第2章薄膜沉积的化学方法
pecvd反应方程

pecvd反应方程PECVD,全称为等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition),是一种常用于薄膜制备的沉积方法。
它利用等离子体激活气体分子,使其发生化学反应并在基底表面生成薄膜。
以下是PECVD常见的反应方程及其对应的薄膜沉积过程。
1. 硅氢化物PECVD反应方程:SiH4 + H2 → Si + 2H2O该反应方程描述了在PECVD过程中使用硅氢化物(如硅烷SiH4)作为前驱体进行硅薄膜的沉积。
通过与氢气反应,产生硅及水蒸气。
在等离子体激活的条件下,硅和水蒸气在基底表面发生化学反应,生成纯净的硅薄膜。
2. 氧化物PECVD反应方程:SiH4 + N2O → SiO2 + 2H2O + N2该反应方程描述了使用硅氢化物和氮氧化物(如N2O)作为前驱体进行氧化物薄膜(如二氧化硅SiO2)的沉积。
在等离子体激活的条件下,硅氢化物与氮氧化物发生化学反应,生成氧化硅薄膜、水蒸气和氮气。
3. 碳氮化物PECVD反应方程:SiH4 + C3H8 + NH3 → SiCN + 3H2 + H2O (SiC涂覆剂)该反应方程描述了使用硅氢化物、丙烷和氨气作为前驱体进行碳氮化物薄膜(如碳化硅SiC)的沉积。
在等离子体激活的条件下,硅氢化物与丙烷和氨气发生化学反应,生成碳氮化硅薄膜、氢气和水蒸气。
4. 氮化物PECVD反应方程:SiH4 + NH3 → Si3N4 + 3H2该反应方程描述了使用硅氢化物和氨气作为前驱体进行氮化物薄膜(如氮化硅Si3N4)的沉积。
在等离子体激活的条件下,硅氢化物与氨气发生化学反应,生成氮化硅薄膜和氢气。
值得注意的是,以上的PECVD反应方程仅为示例,实际的PECVD反应可能涉及不同的前驱体和反应条件。
根据所需的薄膜材料和沉积条件的不同,可以选择不同的前驱体和反应方程进行PECVD沉积。
在PECVD过程中,等离子体的产生是至关重要的。
薄膜沉积的化学方法

高纯度薄膜对于某些应用至关重要,但化学方法沉积过程中杂质和 缺陷的控制难度较大。
反应条件控制
化学反应的条件,如温度、压力和反应物浓度,对薄膜的特性和质量 有显著影响,需要精确控制。
未来发展方向
1 2
新材料探索
随着科技的发展,对具有特殊性能的新型薄膜材 料的需求不断增加,探索新型化学沉积薄膜材料 是未来的重要方向。
原理
在电化学沉积过程中,电解液中的金属离子在电极上失去电子并还原成金属原子,这些原子在电极表 面逐渐积累形成连续的金属薄膜。
常见反应类型
阴极还原
在阴极上,金属离子获得电子并 还原成金属原子,这是电化学沉 积中最常见的反应类型。
共沉积
共沉积是指同时沉积出两种或多 种金属或非金属元素的过程,可 以通过改变电解液成分和电压来 实现。
离子束沉积
03
通过离子束轰击固体材料表面,将原子或分子溅射出来并在基
底上沉积成膜。
应用领域
微电子和半导体制造
用于制造集成电路、微电子器件和光电器件等。
光学薄膜
用于制造光学元件和反射镜等。
装饰和艺术品保护
用于制造装饰涂层和保护涂层等。
03
电化学沉积 (ECD)
定义与原理
定义
电化学沉积是一种通过在电解液中施加电压来使金属或化合物从溶液中析出并沉积在电极表面形成薄 膜的方法。
复合沉积
复合沉积是指沉积出的薄膜由两 种或多种材料组成,这些材料可 以在空间上相互分离,也可以混 合在一起。
应用领域
01
02
03
微电子器件制造
电化学沉积在微电子器件 制造中广泛应用,如薄膜 导电层、金属连线、电极 等。
表面工程
薄膜的化学制备方法

LB薄膜的特点
优点:1. LB薄膜中分子有序定向排列,这是一个重要特点; 2. 很多材料都可以用LB技术成膜; 3. LB膜有单分子层组成,它的厚度取决于分子大小 和 分子的层数; 4. 通过严格控制条件,可以得到均匀、致密和缺陷密 度很低的LB薄膜;
缺点:
➢ 成膜效率低, ➢ LB薄膜均为有机薄膜,包含了有机材料的弱点; ➢ LB薄膜厚度很薄,在薄膜表征手段方面难度较大。
盲孔
和形状复杂的内腔;
4. 被镀材料广泛:可在钢、铜、铝、锌、塑料、尼龙、
玻
Ni2+
+
_
H2PO2
+H2O
表面 催化HPO32
+ 3H+ + Ni
璃、 橡胶、木材等材料上镀膜。
化学镀设备(Electroless plating equipment )
化学镀的应用
化学镀Ni-P-B活塞
Ni-P塑料模具
Ni-P铝质天线盒
PCB的局部化学镀
Layer 1
Tracks
Via Hole
SMD Pad
Layer 6
R34
IC3
二、溶胶-凝胶法
溶胶凝胶法是常用的化学制膜方法,与 蒸发、溅射等物理成膜方法相比,设备简单、成 本低、容易控制薄膜的化学组分比、可以用它方 便地制备多种薄膜和纳米材料,是一种适合于机 理研究的好方法。
4.在基片B,金属离子得到 电子被还原。
电镀服从法拉第定律
Faraday 定律(镀层厚度与时间和电流的关系)
• m=K I t • m=(M/nF) (I(d) S) t • p S h=(M/nF) (I(d)
S) t • p h=(M/nF) I(d) t
化学气相沉积技术

化学气相沉积技术化学气相沉积技术是一种常用的薄膜制备方法,它在材料科学、纳米技术、能源领域等方面有着广泛的应用。
本文将介绍化学气相沉积技术的基本原理、分类以及在不同领域的应用。
一、基本原理化学气相沉积技术是通过在气相条件下使化学反应发生,从而在基底表面上沉积出所需的薄膜材料。
该技术通常包括两个主要步骤,即前驱体的气相传输和沉积过程。
在前驱体的气相传输阶段,前驱体物质通常是一种挥发性的化合物,如金属有机化合物或无机盐等。
这些前驱体物质被加热到一定温度,使其蒸发或分解为气体。
然后,这些气体将通过传输管道输送到基底表面上。
在沉积过程中,前驱体气体与基底表面上的反应活性位点发生反应,形成固态的薄膜材料。
这些反应通常是表面吸附、解离、扩散和再结合等过程的连续发生。
通过控制前驱体的流量、温度、压力等参数,可以实现对沉积薄膜的厚度、成分和晶体结构的调控。
二、分类根据沉积过程中气体流动的方式和方向,化学气相沉积技术可以分为热辐射、热扩散和热对流三种类型。
1. 热辐射沉积(Thermal Radiation Deposition,TRD):在热辐射沉积中,前驱体物质通过热辐射的方式传输到基底表面。
这种方法适用于高温条件下的沉积过程,可以用于制备高质量的薄膜材料。
2. 热扩散沉积(Thermal Diffusion Deposition,TDD):在热扩散沉积中,前驱体物质通过热扩散的方式传输到基底表面。
这种方法适用于低温条件下的沉积过程,可以用于制备柔性基底上的薄膜材料。
3. 热对流沉积(Thermal Convection Deposition,TCD):在热对流沉积中,前驱体物质通过热对流的方式传输到基底表面。
这种方法适用于较高温度和压力条件下的沉积过程,可以用于制备大面积的薄膜材料。
三、应用领域化学气相沉积技术在材料科学、纳米技术和能源领域有着广泛的应用。
以下是几个具体的应用领域:1. 半导体器件制备:化学气相沉积技术可以用于制备半导体材料的薄膜,如硅、氮化硅、氮化铝等,用于制备晶体管、太阳能电池等器件。
第二章薄膜的制备ppt课件

在信息显示技术中的应用
在信息存贮技术中的应用
• 第二是在集成电路等电子工业中的应用, 其中,从外延薄膜的生长这一结晶学角 度看也具有显著的成果。
在计算机技术中的应用
在计算机技术中的应用
• 第三是对材料科学的贡献。薄漠制 备是在非平衡状态下进行,和通常的热 力学平衡条件制备材料相比具有:所得 材料的非平衡特征非常明显;可以制取普 通相图中不存在的物质;在低温下可以制 取热力学平衡状态下必须高温才能生成 的物质等优点。
薄膜的主要特性
• 材料薄膜化后,呈现出的一部分主要特性:
•
几何形状效应
• 块状合成材料一般使用粉末的最小尺寸为 纳米至微米,而薄膜是由尺寸为1埃左右的原子
或分子逐渐生长形成的。采用薄膜工艺可以研
制出块材工艺不能获得的物质(如超晶格材料),
在开发新材料方面,薄膜工艺已成为重要的手
段之一。
非热力学平衡过程
无机薄膜制备工艺
• 单晶薄膜、多晶薄膜和非晶态薄膜在现代微 电子工艺、半导体光电技术、太阳能电池、光纤 通讯、超导技术和保护涂层等方面发挥越来越大 的作用。特别是在电子工业领域里占有极其重要 的地位,例如半导体集成电路、电阻器、电容器、 激光器、磁带、磁头都应用薄膜。
• 薄膜制备工艺包括:薄膜制备方法的选择; 基体材料的选择及表面处理;薄膜制备条件的选 择;结构、性能与工艺参数的关系等。
(2)双蒸发源蒸镀——三温度法
三温度-分子束外延法主要是用 于制备单晶半导体化合物薄膜。从 原理上讲,就是双蒸发源蒸镀法。 但也有区别,在制备薄膜时,必须 同时控制基片和两个蒸发源的温度, 所以也称三温度法。
三温度法 是制备化合物 半导体的一种 基本方法,它 实际上是在V族 元素气氛中蒸 镀Ⅲ族元素, 从这个意义上 讲非常类似于 反应蒸镀。图 示就是典型的 三温度法制备 GaAs单晶薄膜 原理。
半导体技术-薄膜沉积

薄膜沉积薄膜的沉积,是一连串涉及原子的吸附、吸附原子在表面的扩散及在适当的位置下聚结,以渐渐形成薄膜并成长的过程。
分类及详述:化学气相沉积(Chemical Vapor Deposition)——CVD反应气体发生化学反应,并且生成物沉积在晶片表面。
物理气相沉积(Physical Vapor Deposition)——PVD蒸镀(Evaporation)利用被蒸镀物在高温(近熔点)时,具备饱和蒸汽压,来沉积薄膜的过程。
溅镀(Sputtering)利用离子对溅镀物体电极(Electrode)的轰击(Bombardment)使气相中具有被镀物的粒子(如原子),沉积薄膜。
化学气相沉积 (Chemical Vapor Deposition;CVD)用高温炉管来进行二氧化硅层的成长,至于其它如多晶硅 (poly-silicon)、氮化硅 (silicon-nitride)、钨或铜金属等薄膜材料,要如何成长堆栈至硅晶圆上?基本上仍是采用高温炉管,只是因着不同的化学沉积过程,有着不同的工作温度、压力与反应气体,统称为「化学气相沉积」。
既是化学反应,故免不了「质量传输」与「化学反应」两部分机制。
由于化学反应随温度呈指数函数变化,故当高温时,迅速完成化学反应,对于化学气相沉积来说,提高制程温度,容易掌握沉积的速率或制程的重复性。
高温制程有几项缺点:1.高温制程环境所需电力成本较高。
2.安排顺序较后面的制程温度若高于前者,可能破坏已沉积材料。
3.高温成长的薄膜,冷却至常温后,会产生因各基板与薄膜间热胀缩程度不同的残留应力 (residual stress)。
所以,低制程温度仍是化学气相沉积追求的目标之一,如此一来,在制程技术上面临的问题及难度也跟着提高。
按着化学气相沉积的研发历程,分别简介「常压化学气相沉积」、「低压化学气相沉积」及「电浆辅助化学气相沉积」:1.常压化学气相沉积(Atmospheric Pressure CVD;APCVD)最早研发的CVD系统,是在一大气压环境下操作,设备外貌也与氧化炉管相类似。
薄膜的物理气相沉积Ⅰ——热蒸发

薄膜的物理气相沉积
薄膜的物理气相沉积Ⅰ——热蒸发
8
薄膜沉积速率正比于气体分子的通量。
单位表面上元素的净蒸发速率
ΦαN2( AπpMe Rph) T
α — 系数,介于0~1之间;
m n M N
A
pe、ph — 平衡蒸气压和实际情况下的分压。 单位表面上元素的质量蒸发速率
组元蒸气压相近时,可估算合金蒸发源的成分。 例如,1350K,薄膜成分:Al-2%Cu (质量分数),
需蒸发源成分:A1-13.6%Cu (质量分数)。
薄膜的物理气相沉积
薄膜的物理气相沉积Ⅰ——热蒸发
20
对于初始成分确定的蒸发源,组元蒸发速率 之比随时间而变化。 原因:易于蒸发的组元的优先蒸发使该组元不 断贫化,进而使该组元蒸发速率不断下降。
薄膜的物理气相沉积
薄膜的物理气相沉积Ⅰ——热蒸发
5
组成部分: 真空室; 蒸发源及蒸发加热装置; 衬底放置及加热装置。
薄膜的物理气相沉积
薄膜的物理气相沉积Ⅰ——热蒸发
6
真空蒸发镀膜机
薄膜的物理气相沉积
薄膜的物理气相沉积Ⅰ——热蒸发
7
2.1.1 元素的蒸发速率
平衡蒸气压:一定温度下,蒸发气体与凝聚相平 衡过程中所呈现的压力。
第二章 薄膜的物理气相沉积(I) —— 蒸发法
物理气相沉积(Physical Vapor Deposition, PVD) 物理过程,如物质的热蒸发或在 受到粒子束轰击时物质表面原子的溅射等现 象,实现物质原子从源物质到薄膜的可控转移 过程。
薄膜的物理气相沉积薄膜的物理气相沉积ⅠFra bibliotek—热蒸发1
薄膜的沉积过程

薄膜的沉积过程
薄膜沉积是指将材料沉积到基底表面形成一层薄膜的过程。
这个过程在微电子、光电子、纳米技术等领域都有广泛的应用。
薄膜沉积过程可以分为物理气相沉积和化学气相沉积两种方法。
1. 物理气相沉积
物理气相沉积是指通过高能粒子(如电子束、离子束)或热源(如电阻丝)将材料加热至高温,使其蒸发或溅射到基底表面上形成一层薄膜的过程。
这种方法适用于制备金属、合金、硅等材料的薄膜。
2. 化学气相沉积
化学气相沉积是指通过化学反应将材料从气体状态转变为固态并在基底表面上形成一层薄膜的过程。
这种方法适用于制备半导体、绝缘体和金属等材料的薄膜。
化学气相沉积可以分为以下几种类型:
(1)热化学气相沉积(CVD)
CVD是一种将气态前驱体在高温下分解反应产生材料沉积在基底表面
的方法。
CVD适用于制备SiO2、Si3N4、MoSi2等材料的薄膜。
(2)物理化学气相沉积(PVD)
PVD是指通过物理手段将材料从固态转变为气态,然后在基底表面上
形成一层薄膜的过程。
PVD适用于制备金属、合金、氧化物等材料的
薄膜。
(3)原子层沉积(ALD)
ALD是一种将前驱体分子和反应剂交替注入反应室中,每次只有一个
单层原子或分子被沉积在基底表面上的方法。
ALD适用于制备高质量、均匀性好的绝缘体和金属薄膜。
总之,不同类型的薄膜沉积方法具有不同的特点和优缺点,在实际应
用中需要根据具体情况选择合适的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)存在基片-气氛、设备-气氛间反应,影响基片及设备性能及寿命; 3)设备复杂,工艺控制难度较大。
化学反应的主控参数:设 气备 体参 参数 数: :真 流空 量室 、构 组型 分、 、基 温片 度放 、置 分及 压回 。转 。方 。式。。。
主要应用场合:半表导面体处工理业技术半换导能高装体器硬饰、件耐膜介膜磨层电层膜:膜:层TiN层太::阳TiCI能II、电- VT池i族N非、、晶SIIiCSiV膜I族,等成半本导 体薄膜
材料科学与工程学院 2008©
Thin Film Materials & Technologies
2 薄膜沉积的化学方法
2.2 化学气相沉积(CVD,Chemical Vapor Deposition)
主要优势:1)能形成多种金属、非金属和化合物薄膜;
2)组分易于控制,易获得理想化学计量比,薄膜纯度高; 3)成膜速度快、工效高(沉积速率 >>PVD、单炉处理批量大); 4)沉积温度高、薄膜致密、结晶完整、表面平滑、内部残余应力低; 5)沉积绕射性好,可在复杂不规则表面(深孔、大台阶)沉积;
1)反应气体:热稳定性较好的卤化物、羟基化合物、卤氧化物等 + 还原性气体。
2)典型反应:
■ H2还原SiCl4外延制备单晶Si薄膜: SiCl4 (g) + 2H2 (g) Si (s) + 4HCl (g) 1200℃ ■ 六氟化物低温制备难熔金属W、Mo薄膜: WF6 (g) + 3H2 (g) W (s) + 6HF (g) 300℃
-6-
薄膜材料与技术
材料科学与工程学院 2008©
2 薄膜沉积的化学方法
2.2 化学气相沉积(CVD)
2.2.1 CVD的主要化学反应类型
Thin Film Materials & Technologies
热解 反应
Байду номын сангаас
还原 反应
氧化 反应
置换 反应
歧化 反应
输运 反应
二、还原反应:薄膜由气体反应物的还原反应产物沉积而成。
消耗基体(部分基体转为薄膜) 覆盖基体(薄膜物质完全外来)
西安理工大学
Xi'an University of Technology
-3-
薄膜材料与技术
材料科学与工程学院 2008©
Thin Film Materials & Technologies
2 薄膜沉积的化学方法
2.2 化学气相沉积(CVD,Chemical Vapor Deposition)
概 念:气态反应物在一定条件下,通过化学反应,将反应形成的固相产物沉积于基片表面,
形成固态薄膜的方法。
基本特征:由反应气体通过化学反应沉积实现薄膜制备!
设备的基本构成:
气体输运
气相反应 去除副产品 (薄膜沉积)
西安理工大学
Xi'an University of Technology
-4-
薄膜材料与技术
■ 有机金属化合物沉积高熔点陶瓷薄膜: 2Al(OC3H7)3 (g) Al2O3(s)+6C3H6(g)+3H2O(g) 420℃
异丙醇铝
Tm≈2050℃ 丙烯
■ 单氨络合物制备氮化物薄膜: AlCl3·NH3 (g) AlN (s) + 3HCl (g) 800-1000℃
西安理工大学
Xi'an University of Technology
2 薄膜沉积的化学方法
Thin Film Materials & Technologies
概 念:薄膜制备过程中,凡是需要在一定化学反应发生的前提下完成薄膜制备的
技术方法,统称为薄膜沉积的化学方法。
条
件:化学反应需要能量输入和诱发
热激活作用:CVD、热生长 电化学作用:电镀、阳极氧化处理
优、缺点:设备简单、成本较低、甚至无需真空环境即可进行;
设 备:通常在传统的氧化炉中进行。
主要应用:制备SiO2薄膜(用于Si器件制备)
热生长设备及原理示意图
绝缘性质 电子器件绝缘
有用的薄膜性质:半导体性质 电子线路
钝化特性 防腐用途
-Bi 2O3 热生长氧化铋薄膜-Bi 2O3
-Bi 2O3
367℃ 蒸汽作用: 调节氧分压
生长与沉积的区别:生沉长积
Thin Film Materials & Technologies
薄膜材料与技术 Thin Film Materials & Technologies
武涛 副教授 2012年 秋季学期
西安理工大学
Xi'an University of Technology
-1-
薄膜材料与技术
材料科学与工程学院 2008©
氧化 反应
置换 反应
歧化 反应
输运 反应
一、热解反应:薄膜由气体反应物的热分解产物沉积而成。
1)反应气体:氢化物、羰基化合物、有机金属化合物等。
2)典型反应:
■ 硅烷沉积多晶Si和非晶Si薄膜: SiH4 (g) Si (s) + 2H2 (g) 650~1100 ℃
■ 羰基金属化合物低温沉积稀有金属薄膜: Ni(CO)4 (g) Ni (s) + 4CO (g) 140~240℃ Pt(CO)2Cl2 (g) Pt (s) + 2CO (g) + Cl2 (g) 600℃
材料科学与工程学院 2008©
2 薄膜沉积的化学方法
2.1 热生长
Thin Film Materials & Technologies
概 念:指在充气环境下,通过加热基片的方式
直接获得氧化物、氮化物或碳化物薄膜 的方法。
Me+O2 加热MexOy
特 点:非常用技术
主要用于生长金属或半导体的氧化物薄膜
西安理工大学
Xi'an University of Technology
-5-
薄膜材料与技术
材料科学与工程学院 2008©
2 薄膜沉积的化学方法
2.2 化学气相沉积(CVD)
2.2.1 CVD的主要化学反应类型
Thin Film Materials & Technologies
热解 反应
还原 反应
化学制备、工艺控制复杂、有可能涉及高温环境。
气相反应方法
化学气相沉积(CVD ) 热生长
分
类:
液相反应方法
电化学沉积
电镀 阳极氧化
溶液化学反应
化学镀 溶胶凝胶法
L - B 技术
本章内容以CVD 为主
西安理工大学
Xi'an University of Technology
-2-
薄膜材料与技术