航空电子设备振动试验与分析
可靠性仿真试验方法简介——振动篇

4
某型航空电子机箱振动仿真试验
机箱外形
电路板外形
某型航空电子机箱振动仿真试验
机箱CAD模型
电路板CAD模型
简化模型—引脚简化
质量块模型
Model Mass block Welding -band 1st 2nd 3rd order(Hz) order(Hz) order(Hz) 140.0 266.8 331.1 Element amount 13773
2 3
4
振动仿真试验的目的
振动应力分析的目的是获得产品的振动模态及给定振动激
励条件的响应分布,用于发现设计薄弱环节以指导设计改 进,提高产品耐振动设计的合理性。在获得了加速度响应 均方根值及应力响应值等相关参数后,可结合故障物理模 型给出首次失效时间,为产品可靠性预计提供参考。
振动仿真试验流程图
2. 建立产品的CAD模型和FEA模型(原始CAD模型要先进
行简化)
•设置网格尺寸和形状
•选择适当的划分方法,如自由、映射、扫掠等
•CAD model
•FEA model
振动仿真试验的详细流程
3. 进行模态仿真试验,查看共振频率和模态振型
振动仿真试验的详细流程
4. 进行实物模态试验,利用模态试验结果校正原模型
模态试验方法简介
• 锤击法模态试验原理与设备
模态试验方法简介
•模态试验关键流程
•
•准备—遍布测试点,设定约束 •采集—信号采集,平均,记录
•分析—建模,导入数据,解算分析
如何对比试验结果与仿真结果
• 直接对比频率值 • 利用模态置信准则(MAC)对比振型
模态置信矩阵是评价模态向量空间交角的一 个很好的工具,其公式表达如下:
无人机遥测飞行中振动测试探讨

无人机遥测飞行中振动测试探讨摘要介绍遥测技术发展现状,对无人机探测技术进行简介。
提供一种航天器微振动测试的研究方法,为无人机飞行中的振动测试以及成像质量的影响分析提供参考。
对比分析实际飞行中进行振动测试和利用振动测试系统进行振动测试两种测试方法,得出利用振动测试系统进行测试更加方便实用。
关键词无人机探测技术;振动测试;成像质量引言随着人们对图像分辨率的要求逐渐增加,使敏感设备对振动的敏感度也越来越高,诸如包括光学相机等。
这些设备的成像质量受到振动的影响,并且高分辨率遥感卫星等高性能航天器的发展受到严重制约。
因此,无人机摄像时成像模糊的问题亟待解决。
当前的研究成果多局限于微振动对成像质量影响的檢测、分析及抑制方法等,而在航空拍摄过程中,无人机受到其飞行过程中的振动和气流波动影响,使遥感摄像机成像模糊。
因此,为确保成像质量,无人机需安装一套良好的减振装置,保证其正常工作。
为了验证减振装置的效果,就需要对无人机在飞行过程中的振动情况进行分析。
据此,本文针对无人机飞行中的振动问题进行探讨。
1 无人机简介我国遥感探测技术中的航空遥感技术,对我国环境监测、资源勘查、地图测绘等领域的发展及研究具有重要意义。
遥感技术是一种目标探测技术,具有远距离、非接触性的特点,该技术通过对目标进行探测,获取探测数据,并对数据进行处理,实现对目标的定位、定性、定量和变化规律的描述。
航空遥感指的是借助无人机等飞行设备作为传感器载体在高、中、低三种不同的空中距离中进行的遥感对地探测。
无人机指用于航空遥感的各类飞机,根据飞机翼型氛围固定翼、旋转翼(直升)飞机;根据飞机作业高度分为高空或中、低空飞机等。
无人机主要作为遥感平台,根据实际需求安装相应传感器及摄像设备。
一般情况下,为了便于对地观测,在机腹设置大小、形状不同的窗口。
比如,用于航拍的多种类型摄像机,各种型号扫描仪、辐射计、测高仪等等。
中科院两架“奖状S/Ⅱ”型遥感飞机,是1986年由美国塞斯纳飞机公司生产的小型公务机改装而成的专业科学试验飞机。
振动试验实习报告

一、实习背景随着科技的发展,振动试验作为一种重要的力学实验方法,在工程、航空、汽车等领域得到了广泛应用。
为了更好地了解振动试验的基本原理和操作方法,提高自己的实践能力,我参加了振动试验实习。
二、实习目的1. 熟悉振动试验的基本原理和方法。
2. 掌握振动试验设备的操作技能。
3. 提高自己的动手能力和分析问题、解决问题的能力。
三、实习内容1. 振动试验基础知识在实习过程中,我首先学习了振动试验的基本原理,包括振动类型、振动参数、振动系统等。
同时,了解了振动试验的常用方法,如自由振动试验、强迫振动试验、共振试验等。
2. 振动试验设备实习期间,我熟悉了振动试验设备的操作,包括振动台、传感器、信号采集与分析系统等。
通过实际操作,掌握了设备的使用方法,如设备安装、参数设置、数据采集等。
3. 振动试验实验在实习过程中,我进行了多项振动试验实验,包括:(1)自由振动试验:通过自由振动试验,研究了不同频率、振幅和阻尼对振动系统的影响。
(2)强迫振动试验:通过强迫振动试验,研究了振动系统在不同激励频率和振幅下的响应。
(3)共振试验:通过共振试验,研究了振动系统在共振频率下的特性。
4. 数据分析在完成振动试验实验后,我对实验数据进行了分析,包括时域分析、频域分析等。
通过对实验数据的分析,得出了振动系统的动力学特性,为后续研究提供了依据。
四、实习收获1. 理论知识与实践相结合:通过振动试验实习,我深刻体会到理论知识与实践操作的重要性。
只有将理论知识与实践相结合,才能更好地掌握振动试验技术。
2. 提高动手能力:在实习过程中,我熟练掌握了振动试验设备的操作技能,提高了自己的动手能力。
3. 分析问题、解决问题的能力:在实验过程中,我遇到了各种问题,通过查阅资料、请教老师,最终解决了这些问题。
这使我学会了如何分析问题、解决问题。
五、实习总结本次振动试验实习使我受益匪浅,不仅提高了自己的实践能力,还对振动试验技术有了更深入的了解。
随机振动试验应用技术

随机振动试验应用技术
随机振动试验是一种非常重要的实验方法,可以用来测试结构物
抗震能力和性能分析,并用于确定特定系统的可靠性。
它的应用范围
很广,例如在航空航天、交通运输、建筑工程、机械制造和电子器件
等领域都具有重要的应用价值。
随机振动试验的主要目的是模拟真实环境中的随机振动,使被测
对象的结构振动与实际使用情况尽量接近。
为达到这个目的,试验过
程中需要考虑如何选择加速度振动器、调整边界条件、准确测量振动
响应等因素。
使用适当的仪器设备和合理的试验方案对于获得可靠的
实验结果非常重要。
在随机振动试验过程中,数据采集是至关重要的环节。
数控振动
试验台和数据采集系统的运用可以大大提高实验的效率和准确性。
数
据采集系统可以实时记录随机振动试验的振动响应、振频、振幅和幅
频特性等重要参数。
通过这些数据,实验者可以得到样品在不同频率
下的响应和振幅等属性的分析结果。
随机振动试验的另一个重要应用是对结构物的抗震性能进行评估。
在建筑工程领域,随机振动试验被广泛应用于各种建筑结构、桥梁、
隧道、风力发电机等重要工程项目中。
通过对样品的随机振动试验,
实验者可以评估结构物在地震等自然灾害发生时的抗震性能和安全可
靠性。
总之,随机振动试验是一种非常重要的实验方法。
通过合理的仪器设备、科学的试验方案和准确的数据采集,可以获得可靠的实验结果,为相关领域的研究和应用提供重要的科学依据。
震动试验设备床操作说明

震动试验设备床操作说明一、设备概述震动试验设备床是一种用于模拟地震等振动环境的测试仪器,广泛应用于航空航天、电子通信、汽车、铁路、建筑等领域中的振动试验。
本操作说明将详细介绍该设备的操作流程及注意事项。
二、设备准备1. 确保设备通电正常,并检查电源线是否连接稳固。
2. 检查试验设备床的连接螺栓是否紧固,确保床体稳定。
3. 激振器连接:将激振器与试验设备床连接,确保连接牢固。
三、操作步骤1. 打开主机电源:将主机电源开关切至“ON”位置,并等待设备自检完成。
2. 设置振动参数:根据试验需求,设置振动频率、幅值等参数。
可通过主机面板上的按键进行设置。
3. 启动设备:按下主机面板上的启动按钮,设备开始进行振动试验。
4. 监控试验过程:在试验过程中,密切关注设备的运行状态,注意观察是否出现异常情况。
如有异常,应立即停止设备并检查故障。
5. 结束试验:试验完成后,按下主机面板上的停止按钮,设备停止振动。
四、注意事项1. 在操作过程中,必须严格遵循相关安全规范,佩戴防护设备,确保人员安全。
2. 请勿超过设备的额定振动范围,以免损坏设备。
3. 在试验前,应对试验样品进行必要的固定和防护措施,确保试验安全顺利进行。
4. 长时间连续工作会产生一定的热量,请定期检查设备温度并注意散热问题。
5. 设备停止使用后,应切断电源并进行必要的维护保养,保持设备的良好状态。
五、故障排除在操作过程中,如出现设备故障,应立即停止操作并进行排除。
常见故障及对应的排除方法如下:1. 无法开机:检查电源连接是否正常,主机电源是否正常供电。
2. 振动幅值过大或过小:检查振动参数设置是否正确,是否超过设备的最大振动范围。
3. 振动频率异常:检查振动频率设定值和实际输出值是否一致,是否有干扰源影响。
4. 设备异常噪音:检查设备连接螺栓是否松动,是否有零部件损坏。
六、维护保养1. 定期对设备进行清洁,保持设备的外观整洁,并使用防尘罩等进行保护。
振动试验方案

振动试验方案标题:振动试验方案设计与实施指南一、引言振动试验是一种用于评估产品在实际使用或运输过程中,对各种振动环境的耐受能力的测试方法。
这种试验对于航空航天、汽车制造、电子设备、机械工程等多个领域的产品质量控制至关重要。
本方案旨在详细阐述振动试验的步骤、设备、标准和预期结果,以确保产品的可靠性。
二、试验目的1. 确定产品在振动环境下的性能和耐用性。
2. 识别并解决可能因振动引起的设计缺陷。
3. 验证产品包装的防护效果。
三、试验设备1. 振动台:根据产品大小和重量选择适当的振动台。
2. 控制器:用于设定和调整振动频率、振幅等参数。
3. 测量仪器:如加速度计、位移传感器等,用于监测和记录振动数据。
四、试验标准试验应遵循相关的国际或行业标准,例如ISO 16750, MIL-STD-810G, IEC 60068-2-6等,这些标准定义了振动的类型(正弦振动、随机振动等)、频率范围、振幅和持续时间等参数。
五、试验程序1. 产品准备:将产品安装在振动台上,确保其稳定且与实际使用状态一致。
2. 参数设置:根据选定的标准设定振动参数。
3. 执行试验:启动振动台,按照设定的参数进行振动。
4. 数据收集:在试验过程中,使用测量仪器收集振动数据。
5. 结果分析:试验结束后,分析数据以评估产品性能。
六、预期结果试验结果应包括产品在振动环境下的性能变化、任何结构或功能故障的记录,以及可能需要改进的地方。
如果产品在试验中没有出现明显的性能下降或损坏,那么可以认为它具有良好的抗振性。
七、结论振动试验是保证产品质量和可靠性的重要环节,通过科学的试验方案,我们可以准确评估产品在实际环境中的表现,从而优化设计,提升产品性能。
在实施过程中,应严格遵守试验标准,确保试验的准确性和有效性。
八、附录包括试验记录表格、相关标准详细信息、设备操作手册等,以供参考。
以上就是振动试验方案的基本内容,具体实施时需根据实际情况进行调整。
飞机结构振动测试方法的改进与验证

飞机结构振动测试方法的改进与验证飞机是一种高速运行的复杂系统,其结构的振动问题是航空界的重大难题之一。
飞机结构振动会对飞行安全、乘客舒适性和机体疲劳寿命等方面产生影响。
因此,为了避免飞机结构振动问题对飞行安全产生威胁,提高飞机的可靠性和安全性,需要对飞机进行结构振动测试。
本文将探讨飞机结构振动测试方法的改进与验证。
一、飞机结构振动测试方法的现状飞机结构振动测试方法主要包括实验测试和数值模拟两种方法。
实验测试是指通过对实际飞机进行振动测试来获取振动信号和响应信息,并对测试结果进行分析和评估的方法。
数值模拟是指基于结构动力学理论,建立飞机结构振动的数学模型,通过计算机模拟振动过程和响应情况的方法。
在实验测试方面,传统的飞机结构振动测试主要采用模态分析方法,即利用振动测试仪器对飞机进行振动测试,通过对振动响应信号的分析和处理,得到飞机的结构振动模态,并对测试结果进行分析和预测。
这种测试方法虽然具有较高的信噪比和测试精度,但存在测试成本高、测试时间长等问题。
在数值模拟方面,常用的方法包括有限元分析、多体动力学和计算流体力学等。
这些方法基于结构动力学理论和数学模型,通过计算机模拟出飞机结构振动过程和响应情况。
虽然数值模拟方法具有测试成本低、测试时间短等优点,但其精度和可信度需要经过实验验证才能得到保证。
二、飞机结构振动测试方法的改进针对传统的实验测试方法存在的问题,近年来,国内外学者对飞机结构振动测试方法进行了许多研究和改进。
一些新方法和新技术应用于飞机结构振动测试中,可以有效降低测试成本和测试时间,提高测试精度和可信度。
1. 近场高速干涉激光测振法近场高速干涉激光测振法(NSI)是一种新型振动测试方法,该方法基于激光干涉仪原理和光纤光栅传感器技术,通过激光测量器和电子显微镜对杆件表面进行精确测量,实现对工件振动量的实时检测和连续记录。
该方法具有测试速度快、精度高、测试成本低等优点,可以广泛应用于工程实践领域。
iec 60068基本环境试验规程 振动试验

iec 60068基本环境试验规程振动试验
摘要:
1.IEC 60068 基本环境试验规程简介
2.振动试验的目的与要求
3.振动试验的试验设备与试验方法
4.振动试验的数据处理与结果分析
5.振动试验在我国的应用与意义
正文:
IEC 60068 基本环境试验规程是一份国际电工委员会(IEC)制定的针对电工产品环境适应性试验的规程,其中振动试验是环境试验的一项重要内容。
振动试验主要目的是评估产品在运输、安装、运行等过程中,可能遇到的振动环境对其性能和可靠性的影响。
振动试验要求试验样品在规定的振动条件下进行振动试验,以模拟产品在实际使用过程中可能遇到的振动环境。
振动试验的设备主要包括振动台、数据采集系统、激励器等。
振动试验的方法主要有正弦振动试验、随机振动试验、宽带随机振动试验等。
振动试验的数据处理与结果分析主要包括对试验过程中振动信号的采集、处理、分析和评价。
通过对振动信号的分析,可以评估产品在振动环境下的性能和可靠性,为产品的设计优化和质量控制提供依据。
振动试验在我国的应用十分广泛,尤其在航天、航空、电子、通信等领域。
振动试验对于提高我国电工产品的质量和可靠性,确保其在复杂环境下的
稳定运行具有重要意义。
同时,振动试验也是我国产品走向国际市场,满足国际标准和法规要求的重要手段。
总之,IEC 60068 基本环境试验规程中的振动试验对于评估电工产品在振动环境下的性能和可靠性具有重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空电子设备振动试验与分析
【摘要】本文就航空电子设备振动试验,包括试验夹具设计、设备安装、控制点选择及几个关键结构问题的试验分析与结论等方面作一些阐述。
【关键词】振动试验;试验分析
0概述
飞机上航空电子设备所处的机械环境比较恶劣,据国外统计,航空电子设备故障29%~41%由机械负荷的作用引起,元件的失效频度比在实验室条件下(无振动、冲击时的失效频度)大120~160倍,振动引起的元件或材料的疲劳损坏,造成电子产品的失效。
航空电子设备防振设计的主要方法有减弱和消除振源、小型化及刚性化、去谐、去耦、增加阻尼,主要手段可以进行有限元建模来分析设备的模态振型,掌握电路板组件和机箱的模态频率和振型,并进行动力响应分析(PSD),在规定的外力载荷或试验的环境载荷条件下分析机箱和电路板组件的各关心部位的响应情况,为合理的元器件布局设计、电路板组件结构设计和机箱结构设计提供依据。
振动试验是结构设计分析及验证的重要环节,振动试验的方法关系到试验的正确性与准确性,必须加以重视,研究振动试验方法是进行振动试验的最重要的组成部分。
1振动试验的几个关键问题
1.1夹具
夹具是振动试验的最重要的准备工作,夹具的好坏关系到试验的成功与否,夹具设计与验收遵照以下原则进行。
1.1.1夹具结构要求
材料采用铝合金,对于三维尺寸小于200mm的小型夹具,应为整体机加工结构形式;对于坯料供应困难的较大夹具,优先考虑铸造或焊接,允许螺装和局部焊接,螺装时螺栓间距小于8cm;经常拆卸的夹具,要嵌钢螺套或插销螺套;螺纹连接部位,用高强度厌氧胶粘接;夹具要留有传感器安装位置。
1.1.2夹具性能要求
对电子产品而言,通常夹具和产品的总重小于30kg,要求:
a)一阶共振频率
垂直向>700Hz,水平向>450Hz;
垂直向高于700Hz,水平向高于450Hz时,试验曲线上允许有多个共振峰或反共振峰,但在1000Hz内,随机试验累计带宽内总均方根值差<3dB;
验收时可将夹具、台面上各部位综合考虑作为控制点。
b)与主振(Z向)方向正交(X、Y向)的振动量值
在500Hz以下,非试验方向(X、Y向)小于主振方向(Z向)控制值的50%,非试验方向(X、Y向)在500 Hz以上最高峰不大于主振方向(Z向)控制值,从正弦扫频或随机功率谱响应曲线上读取。
验收时可在夹具离振动台面最高处检测,控制点位置在台面上。
c)夹具上与产品连接点(螺栓连接处,也称固定点)间振动输入值的均匀性
各点的均匀性:指随机试验时带宽内的最大(或最小)均方根值与平均值的差,其均匀性在700Hz内小于30%,1000 Hz内小于50%;
验收时可将夹具、台面上各部位综合考虑作为控制点。
1.2试验设备的安装
按实际的安装方式直接或借助夹具紧固于振动台动圈或振动台台面上,所有的设备接插件、电缆也必须和实际使用时的状态一致或尽量一致。
1.3控制点的选择
当夹具较刚硬,试验样品较小时,通常可用台面中心作为控制点;当夹具刚性对控制值影响较大时,可选择试验样品与夹具或振动台台面的连接点作为控制点;当试验样品较大,或用上述点控制不合适时,也可将台面、夹具、试验样品上各部位综合考虑作为控制点。
控制点要根据试验的情况的不同做具体适当地选择。
1.4振动台面
为满足夹具安装的方便性和同时进行多个产品的安装以提高试验效率要求,一般使用振动台台面,在振动台台面上安装夹具,要求振动台面固有频率在1200Hz以上,因为航空电子产品的器件固有频率在一般在400Hz~800Hz,若振动台面固有频率在1200Hz以下,则由振动台、台面、夹具、产品组成的试验系统其固有频率有可能在800Hz以下(带夹具、产品后刚度K减少,质量M增大,固有频率减小),与器件固有频率(400Hz~800Hz)重合,控制点选点不当会造成产品器件的过试验和损坏。
条件允许的情况下,试验时最好不要采用振动台面,实现产品或者夹具与振
动台动圈直接连接。
2几个关键结构问题的试验分析
2.1系统的安装方式、固有频率及试验结果分析方法
安装方式(边界条件)影响系统的固有频率。
由振动台、台面、夹具、产品组成的试验系统,其系统的固有频率试验各控制点的控制曲线上会有所反映,表现为各控制点控制曲线上在同一频率上有多个共振峰或反共振峰,其驱动曲线上也在同一频率上有突变,曲线不光滑。
2.2寻找和分析设备谐振点
一台电子设备往往有几个谐振点,因此对于整机的固有频率的分析和计算是十分复杂的,可以进行有限元建模分析设备的模态振型和固有频率。
实际上,要想全部消除谐振点很困难,甚至是不可能的,所以,从试验中寻找谐振点来制定相应的改进措施往往比进行复杂的计算更有实际意义。
如何从试验中寻找关心的谐振点并制定相应的改进措施呢?
在所关心的位置上(如印制板上某个关心的器件安装点、印制板的固定点等)设置响应点,测试该点的响应曲线,分析响应曲线上共振峰(正峰)的对应频率及传递率(可能有多个共振峰,有该结构件1阶~n阶的共振峰,也有其它结构件的谐振点经耦合后进入),可结合模态分析结果来判断该谐振点频率是哪些结构件的固有频率,尤其应注意该结构件前三阶的固有频率及传递率,传递率最大对应的固有频率及传递率一般是该结构件的一阶固有频率。
某航空电子设备重量4.8kg,结构外形图见图1,H印制板用9个螺钉固定在面板背面上,在H印制板上设置一响应点B(参见图1),测得响应点曲线见图2。
图1设备结构外形图
图2H印制板上B点响应点曲线
分析曲线,可以看出,在331Hz处为最大的共振峰,g/g为31,传递率为■=5.6,表明B点在该频率处输入振动量级被放大5.6倍,该频率为H印制板的一阶固有频率;在507Hz处的共振峰,g/g为9.56,传递率为■=3.1,表明B点在该频率处输入振动量级被放大3.1倍,该频率为HI印制板的二阶固有频率。
产品结构设计人员可以根据输入振动量级、传递率、元器件耐受能力判断该处器件是否进行加固处理。
摸底试验中常常遇到这样的问题,试验时需不需要带配重,有时对所关心的结构部位测试响应,安装传感器无空间,需要去掉其它结构件,此时如何处理?下面的试验测试结果提供了试验方法与思路,结论具有参考意义。
图1所示的设备在有配重的情况下(指有机箱尾部与箱内模块部件)、无配重(指无机箱尾部与箱内模块部件,只有面板及固定在面板上的HI印制板)两种情况下,分别对进行印制板上B点测试响应,结果如下。
带配重:印制板一阶固有频率337.5Hz,g/g为35.4。
无配重:印制板一阶固有频率331Hz,g/g为31。
试验结果标明:带不带配重对印制板的固有频率略有影响,对印制板的传递率有影响,带配重的印制板的传递率是不带配重的1.07倍(7%)。
有条件的情况下,最好带配重进行试验,安装传感器困难时,可以去掉对测试结构件刚度影响不大的结构件。
2.4螺旋锁结构
机载电子设备的固定形式常常采用螺旋锁结构,将设备面板上的几个螺旋锁固定在飞机舱内水平操纵台的钢丝上,如图3所示。
图3螺旋锁结构
螺旋锁固定方式使设备响应在低频时放大,高频时减小。
对距离螺旋锁安装点最近的设备面板上的A点(见图3)测试响应,响应曲线见图4,可以看出在80Hz~270Hz区域放大,其中在150Hz~220Hz区域放大超过6dB,在177Hz时g/g最大,为17.25,折算为加速度值放大约4.15倍,370Hz~1300Hz有显著减震功能;由于器件固有频率大多在400Hz~800Hz,对器件有较好的减震功能。
虽然螺旋锁对器件在高频时有较好的减震功能,但要注意设计印制板时应尽量提高印制板的固有频率,最好将印制板的固有频率设计在400Hz以上,以避免印制板固有频率落在低频放大区域,引起响应加大;另一方面,印制板的弯曲曲率很大程度上反映了该器件管脚或焊点所受剪切力的程度,提高印制板固有频率是减少印制板板挠度的主要手段,印制板弯曲曲率较大的区域不适合安装面积较大的器件,位移越大的区域不适合安装质量较大的器件。
图4H点响应曲线
电子设备振动试验与分析是一门涉及到振动理论、振动试验技巧与操作、振动有限元建模与分析、器件耐振程度分析等各类相关技术的综合技术方法,需要进行大量的试验并在实践中加以总结与提炼,尤其是器件耐振程度各器件生产厂家基本无相关资料,需要进行大量试验以获得相应资料,掌握好振动试验与分析方法是每一个航空电子设备结构工程师开展振动设计和验证的重要基础工作。
【参考文献】
[1]汪凤泉.电子设备振动与冲击手册[M].北京:科学出版社,1997:123-135.
[2]江苏南京工学院.电子设备结构设计原理[M].南京:江苏科技技术出版社,1981:17-45.。