简下列各数: (1)(-3)2 (2)2)3(- (3)(3)2
2.化简下列各数: (1)12 (2)32 (3)54 (4)90 (5)363
3.化简下列各数: (1)
163 (2)59 (3)125 (4)203 (5)533
4.求下列各式的积并化简: (1)205⨯ (2)1437⨯
(3)9320⨯ (4)335611⨯
5.求下列各式的商并化简:
(1)3127÷ (2)3151÷ (3)528÷ (4)65320÷
4
分母有化 如:计算:23÷时,先写成23,再把分子,分母都乘以2,化去分母中的根号,得:
2
6222
323
=⋅⋅=,这样就完成了除法运算。

——分母有理化
例1:将下列各式中的分母有理化:
(1) (2)732
4- (3)b a a
+2
[分析]分母中的二次根式即为分母有理化因式:
解:(1)
26222323=⋅⋅= (2)
14214211447737247324-=-=⋅⋅-=- (3)b a b a a b
a b a b a a b a a
++⋅=+⋅++⋅=+222 1、简单练习:
(1)403
方法1:20
304030240120404040340
3
===⋅⋅= 方法2:203010
1021031023403=⋅⋅== (2)a a 105 方法1:2
210251*********a a a a a a a a a
a
=⋅=⋅⋅= 方法2:2222222255105a a a a a
a a a a a a a =⋅=⋅⋅=⋅= 方法3:222
22255105a a a a a a a =⋅⋅=⋅⋅⋅⋅=⋅
2.将下面各式分母有理化:
(1)3663, xy y x 322
(2)
(3)
(4)。

相关文档
最新文档