无损检测--射线检测新技术及应用(DR)
DR数字射线管道检测上的应用及质量控制

DR数字射线管道检测上的应用及质量控制在管道建设工程中,射线检测是确保焊接质量的主要无损检测手段,直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。
长期以来,射线检测主要采用X射线或γ射线的胶片成像技术,检测劳动强度大,工作效率较低,常常影响施工进度。
近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展,X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。
数字图像便于储存,检索、统计快速方便,易于实现远程图像传输、专家评审,结合GPS系统可对每道焊口进行精确定位,便于工程质量监督。
同时,由于没有了底片暗室处理环节,消除了化学药剂对环境以及人员健康的影响。
1、DR技术简介1.1.原理数字平板直接成像,(Director Digital Panel Radiography)是近几年才发展起来的全新的数字化成像技术。
数字平板技术与胶片或CR的处理过程不同,在两次照射期间,不必更换胶片和存储荧光板,仅仅需要几秒钟的数据采集,就可以观察到图像,检测速度和效率大大高于胶片和CR技术。
除了不能进行分割和弯曲外,数字平板与胶片和CR具有几乎相同的适应性和应用范围。
数字平板技术有非晶硅(a-Si)和非晶硒(a-Se)和CMOS三种。
非晶硅和非晶硒两种数字平板成像原理有所不用,非晶硅平板成像可称为间接成像:X 射线首先撞击板上的闪烁层,该闪烁层以与所撞击的射线能量成正比的关系发出光电子,这些光电子被下面的硅光电二极管阵列采集到,并且将它们转化成电荷,X射线转换为光线需要的中间媒体—闪烁层。
而非晶硒平板成像可称为直接成像:X射线撞击硒层,硒层直接将X射线转化成电荷,如下图:硒或硅元件按吸收射线量的多少产生正比例的正负电荷对,储存于薄膜晶体管内的电容器中,所存的电荷与其后产生的影像黑度成正比。
扫描控制器读取电路将光电信号转换为数字信号,数据经处理后获得的数字化图像在影像监视其上显示。
图像采集和处理包括图像的选择、图像校正、噪声处理、动态范围,灰阶重建,输出匹配的过程,在计算机控制下完全自动化,上述过程完成后,扫描控制器自动对平板内的感应介质进行恢复。
无损检测技术的原理及应用

无损检测技术的原理及应用摘要:本文介绍了当前无损检测技术,包括射线、超声、渗透等常规技术和声发射、磁记忆等新技术.并论述它们的工作原理、优缺点和应用范围关键词:无损检测;新技术Abstract: this paper introduces the current nondestructive testing techniques, including conventional techniques such as X-ray, ultrasound, penetration and new technologies such as acoustic emission and magnetic memory. Their working principle, advantages and disadvantages and scope of application are also discussed.引言无损检测以不破坏被检验对象的使用性能为前提,应用多种物理原理和化学现象,对各种工程材料、零部件、结构件进行有效的检验和测试,借以评价他们的完整性、连续性、安全可靠性及某些物理性能。
包括探测材料或构件中是否有缺陷,并对缺陷形状、大小、方位、取向、分布和内含物等情况进行判断;还能提供组织分布、应力状态以及某些机械和物理性能等信息。
无损检测的应用范围十分广泛,已经在机械、石油化工、造船、汽车、航空航天和核能等工业中被普遍采用。
无损检测工序在材料和产品的静态或动态检测以及质量管理中.已经成为一个不可缺少的重要环节无损检测目的1.质量管理每种产品的使用性能、质量水平,通常在其技术文件中都有明确的规定,均以一定的技术指标予以表征。
无损检测的主要目的之一,就是对非连续加工(如多工序生产)或连续加工(如自动化生产流水线)的原材料、零部件提供实时的质量控制,例如控制材料的冶金质量、加工工艺质量、组织状态,涂镀层的厚度以及缺陷的大小、方向与分布等等。
DR成像原理及其临床应用

DR成像原理及其临床应用DR(数字化射线)成像是一种用于获取X射线影像的先进技术,它通过数字化的方式将X射线图像转化为数字信号,再经过计算机处理和显示,从而获得高质量的X射线影像。
DR成像原理基于平板探测器,其临床应用广泛,如下所述。
DR成像原理是通过平板探测器将X射线转换为数字信号的过程。
平板探测器由大量的探测单元组成,每个探测单元中包含能够感应X射线的硅或其他材料。
当X射线穿过患者体内并到达平板探测器时,硅材料中的电子将受到激发并转化为电荷。
这些电荷被平板探测器上的薄膜电路收集,然后被转换为数字信号。
数字信号经过计算机处理和显示后,形成高质量的X射线影像。
DR成像的临床应用:1.临床诊断:DR成像在临床医学中被广泛应用于各种检查和诊断。
它可以用于骨骼系统的骨折、关节脱位和骨质疏松等病变的诊断。
此外,DR成像也可用于肺部、胸部、腹部和盆腔等区域的影像检查,帮助检测和诊断肿瘤、感染、结石和器官病变等。
2.快速成像:相比传统的胶片成像,DR成像速度更快。
传统的胶片成像需要等待片子曝光、显影和定影等多个步骤,而DR成像可以直接显示图像,因此节省了大量时间。
这对于急诊科室和手术室等需要快速进行检查和诊断的场合尤为重要。
3.耐久性:DR成像在临床中的使用寿命和耐久性更好。
传统的胶片成像需要反复曝光和处理,而DR成像只需将平板探测器放置在X射线束下进行拍摄即可。
这种持久性使得DR成像在长期使用中更加可靠。
4.像素级图像处理:DR成像通过数字信号处理,能够对图像进行各种处理和增强。
通过调整对比度、增加锐度和减少噪音,可以改善图像的质量和清晰度。
这对于医生进行诊断和分析非常有帮助。
总结起来,DR成像原理基于平板探测器将X射线转换为数字信号,从而获得高质量的X射线影像。
其临床应用广泛,包括临床诊断、快速成像、耐久性和像素级图像处理。
DR成像在医学领域中的应用愈发重要,为临床工作带来了便利和准确性。
无损检测领域中射线技术的应用与发展

无损检测领域中射线技术的应用与发展射线检测是无损检测的重要分支,在各领域都有重要的应用。
它的全面质量管理包括很多方面的内容,本文向您简单介绍一下射线技术的应用与发展。
1.射线检测技术的应用射线检测技术是利用射线(X射线、射线、中子射线等)穿过材料或工件时的强度衰减,检测其内部结构不连续性的技术。
穿过材料或工件的射线由于强度不同在X射线胶片上的感光程度也不同,由此生成内部不连续的图像,从而实现对材料的无损检测。
(1)早期使用在石油工业.分析钻井岩芯。
(2)在航空工业用于检验与评价复合材料和复合结构。
评价某些复合件的制造过程。
也用于一系列情况下样件的评价;这种检测与评价过程,大大简化了取样破坏分析过程。
(3)检测大型固体火箭发动机,这样的射线系统使用电子直线加速器X射线源,能量高迭25MeV,可检验直径达3m的大型同体火箭发动机。
(4)检验小型、复杂、精密的铸件和锻件,进行缺陷检验和尺寸测量。
(5)检查工程陶瓷和粉末冶金产品制造过程发生的材料或成分变化,特别是对高强度、形状复杂的产品。
(6)组件结构检查。
2.射线检测技术的发展(1)数字射线照相技术时代。
1990年,R.Halmshaw和N.A.Ridyard在《英国无损检测杂志》上发表题为“数字射线照相方法评述”的文章,在评述了各种数字射线照相方法的发展之后认为,数字射线照相时代已经到来。
近年来射线检测技术发展的基本特点是数字图象处理技术广泛应用于射线检测。
射线层析检测和实时成像检测技术的重要基础之一是数字图象处理技术,即使常规胶片射线照相技术,也在采用数字图象处理技术。
(2)今后重点应用的技术。
1994年HaroldBerger在美国《材料评价》发表的“射线无损检测的趋势”中提出,在20世纪的最后10年和21世纪的初期,下列技术将得到广泛应用:①数字X射线实时检测系统在制造、在役检验和过程控制方面。
②具有数据交换、使用NDT工作站的计算机化的射线检测系统。
无损检测技术的发展趋势及应用

无损检测技术的发展趋势及应用随着现代科技的不断发展,无损检测技术在各个领域愈加广泛地应用。
无损检测技术指的是在不破坏被检测物体的前提下,利用物理、化学、电子等多种方法对其内部和外部的缺陷、材料疲劳、质量状态等进行检测、诊断和评估的技术。
无损检测技术在航空航天、汽车、能源、建筑、电力等多个领域均有广泛应用,具有节约成本、提高效率和保障安全等优势。
本文将重点探讨无损检测技术的发展趋势及其在各个行业中的应用。
一、无损检测技术的发展趋势1.1 高级无损检测技术的出现传统的无损检测技术已经难以满足现代工业生产、战争需求和保障人生安全的要求。
随着半导体技术、计算机技术、激光技术、纳米技术等高新技术的发展,高级无损检测技术已经逐渐出现。
例如超声波光调制技术、时间域反射技术、电子束技术、磁共振技术等技术,可以对材料进行更深入、更全面、更精确地检测、诊断和评估。
1.2 信息化发展带来无损检测技术的智能化信息化的发展引领着各种技术的转型升级,无损检测技术也不例外。
无损检测技术的智能化趋势已经显现。
随着物联网、云计算等新兴技术的应用,可以实现无损检测智能化、集成化和网络化,实现远程监控和远程管理等功能。
同时,利用机器学习、人工智能等软件技术,可将大量无损检测数据处理、分析和诊断,提高检测效率和准确性,降低人为失误带来的误判风险。
1.3 环保方向和新材料的无损检测发展随着全球环保意识不断加强,对于材料品质的要求也越来越高。
将无损检测技术应用于环保、新材料领域是未来技术发展的趋势。
相关领域的材料通常非常昂贵,且对材料的质量和完整性要求非常严格。
因此,无损检测技术可以发挥重要作用,帮助企业避免损失和提高生产质量。
二、无损检测技术的应用2.1 航空航天领域无损检测技术在航空航天领域中的应用尤为广泛,例如飞机发动机检测、飞机强度检测、飞机螺旋桨叶片检测等。
电子束、红外、超声波、涡流和X射线等方法常用于内部缺陷的检测。
2.2 汽车领域在汽车生产过程中,开发更加高效和安全的车辆已成为汽车行业的主要目标之一。
无损检测技术的分类及应用领域

无损检测技术的分类及应用领域无损检测技术是指在不破坏被测对象完整性的前提下,通过对其进行非接触式的检测,获取其内部或表面缺陷信息的一种技术方法。
无损检测技术可以广泛应用于工业生产、科学研究以及社会生活的各个领域。
根据不同的原理和方法,无损检测技术可以分为多种分类,并在不同的应用领域发挥重要作用。
首先,根据无损检测技术的原理,可以将其分为物理检测技术、化学检测技术和声学检测技术等。
物理检测技术主要基于电磁、磁性、超声、光学等原理进行检测,包括X射线检测、磁粉检测、涡流检测等。
化学检测技术主要利用化学背景的知识,通过对被测物质进行化学反应或分析,来判断其质量或属性。
声学检测技术则主要利用声波在物质中的传播和反射来进行检测,包括超声波检测、声发射检测等。
其次,根据无损检测技术的方法,可以将其分为无接触检测技术和接触检测技术。
无接触检测技术主要是指无需与被测对象直接接触进行检测,而是通过电磁波、声波等信号的传播和反射进行检测。
例如,红外检测技术可以通过红外辐射信号来检测物体的温度、成分等信息。
雷达检测技术利用电磁波的反射和回波来获取目标物体的位置和速度等信息。
接触检测技术则是需要与被测对象直接接触的检测方法,例如通过物体表面的温度、硬度、振动等变化来进行检测。
无损检测技术在工业生产中有广泛的应用领域。
首先,在制造业中,无损检测技术可以用于对材料的成分和结构进行检测,在产品质量控制和安全保障中起到重要作用。
例如,在航空航天领域,无损检测技术可以用于飞机零部件的质量评估和故障检测。
其次,在核能行业中,无损检测技术可以用于核电厂的设备和管道的监测和检测,确保核设施的安全运行。
此外,在建筑工程中,无损检测技术可以用于对建筑材料和结构的检测,提高建筑物的安全性和耐久性。
无损检测技术也在科学研究中发挥着重要作用。
在材料科学领域,无损检测技术可以用于表征材料的结构和性能。
例如,通过超声波检测技术可以非破坏性地评估材料的弹性模量和损伤情况。
(完整版)无损检测技术与应用

无损检测技术与应用一、概述1、无损检测的定义无损检测是指在不损伤和破坏材料、机器和结构物的情况下,对它们的物理性质、机械性能以及内部结构等进行检测的一种方法,是探测其内部或外表的缺陷(伤痕)的现代检验技术。
2、无损检测的目的(1)确保工件或设备质量,保证设备安全运行用无损检测来保证产品质量,使之在规定的使用条件下,在预期的使用寿命内,产品的部分或整体都不会发生破损,从而防止设备和人身事故.这就是无损检测最重要的目的之一.(2)改进制造工艺.无损检测不仅要把工件中的缺陷检测出来,而且应该帮助其改进制造工艺.例如,焊接某种压力容器,为了确定焊接规范,可以根据预定的焊接规范制成试样,然后用射线照相检查试样焊缝,随后根据检测结果,修正焊接规范,最后确定能够达到质量要求的焊接规范。
(3)降低制造成本通过无损检测可以达到降低制造成本的目的.例如,焊接某容器,不是把整个容器焊完后才无损检测,而是在焊接完工前的中间工序先进行无损检测,提前发现不合格的缺陷,及时进行修补。
这样就可以避免在容器焊完后,由于出现缺陷而整个容器不合格,从而节约了原材料和工时费,达到降低制造成本的目的。
3、无损检测的范围(1)组合件的内部结构或内部组成情况的检查(2)材料、铸锻件和焊中缺陷缝的检查a、质量评定b、寿命评定(3)材料和机器的计量检测通过定量的测定材料和机器的变形量或腐蚀量来确定能不能继续使用。
例如,用超声波测厚仪来测定容器的腐蚀量,通过射线照相来测定原子反应堆用过的燃料棒的变形量、喷气发动机叶片的变形量等。
(4)材质的无损检测无损检测可以用来验证材料品种是否正确,是否按规定进行处理,例如,可采用电磁感应法来进行材质混料的分选和材料热处理状态的判别。
(5)表面处理层的厚度测定确定各种表面层的深度和厚度。
例如,用电磁感应检测法可以测定渗碳淬火层的深度和镀层的厚度。
(6)应变测试二、射线检测射线检测(探伤)有X射线、γ射线和中子射线等检测方法。
无损检测中射线检测技术的应用分析

无损检测中射线检测技术的应用分析摘要:无损检测是现代产品和设备质量检测的主要检测方法之一。
由于其其他测试技术所不具备的优势,它在中国的各个行业都得到了广泛的应用。
射线检测是无损检测技术的一大类,本文主要研究射线检测技术在无损检测中的应用。
关键词:射线检测技术;无损检测;应用无损检测是在不破坏或改变其物理和化学状态的前提下,对被测物体的性能、状态和结构进行高度敏感和可靠的检测。
通过无损检测,可以有效检测表面和内部的完整性、连续性和安全性等各种性能指标。
射线检测是无损检测中的一个重要类别,主要用于检测工件内部的宏观几何缺陷。
通过射线检测技术,可以直接获得直观的工件缺陷图像,并且该图像具有较高的精度。
同时,它还可以准确测量被测物体的长度、宽度和高度。
因此,射线检测技术在各个行业得到了广泛的应用。
1射线检测技术的原理当光线入射到物体上时,材料原子会与光线中的入射光子相互作用,导致光线的强度由于吸收和散射等各种原因而逐渐减弱。
被测材料的衰减系数和穿透物体的厚度直接决定了辐射强度降低的幅度。
如果测试对象中存在局部缺陷,并且其与构成缺陷的材料之间的衰减系数存在差异,则在局部缺陷区域和周围区域中产生的透射辐射的强度将存在显著差异。
通过结合这些差异,工作人员可以确定被测对象是否存在缺陷,这就是射线检测技术的原理。
光线穿透被探测物体后,形成光线强度分布的空间潜像。
通过在被检测物体的背面设置图像增强器等检测装置,工作人员可以获得被检测物体潜像的平面投影。
经过一定的平面投影技术处理后,可以将检测到的物体的潜像转换为肉眼可以观察到的二维平面图像。
2射线检测技术的发展1895年,外国学者伦琴发现了X射线,发现后,法国海关将其应用于物品检测工作。
1920年后,X射线开始应用于工业领域。
1992年,美国建立了世界上第一个工业射线照相实验室,此后,射线照相检测技术在军事和机械制造领域得到了广泛应用。
1958年,中国开始生产工业射线照相胶片,1960年研制出第一台便携式60Co源C型射线照相机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
射线检测面临的问题
>>国家发展的要求
节能减排、无污染、实现绿色无损检测
>>产品检测的需要
自动化、高效率、远程评判(交互)、存储查询方便
解决方法
方法之一:改变胶片及其后处理环节,切断污染源
方法之二:后续处理技术的发展
(1)数字化技术的发展
(3)计算机、自动化技术的发展
射线数字成像技术
DR技术
CR技术
像质评价
应用
1、DR技术概述
1.1 定义
DR——Digital Radiography
NB/T47013.11(DR)
承压设备无损检测第11部分:
X射线数字成像检测
1.2 检测系统组成
1.3 与胶片照相不同之处:
组成及成像过程
增加了硬件(数字探测器、检测工装、计算机)与软件(数据采集、控制、处理);
减少了胶片及其暗室处理环节。
RT:胶片照相是射线光子在胶片中形成潜影,通过暗室的处理,利用观片灯来观察缺陷;
DR成像则是利用计算机软件控制数字成像器件,实现射线光子到数字信号再到数字图像的转换过程,最终在显
示器上进行观察和处理缺陷。
DR技术:
面阵探测器
线阵探测器
数字探测器
1.4 检测原理
射线透照被检工件,衰减后的射线光子被数字探测器接收,经过一系列的转换变成数字信号,数字信号经放大和A/D转换,通过计算机处理,以数字图像的形式输出在显示器上。
数字探测器使用时注意事项
1、温湿度的要求
2、承受的最高辐照能量
3、承重
4、磕碰、划伤
5、预热
6、校正
1.5 DR与胶片比较的特点
>>提高检测效率(静止成像、连续成像)
>>透照宽容度增加
>>快速查询和统计
>>减少暗室的洗片环节,降低环境污染
>>预热
>>校正(坏像素、不一致性)
>>灵敏度高、分辨率低(与像素大小有关)
>>一次投入成本高
>>探测器无法弯曲,有一定厚度
课件形式:。