中学八年级数学下知识点总结

合集下载

八年级下册数学第九章

八年级下册数学第九章

八年级下册数学第九章
八年级下册数学第九章通常包括中心对称图形、平行四边形、矩形、菱形、正方形等知识点。

其中,中心对称图形是该章的核心知识点之一,它是指一个图形绕着某一点旋转180度后能够与自身重合的图形。

平行四边形也是常见的几何图形之一,它的对边相等且平行。

此外,矩形、菱形和正方形等知识点也是该章的重要内容,它们在几何学中有着广泛的应用。

在学习这些知识点时,学生需要掌握它们的定义、性质和判定方法,并能够运用这些知识解决实际问题。

例如,学生可以运用中心对称图形的性质来判断一个图形是否为中心对称图形,或者运用平行四边形的性质来判断一个四边形是否为平行四边形。

此外,学生还可以运用这些知识来解决一些几何问题,如计算图形的面积、周长等。

总之,八年级下册数学第九章是几何学中的重要内容之一,学生需要认真学习并掌握其中的知识点,以便在实际应用中能够灵活运用。

八年级反函数知识点总结

八年级反函数知识点总结

八年级反函数知识点总结反函数是中学数学中一个重要的知识点,也是高中数学中的重难点之一。

在初中阶段,学生需要学习反函数的概念、性质、求解方法等内容。

本文将对八年级反函数知识点进行详细的总结,以便学生更好地理解和掌握相关知识。

一、反函数的概念函数的反函数,指的是如果一个函数f(x)对于不同的自变量x 对应着不同的函数值y,那么它的反函数f⁻¹(y)应该满足:对于任意的y都有唯一的x使得f(x)=y。

二、反函数的性质1. 反函数是函数的一种特殊形式,具有函数的一切性质,如定义域、值域、单调性、奇偶性等。

2. 若函数f(x)在定义域内是单调递增或单调递减,则它的反函数f⁻¹(y)也具有相应的单调性质。

3. 若函数f(x)在定义域内是偶函数,则它的反函数f⁻¹(y)也是偶函数。

4. 若函数f(x)在定义域内是奇函数,则它的反函数f⁻¹(y)也是奇函数。

三、反函数的求解方法1. 图像法:如果一个函数f(x)在平面直角坐标系上的图像关于直线y=x对称,那么它的反函数f⁻¹(x)即为图像关于直线y=x的对称图像。

2. 公式法:(1)若函数f(x)为一次函数y=kx+b,则它的反函数为f⁻¹(x)=(x-b)/k。

(2)若函数f(x)为二次函数y=ax²+bx+c,且a≠0,那么它的反函数为f⁻¹(x)=√[(x-c)/a]或f⁻¹(x)=-[√[(x-c)/a]]。

(3)其他函数的反函数求解可以参考相关教材或教师的讲解。

四、反函数的应用1. 可以解决一些方程、不等式、限制条件等问题。

2. 有助于计算一些函数的复合、反复合等问题。

3. 在几何问题中,可以帮助求解两条直线或两个圆的交点。

以上就是八年级反函数知识点的详细总结,希望对学生们掌握相关知识有所帮助。

在学习过程中,需要多做练习,加深对反函数概念、性质和求解方法的了解和熟练掌握。

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点一次函数是中学数学中的重要内容之一,它在解决实际问题中有着广泛的应用。

在这篇文章中,我们将逐步介绍八年级下册数学中一次函数的基本概念、性质和解题方法。

一、一次函数的基本概念一次函数又称为线性函数,是指函数的表达式中只包含一次项和零次项,不含其他次数的项。

一次函数的一般形式可以表示为 y = kx + b,其中 k 和 b 是常数,且 k 不等于零。

在一次函数中,x 是自变量,y 是因变量。

k 表示函数的斜率,决定了函数图像的倾斜程度;b 表示函数的截距,决定了函数图像与 y 轴的交点位置。

二、一次函数的性质1.斜率 k 的含义和性质斜率 k 反映了函数图像的倾斜程度。

当 k 大于零时,函数图像逐渐上升;当 k小于零时,函数图像逐渐下降;当 k 等于零时,函数图像是水平的。

2.截距 b 的含义和性质截距 b 决定了函数图像与 y 轴的交点位置。

当 b 大于零时,函数图像与 y 轴的交点在 y 轴上方;当 b 小于零时,函数图像与 y 轴的交点在 y 轴下方;当 b 等于零时,函数图像与 y 轴的交点在原点上。

3.函数图像的性质一次函数的图像是一条直线,它可以通过斜率 k 和截距 b 来确定。

当斜率 k 不等于零时,函数图像是一条斜线;当斜率 k 等于零时,函数图像是一条水平线;当截距 b 不等于零时,函数图像与 y 轴有交点;当截距 b 等于零时,函数图像通过原点。

三、一次函数的解题方法1.求函数图像与坐标轴的交点要确定一次函数图像与 x 轴的交点,只需将函数表达式中的 y 置为零,解方程得到 x 的值。

同样地,要确定一次函数图像与 y 轴的交点,只需将函数表达式中的x 置为零,解方程得到 y 的值。

2.求函数图像的斜率函数图像的斜率可以通过任意选取两个点,计算它们的坐标变化量,然后利用斜率的定义公式Δy/Δx 来求得。

3.求函数的表达式已知函数图像通过两个点A(x₁, y₁) 和B(x₂, y₂) 时,可以利用斜率公式k = (y₂ - y₁) / (x₂ - x₁) 来求得斜率 k。

八年级下册数学重要知识点初二下册数学知识点

八年级下册数学重要知识点初二下册数学知识点

八年级下册数学重要知识点初二下册数学知识点
初二下册数学的重要知识点包括:
1. 直角三角形的性质:勾股定理、正弦定理、余弦定理等;
2. 平面直角坐标系中的图形:直线的方程、点的坐标、图形的性质等;
3. 二次根式与分式的运算:根式的化简、根式的加减乘除、分式的化简等;
4. 平面图形的性质:正方形、长方形、平行四边形、三角形等的性质;
5. 一元一次方程与不等式:一元一次方程与不等式的解、方程的应用等;
6. 几何变换:平移、旋转、对称等的基本概念与性质;
7. 数据统计与概率:频数、频率、平均数、中位数、众数等的计算与应用;
8. 线性函数:函数的概念、函数图像、函数关系、函数表示、函数应用等;
9. 集合:集合的基本概念、集合的关系与运算等。

以上只是初二下册数学的一部分重要知识点,具体的教材内容可能会有所不同。

学生
在学习数学时,需要根据教材的安排和教师的指导来有重点地学习和复习相关知识点。

八年级三角形知识点归纳

八年级三角形知识点归纳

八年级三角形知识点归纳三角形是中学数学中比较基础的一个概念,也是数学中常见的一种图形。

在初中数学中,三角形是一个非常重要的知识点,今天我们来回顾一下八年级阶段所学的三角形知识点。

一、三角形的定义和分类三角形是由三条线段组成的图形,其中每两条线段的交点被称为一个顶点。

三角形是由三个顶点和三个边组成的,且三角形的边和顶点是一一对应的。

根据三角形的边长关系和角度关系,可以将三角形分为以下几类:1. 根据边长关系:等边三角形:三边相等的三角形。

等腰三角形:至少有两边相等的三角形。

普通三角形:三边均不相等的三角形。

2. 根据角度关系:锐角三角形:三个角都是锐角的三角形。

直角三角形:其中一个角是直角的三角形。

钝角三角形:至少有一个角是钝角的三角形。

二、三角形的基本性质1. 三角形的内角和等于180度。

即三角形的三个角的度数之和为180度。

可以用以下公式表示:a + b + c = 180其中,a、b、c分别表示三角形的三个角的度数。

2. 等边三角形的三个角都是60度。

因为等边三角形的三边相等,所以三个角都必须相等。

而三个相等的角的度数之和必须为180度,因此每个角的度数都是60度。

3. 等腰三角形的两个底角相等。

等腰三角形的两边相等,所以两个底角也必须相等。

4. 直角三角形的两条直角边的平方和等于斜边的平方。

即a² + b² = c²,其中a、b为直角三角形的两条直角边的长度,c为直角三角形的斜边长度。

5. 三角形的面积可以用海伦公式和正弦定理来计算。

海伦公式:若a、b、c分别为三角形的三个边长,p为三角形半周长,则三角形面积S可以用以下公式计算:S = √(p × (p - a) × (p - b) ×(p - c))正弦定理:若a、b、c分别为三角形的三个边长,A、B、C分别为三角形的三个角,则有以下公式成立:a/sinA = b/sinB = c/sinC三、相似三角形相似三角形是指两个三角形的对应角相等,对应边成比例的三角形。

数学人教版八年级下册平行四边形的性质—平行线间的距离及等面积问题

数学人教版八年级下册平行四边形的性质—平行线间的距离及等面积问题

n m平行四边形的性质—— 平行线间的距离及等面积问题设计人:遵义市第五十三中学 龙文艳一、教材分析:平行线间的距离处处相等是人教版八年级下册第十八章第一节《平行四边形》中平行四边形的性质的一个推论,在等面积问题以及一些相似问题的运用中,这个知识点运用比较广泛,尤其是将一些不便于求解面积的图形问题转化为便于求解的图形问题时,常常会用到这一知识点。

在本教学设计中,我对这堂课进行了教材整合,我将平行线间涉及三角形面积的问题归纳在一起在这一堂课中展示,这样,便于解题方法的总结。

本节课就平行四边形的性质而推导得出平行线间的距离处处相等,然后将涉及这一知识点的相关三角形的面积问题加以整合,在教学过程中,我把对学生的数学转化思想的培养作为重点.二、教学目标:1、让学生在探究归纳中,理解并掌握平行线间距离处处相等的性质;2、通过实例,教会学生运用“平行线间的距离处处相等”来解决一般三角形的面积问题;3、在图形的变换中,体会数学中的转换思想,培养学生的逻辑思维能力.三、教学重难点:重点:将一些不便于求解面积的三角形问题转化为便于求解的三角形问题的方法; 难点:在图形的转化过程中,体会并运用数学几何图形的转化思想.四、教学过程: (一)情境创设:如图,山坡上有两棵树,它们在直线AB 上,你能测量出两棵树距离有多远吗?(二)出示学习目标4、理解并掌握平行线间距离处处相等的性质;5、会运用平行线间距离处处相等解决一般三角形的面积问题;6、在图形的变换中体会数学中的转换思想. (三)自主学习: 1、知识准备:(1)三角形的面积公式是 。

(2)点到直线的距离是指过这个点所作直线的垂线段的 。

(3)两平行线间的距离是指 ,如图,m ∥n ,则直线m 与直线n 之间的距离是 。

(4)平行四边形中,对边 .同时,每一组对边都是另一组对边之间的平行线段,因此上述结论可以这样说:平行线之间的平行线段相等.2、解决情境创设中的问题。

八年级全册各科知识点总结

八年级全册各科知识点总结

八年级全册各科知识点总结八年级是我国中学教育的重要阶段,也是学生从初中向高中过渡的关键时期。

各学科知识点的掌握和应用是非常重要的。

下面我们来总结一下八年级全册各科知识点。

数学八年级数学知识点非常丰富,主要包括代数、几何、函数、图形、方程、不等式等。

其中,代数和几何是基础中的基础,要求学生在掌握基础知识的基础上,对各种情况进行综合考虑。

函数和方程在高中数学中是非常重要的部分,同时也是学生能否应用数学知识进行创新和解决实际问题的关键。

语文八年级语文知识点主要包括修辞手法、文学常识、作文技巧、阅读理解等。

其中,修辞手法和文学常识是提高语言表达能力的基础,要求学生在阅读中进行积累,并能进行运用。

作文技巧和阅读理解是考查学生语言表达和文学素养的重要手段,要求学生注重实践和积累。

英语八年级英语知识点主要包括语法知识、词汇、听力与口语、阅读理解等。

其中,语法知识是英语学习的基础,因此学生要进行反复练习和巩固;词汇和听力口语是英语学习的重点,要求学生注重积累和实践;阅读理解是考察学生综合英语语言能力和文化素养的重要手段。

物理八年级物理知识点主要包括运动学、力学、热力学等方面。

其中,运动学是物理的基础,要求学生掌握各种物体的运动轨迹和速度加速度等参数;力学是物理中的重点,要求学生掌握各种力的作用规律和运用方法;热力学是物理中的难点,要求学生熟练掌握热力学知识,理解各种热现象。

化学八年级化学知识点主要包括化学元素、化学键、化学反应、化学方程式、物质的常量等。

其中,化学元素是化学的基础,要求学生掌握各种元素的名称、符号、周期表等;化学键和化学反应是化学中的难点,需要学生进行细致的学习和积累;化学方程式和物质的常量是考查学生掌握化学知识的重要手段。

生物八年级生物知识点主要包括细胞学、遗传学、分子生物学、生态学等。

其中,细胞学是生物的基础,要求学生掌握细胞组织结构和生命活动等;遗传学和分子生物学是生物的重点,要求学生掌握遗传物质、基因等;生态学是考察学生对生态环境和生态平衡的认识。

冀教版八年级下册数学知识点总结

冀教版八年级下册数学知识点总结

冀教版八年级下册数学知识点总结第十六章:统计的初步知识1、 调查的一般过程:实际问题——搜集数据——整理数据——表示数据——统计分析——合理决策。

2、调查的方法:抽样调查与普查。

普查:对全体对象的调查。

抽样调查:从总体中抽出部分个体进行调查。

总体:抽查对象的全体叫做总体。

个体:调查的每一个对象叫做个体。

样本:总体中抽取的部分个体叫做样本。

样本容量:样本所包含的个体的数量叫做样本容量。

(样本容量不带单位) 例:为了解一批炮弹的杀伤力,抽取100枚炮弹作调查。

总体:一批炮弹的杀伤力;个体:每枚炮弹的杀伤力;样本:被抽到的100枚炮弹的杀伤力;样本容量为100。

3、简单的随机抽样:抽样调查时每个个体被抽到的可能性相同的抽样叫做简单的随机抽样。

4、抽样调查的注意事项:(1)样体要具有代表性 (2)样本容量要适当,不能太少。

5、频数分布直方图 (1)将样本按照一定的方法分成若干组,每组内含有这个样本的个体的数目叫做频数. 某个组的频数与样本容量的比值叫做这个组的频率。

(2)分组一般采用等距分组的方法。

(3)极差:一组数据的最数据与最小数据的差。

(4)组距:把所有数据分成若干个组,每个小组的两个端点的距离。

组数=[(极差/组数)]+1([]表示取整)第十七章:平面直角坐标系1、平面内物体位置的确定:(1)有序数对法(2)方位角+距离法(3)经纬法2、平面直角坐标系象限内点的特征:第一象限(+,+);第二象限(-,+); 第三象限(-,-);第四象限(+,-)。

3、平面直角坐标系内图形的变化与点的坐标变化特征 (1)轴对称:横轴对称纵相反,纵轴对称横相反。

'(,)x P P x y −−−→-轴对称(x,y ) '(,)P P x y −−−→-y 轴对称(x,y ) (2)关于原点对称(即中心对称:绕原点旋转180度后能构互相重合): 方法:原点对称横纵坐标都相反'(,)P P x y −−−→--y 轴对称(x,y ) (3)点的平移:左右平移横(坐标)加减,上下平移纵(坐标)加减(上加下减,右加左减)'(,)m P P x y m −−−−−→+上平移个单位(x,y )'(,)m P P x y m −−−−−→-下平移个单位(x,y ) '(,)m P P x m y −−−−−→-左平移个单位(x,y )'(,)m P P x m y −−−−−→-右平移个单位(x,y )'(,)m P P x m y n −−−→-+左上n(x,y ) '(,)m PP x m y n −−−→+-右下n (x,y ) (4)图形的缩放:在平面直角坐标系内,图形上点的坐标都乘以k (或1k),图形横向纵向将拉长为原来的k 倍(或压缩为原来的1k),图形边长扩大为原来的k 倍(或缩小为原来的1k ),图形的面积扩大为原来的2k 倍(或缩小为原来的21k) 22(,)k (,)1111()P kx ky k P x y P x y k k k k ⎧→→⎪⎨→→⎪⎩边长扩大倍,面积扩大倍,边长压缩为原来的,面积压缩为原来的(5)两点之间的距离公式:数轴上:两点对应的数分别为1x ,1y ,则12dx x =-平面直角坐标系内:两点A 、B 坐标分别为(11,x y )(22,x y )则AB =若C 为线段AB 的中点,则点C 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭4、平面直角坐标系中图形面积求法(1)条件具备时利用面积公式求(2)条件不具备时,三角形面积可采用求差法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件: 大于或等于0。

3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。

6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算: (1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a ≥0,b ≥0);=b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么c b a 222=+。

应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c =,b ,a )(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。

a (a >0)a -(a <0)0 (a =0);2.勾股定理逆定理:如果三角形三边长a ,b,c 满足c b a 222=+,那么这个三角形是直角三角形。

应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。

(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边) 3、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等4.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90° (2)在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°⇒BC=21AB∠C=90° (3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°⇒CD=21AB=BD=ADD 为AB 的中点5.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理) 6.证明判断一个命题的正确性的推理过程叫做证明。

7、证明的一般步骤(1)根据题意,画出图形。

(2)根据题设、结论、结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

第十八章 平行四边形 一.平行四边形1、定义:两组对边分别平行的四边形是平行四边形.2.平行四边形的性质 角:平行四边形的邻角互补,对角相等;边:平行四边形两组对边分别平行且相等; 对角线:平行四边形的对角线互相平分; 面积:①S=底⨯高=ah ; 3.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; 一组平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形; ⑤对角线互相平分的四边形是平行四边形; 二、特殊的平行四边形 (一)矩形1、矩形的定义:有一个角是直角的平行四边形是矩形2、矩形的性质①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;3、矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. (二)菱形1、定义:有一组邻边相等的平行四边形是菱形。

2、菱形的性质:①边:四条边都相等;②角:对角相等、邻角互补; ③对角线:对角线互相垂直平分且每条对角线平分每组对角;3、菱形的判定方法:⎪⎭⎪⎬⎫+行四边形)对角线互相垂直的平()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形.(三)正方形 1、定义:有一组邻边相等且有一个直角的平行四边形叫做正方形 2、正方形的性质:①边:四条边都相等;②角:四角都是直角; ③对角线:对角线互相垂直平分且相等,每条对角线平分每组对角。

3、正方形的判定方法:A B D O C A DBCAD B COCDB A OC D AB⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(四)三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 如图:∵DE 是△ABC 的中位线∴DE ∥BC ,DE=21BC(五)几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a ,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为b ,c ,则S 菱形=bc 21③ 设正方形ABCD 的一边长为a ,则a S 2=正方形;若正方形的对角线的长为b ,则b S 221=正方形 第十九章 一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。

二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.函数的判断:对每一个自变量x 是否只有唯一的一个函数值和它对应。

三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

(3)用二次根式表示的函数,自变量的取值范围是使被开方数为非负数 (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就E DCBA是这个函数的图象.五、用描点法画函数的图象的一般步骤(一般取五个点) 1、列表(表中给出一些自变量的值及其对应的函数值。

) 注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

六、函数有三种表示形式:(1)列表法 (2)图像法 (3)解析式法 七、正比例函数1、定义:一般地,形如y=kx(k 为常数,且k ≠0)的函数叫做正比例函数.其中k 叫做比例系数。

特征:(1)k 为常数,且k ≠0 (2)自变量的次数是1(3)自变量的取值范围为全体实数。

2、图象:(1)正比例函数y= kx (k 是常数,k ≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。

必过点:(0,0)、(1,k ) (2)性质:当k>0时,直线y= kx 经过第三,一象限,从左向右上升,即随着x 的增大y 也增大;当k<0时,直线y= kx 经过二,四象限,从左向右下降,即随着 x 的增大y 反而减小。

八、一次函数1、定义:一般地,形如y=kx+b(k,b 为常数,且k ≠0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.特征: (1) k 不为零 (2)x 指数为1(3) 自变量的取值范围为全体实数 (4)b 取任意实数 2、图象:(1)一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(2)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位. (3)必过点:(0,b )和(-kb,0) (4)一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一 b>0b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限 经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限 经过第二、四象限图象从左到右下降,y 随x 的增大而减小九、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 十、当直线y=k 1x+b 1与y=k 2x+b 2平行时,k 1=k 2且b 1 ≠b 2 十一、一次函数与方程、不等式1. 一次函数与一元一次方程:从“数”的角度看x 为何值时函数y= ax+b 的值为0.2. 求ax +b =0(a , b 是常数,a ≠0)的解,从“形”的角度看,求直线y= ax+b 与 x 轴交点的横坐标3. 一次函数与一元一次不等式:解不等式ax +b >0(a ,b 是常数,a ≠0) .从“数”的角度看,x 为何值时函数y= ax+b 的值大于0.4. 解不等式ax +b >0(a ,b 是常数,a ≠0) . 从“形”的角度看,求直线y= ax+b 在 x 轴上方的部分(射线)所对应的的横坐标的取值范围.5.一次函数与二元一次方程组: 解方程组⎪⎩⎪⎨⎧=-=+cb ac b a y x y x 222111从“数”的角度看,自变量(x )为何值时两个函数值相等.并求出这个函数值 解方程组 从“形”的角度看,确定两直线交点的坐标.第二十章 数据的分析 1.平均数:(1)算术平均数:一组数据中,有n 个数据n x x x ,,, 21,则它们的算术平均数为nx x x x n+++= 21.若在一组数字中,x 1的权为w 1,x 2的权为w 2,…,x n的权为w n,那么ww w w x w x w x nnn x ++++++= 212211叫做x 1,x 2,…x n的加权平均数。

相关文档
最新文档