操作系统实验三

合集下载

操作系统实验,实验3, 进程管理 (1)

操作系统实验,实验3, 进程管理 (1)

在图形界面上利用终端通过命令“su - ”切换到超级用户,编辑文件 “job”; 按组合键[Ctrl+Alt+F2]切换到第二个虚拟终端(超级用户); 输入命令“at –f job now+1 minute”,设置1分钟后执行at调度内容; 稍等后观察at调度的执行效果,再切换到第一个虚拟终端观察at调度 的执行效果;
切换到第一个虚拟终端观察at调度的执行效果(5分钟后系统将执行重 启调度任务)。
[操作要求2] 设置一个调度,要求1分钟后执行文件job中的作业。 文件job的内容为: find /home/jkx/ -name “*.c” > /home/jkx/fdresult wall user jkx, all code files have been searched out! Please check out. [操作步骤]
续表
守 护 进 程 innd Usenet新闻服务器 功 能 说 明
linuxconf
lpd named netfs network
允许使用本地WEB服务器作为用户接口来配置机器
打印服务器 DNS服务器 安装NFS、Samba和NetWare网络文件系统 激活已配置网络接口的脚本程序
nfsd
portmap postgresql routed sendmail
事件(例如xinetd和lpd)
启动守护进程有如下几种方法
在引导系统时启动 人工手动从shell提示符启动
系统启动script的执行期间 被启动(/etc/rc.d) 任何具有相应执行 权限的用户
使用crond守护进程启动
执行at命令启动
守护进程一般由系统在开机时通过脚本或root

操作系统实验3-进程控制

操作系统实验3-进程控制
DWORD dwVerReq=::GetProcessVersion(dwIdThis);
WORD wMajorReq=(WORD)(dwVerReq>16);
WORD wMinorReq=(WORD)(dwVerReq&0xffff);
::cout<<"Process ID:"<<dwIdThis<<",requires OS:"<<wMajorReq<<wMinorReq<<::endl;
{
//改变优先级
::SetPriorityClass(
::GetCurrentProcess(), //利用这一进程
HIGH_PRIORITY_CLASS); //改变为high
//报告给用户
::cout<<"Task Manager should indicate this "
"process is high priority."<<::endl;
//设置版本信息的数据结构,以便保存操作系统的版本信息
OSVERSIONINFOEX osvix;
::ZeroMemory(&osvix,sizeof(osvix));
osvix.dwOSVersionInfoSize=sizeof(osvix);
//提取版本信息和报告
::GetVersionEx(reinterpret_cast<LPOSVERSIONINFO>(&osvix));
Parent();
}
return 0;
}
分析:程序4-3.cpp说明了一个进程从“生”到“死”的整个一生,第一次执行时,它创建一个子进程,其行为如同“父亲”。在创建子进程之前,先创建一个互斥的内核对象,其行为对于子进程来说,如同一个“自杀弹”。当创建子进程时,就打开了互斥体并在其他线程中进行别的处理工作,同时等待着父进程使用ReleaseMutex()API发出“死亡”信号。然后用Sleep()API调用来模拟父进程处理其他工作,等完成时,指令子进程终止。

操作系统 实验三 进程同步

操作系统 实验三 进程同步

集美大学计算机工程学院实验报告课程名称:操作系统指导教师:王丰实验成绩:实验编号:实验三实验名称:进程同步班级:计算12姓名:学号:上机实践日期:2015.5上机实践时间:2学时一、实验目的1、掌握用Linux信号灯集机制实现两个进程间的同步问题。

2、共享函数库的创建二、实验环境Ubuntu-VMware、Linux三、实验内容⏹需要的信号灯: System V信号灯实现☐用于控制司机是否可以启动车辆的的信号灯 S1=0☐用于控制售票员是否可以开门的信号灯 S2=0System V信号灯实现说明□ System V的信号灯机制属于信号灯集的形式, 一次可以申请多个信号灯.□同样利用ftok()生成一个key: semkey=ftok(path,45);□利用key申请一个包含有两个信号灯的信号灯集, 获得该集的idsemid=semget(semkey,2,IPC_CREAT | 0666);□定义一个联合的数据类型union semun{int val;struct semid_ds *buf;ushort *array;};□利用semctl()函数对信号灯初始化,参数有:信号灯集的id: semid要初始化的信号灯的编号:sn要设定的初始值:valvoid seminit(int semid, int val,int sn){union semun arg;arg.val=val;semctl(semid,sn,SETVAL,arg);}利用初始化函数,初始化信号灯:seminit(semid,0,0);//用来司机启动汽车的同步seminit(semid,0,1);//用来售票员开门的同步控制□利用semop()函数, 对信号灯实现V操作:sembuf是一个在头部文件中的预定义结构、semid—信号灯集id, sn—要操作的信号灯编号void semdown(int semid,int sn){/* define P operating*/struct sembuf op;op.sem_num=sn;op.sem_op=-1;//P操作为-1op.sem_flg=0;semop(semid,&op,1);}2、Linux的静态和共享函数库·Linux生成目标代码: gcc -c 源程序文件名(将生成一个与源程序同名的.o目标代码文件。

哈工大《操作系统》实验3

哈工大《操作系统》实验3

向kernel/printk.c中添加日志打印功能,将以下代码添加到原文件中:
在kernel/fork.c、kernel/sched.c和kernel/exit.c中,找到正确的状态转换点,并添加合适的状态信息,把它输出到log文件之中。

fork.c的修改如下:
exit.c的修改如下:
sched.c的修改如下:
在虚拟机上运行ls -l /var”或“ll /var”查看process.log是否建立,及它的属性和长度;
修改时间片
include/linux/sched.h宏INIT_TASK中定义的:
0,15,15, 分别对应state、counter和priority,将priority值修改,即可实现对时间片大小的调整。

0,15,15, 分别对应state、counter和priority,
priority值修改,即可实现对时间片大小的调整。

在修改时间片将priority由15改为150后,Process 9~20 中Turnaround, Waiting, CPU Burst, I/O Burst变化不大,原因可能是程序中I/O操作占用的时间对于总时间影响的权重过大,导致处理时间体现的并不明显。

或者变化不大的原因是,子进程连续占用cpu的时间要比时间片大很多。

操作系统实验三 时间片轮转法完成进程调度

操作系统实验三 时间片轮转法完成进程调度

实验三:时间片轮转法完成进程调度一、实验目的:(1)加深对进程的理解(2)理解进程控制块的结构(3)理解进程运行的并发性(4)掌握时间片轮转法进程调度算法实验内容:(1)建立进程控制块(2)设计三个链队列,分别表示运行队列、就绪队列和完成队列(3)用户输入进程标识符以及进程所需的时间,申请空间存放进程PCB信息。

(4)每一个时间片结束输出各进程的进程号,CPU时间(即已经占用的CPU时间),所需时间(即还需要的CPU时间),以及状态(即用W表示等待,R表示运行,F表示完成)实验程序:#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct node{char name[10];/*进程标识符*/int prio;/*进程优先数*/int round;/*进程时间轮转时间片*/int cputime; /*进程占用CPU时间*/int needtime; /*进程到完成还要的时间*/int count;/*计数器*/char state; /*进程的状态*/struct node *next; /*链指针*/}PCB;PCB *finish,*ready,*tail,*run; //队列指针int N,t; //进程数,时间片的大小void firstin(){run=ready;//就绪队列头指针赋值给运行头指针run->state='R'; //进程状态变为运行态ready=ready->next; //就绪队列头指针后移到下一进程}void prt1(char a)//输出标题函数{if(toupper(a)=='P')//优先级法printf("进程名占用CPU时间到完成还要的时间轮转时间片状态\n");} void prt2(char a,PCB *q)//进程PCB输出{if(toupper(a)=='P')//优先级法的输出printf("%4s %8d %12d %14d %8c\n",q->name,q->cputime,q->needtime,q->roun d,q->state);}void prt(char algo)//输出函数二、三、{PCB *p;prt1(algo);//输出标题if(run!=NULL)//如果运行指针不空prt2(algo,run);//输出当前正在运行的PCBp=ready;//输出就绪队列PCBwhile(p!=NULL){prt2(algo,p);p=p->next;}p=finish;//输出完成队列的PCBwhile(p!=NULL){prt2(algo,p);p=p->next;}getchar(); //按住任意键继续}void insert(PCB *q)//时间片轮转的插入算法{PCB *p1,*s,*r;s=q;//待插入的PCB指针p1=ready;//就绪队列头指针r=p1;//*r做pl的前驱指针while(p1!=NULL)if(p1->round<=s->round){r=p1;p1=p1->next;}if(r!=p1){r->next=s;s->next=p1;}else{s->next=p1;//否则插入在就绪队列的头ready=s;}}void create(char alg)//时间片轮转法创建链表进程PCB{PCB *p;int i,time;char na[10];ready=NULL;finish=NULL;run=NULL;printf("输入进程名及其需要运行的时间(中间以空格隔开):\n"); for(i=1;i<=N;i++){p=new PCB;scanf("%s %d",&na,&time);strcpy(p->name,na);p->cputime=0;p->needtime=time;p->state='W';//进程的状态p->round=0;if(ready!=NULL)insert(p);else{p->next=ready;ready=p;}}printf("*************时间片轮转法进程调度过程*************\n"); prt(alg);run=ready;ready=ready->next;run->state='R';}void timeslicecycle(char alg)//时间片轮转法{while(run!=NULL){run->cputime=run->cputime+t;//处理时间加trun->needtime=run->needtime-t;//完成需要时间减trun->round=run->round+t;//运行完将其变为完成态,插入完成队列if(run->needtime<=0)//当进程完成时{run->next=finish;finish=run;run->state='F';run=NULL;if(ready!=NULL)//就绪队列不空,将第一个进程投入进行firstin();}else{run->state='W';//将进程插入到就绪队列中等待轮转insert(run);//将就绪队列的第一个进程投入运行firstin();}prt(alg);}}void main()//主函数{char algo='P';//算法标记printf("输入进程的个数:");scanf("%d",&N);//输入进程数printf("定义时间片大小:");scanf("%d",&t);//输入时间片大小create(algo);//创建进程timeslicecycle(algo);//时间片轮转法调度}//main()四、实验结果:五、实验小结:时间片轮转调度是一种最古老,最简单,最公平且使用最广的算法。

操作系统原理实验

操作系统原理实验

操作系统原理实验一、实验目的本实验旨在通过实际操作,加深对操作系统原理的理解,掌握操作系统的基本功能和调度算法。

二、实验环境1. 操作系统:Windows 102. 虚拟机软件:VirtualBox3. 实验工具:C语言编译器(如gcc)、汇编语言编译器(如nasm)、调试器(如gdb)三、实验内容1. 实验一:进程管理在这个实验中,我们将学习如何创建和管理进程。

具体步骤如下:a) 创建一个C语言程序,实现一个简单的计算器功能。

该计算器能够进行基本的加减乘除运算。

b) 使用fork()系统调用创建一个子进程,并在子进程中执行计算器程序。

c) 使用wait()系统调用等待子进程的结束,并获取子进程的退出状态。

2. 实验二:内存管理在这个实验中,我们将学习如何进行内存管理。

具体步骤如下:a) 创建一个C语言程序,模拟内存分配和释放的过程。

该程序能够动态地分配和释放内存块。

b) 使用malloc()函数分配一块内存,并将其用于存储数据。

c) 使用free()函数释放已分配的内存块。

3. 实验三:文件系统在这个实验中,我们将学习如何进行文件系统的管理。

具体步骤如下:a) 创建一个C语言程序,实现一个简单的文件系统。

该文件系统能够进行文件的创建、读取、写入和删除操作。

b) 使用open()系统调用打开一个文件,并进行读取和写入操作。

c) 使用unlink()系统调用删除一个文件。

四、实验步骤1. 安装虚拟机软件VirtualBox,并创建一个虚拟机。

2. 在虚拟机中安装操作系统Windows 10。

3. 在Windows 10中安装C语言编译器、汇编语言编译器和调试器。

4. 根据实验内容,编写相应的C语言程序并保存。

5. 在命令行中使用gcc编译C语言程序,并生成可执行文件。

6. 运行可执行文件,观察程序的执行结果。

7. 根据实验要求,进行相应的操作和测试。

8. 完成实验后,整理实验报告,包括实验目的、实验环境、实验内容、实验步骤和实验结果等。

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。

三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。

2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。

3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。

以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。

(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。

操作系统实验3进程的创建控制实验

操作系统实验3进程的创建控制实验

操作系统实验3进程的创建控制实验实验三的目标是通过实现一个进程控制程序,来加深我们对进程创建和控制机制的理解,并通过实践来熟悉和掌握相关的编程技巧。

在进行实验之前,我们需要先了解进程的一些基本概念和相关知识。

首先,进程的创建是通过操作系统中的系统调用来完成的。

在Linux系统中,常用的创建进程的系统调用有fork(和exec(。

fork(系统调用可以创建一个新的进程,该进程与调用fork(的进程几乎完全相同;而exec(系统调用则在新创建的进程中执行一个新的程序。

另外,进程的控制机制主要是通过进程的状态来实现的。

进程可以处于就绪状态、运行状态和阻塞状态。

就绪状态的进程可以被调度器选择后立即运行,而阻塞状态的进程则需要等待一些条件满足后才能被唤醒并变为就绪状态。

实验三的具体内容包括:1. 编写一个程序,通过调用fork(创建多个子进程。

子进程和父进程可以并行执行,共享程序的代码和数据段。

2. 子进程通过调用exec(系统调用执行不同的程序。

可以通过调用不同的exec(函数或者传入不同的参数来执行不同的程序。

3. 子进程执行的程序可能会产生不同的结果,比如输出不同的字符串或者产生不同的返回值。

我们可以通过wait(系统调用等待子进程退出,并获取子进程的返回值。

4. 父进程可以通过调用waitpid(系统调用来选择等待一些特定的子进程,以及获取特定子进程的返回值。

通过实验三的实践,我将更加深入地了解进程的创建和控制机制。

实验三的实验结果将让我熟悉和掌握相关的编程技巧,为我今后更加熟练地编写和控制进程打下坚实的基础。

总之,实验三是一个非常有意义的实验,将帮助我更加深入地理解进程的创建和控制机制,并通过实践获得相关的编程技巧。

这将对我今后的学习和实践有很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作系统实验报告哈尔滨工程大学计算机科学与技术学院第三讲进程的创建一、实验概述1. 实验名称进程的创建2. 实验目的● 练习使用EOS API函数CreateProcess创建一个进程,掌握创建进程的方法,理解进程和程序的区别。

● 调试跟踪CreateProcess函数的执行过程,了解进程的创建过程,理解进程是资源分配的单位。

3. 实验类型设计4. 实验内容4.1 准备实验按照下面的步骤准备本次实验:1. 启动OS Lab。

2. 新建一个EOS Kernel项目。

3. 分别使用Debug配置和Release配置生成此项目,从而在该项目文件夹中生成完全版本的EOS SDK文件夹。

4. 新建一个EOS应用程序项目。

5. 使用在第3步生成的SDK文件夹覆盖EOS应用程序项目文件夹中的SDK文件夹。

4.2 练习使用控制台命令创建EOS应用程序的进程练习使用控制台命令创建EOS应用程序进程的具体步骤如下:1. 在EOS应用程序项目的“项目管理器”窗口中双击Floppy.img文件,使用FloppyImageEditor工具打开此软盘镜像文件。

2. 将本实验文件夹中的Hello.exe文件拖动到FloppyImageEditor工具窗口的文件列表中释放,Hello.exe文件即被添加到软盘镜像文件中。

Hello.exe一个EOS应用程序,其源代码可以参见本实验文件夹中的Hello.c源文件。

3. 在FloppyImageEditor中选择“文件”菜单中的“保存”后关闭FloppyImageEditor。

4. 按F7生成EOS应用项目。

5. 按F5启动调试。

OS Lab会弹出一个调试异常对话框,并中断应用程序的执行。

6. 在调试异常对话框中选择“否”,忽略异常继续执行应用程序。

7. 激活虚拟机窗口,待该应用程序执行完毕后,在EOS的控制台中输入命令“A:\Hello.exe”后回车。

8. Hello.exe应用程序开始执行,观察其输出。

9. 待Hello.exe执行完毕后可以重复第7步,或者结束此次调试。

4.3 练习通过编程的方式让应用程序创建另一个应用程序的进程使用OS Lab打开本实验文件夹中的NewProc.c文件(将此文件拖动到OS Lab窗口中释放即可),仔细阅读此文件中的源代码和注释。

按照下面的步骤查看应用程序创建另一个应用程序的进程的执行结果:1. 使用NewProc.c文件中的源代码替换之前创建的EOS应用程序项目中的EOSApp.c文件内的源代码。

2. 按F7生成修改后的EOS应用程序项目。

3. 按F5启动调试。

OS Lab会首先弹出一个调试异常对话框。

4. 在调试异常对话框中选择“否”,继续执行。

5. 激活虚拟机窗口查看应用程序输出的内容。

可以看到父进程(EOSApp.exe)首先开始执行并输出内容,父进程创建了子进程(Hello.exe)后,子进程开始执行并输出内容,待子进程结束后父进程再继续执行。

6. 结束此次调试。

4.4 调试CreateProcess函数按照下面的步骤调试CreateProcess函数创建进程的过程:1. 按F5启动调试EOS应用程序,OS Lab会首先弹出一个调试异常对话框。

2. 选择“是”调试异常,调试会中断。

3. 在main函数中调用CreateProcess函数的代码行(第57行)添加一个断点。

4. 按F5继续调试,在断点处中断。

5. 按F11调试进入CreateProcess函数。

此时已经开始进入EOS内核进行调试。

当EOS应用程序eosapp.exe存储在软盘上的时候,它是静态的,只包含应用程序的指令和数据。

而创建进程后,进程不但包含应用程序的指令和数据,也会包含操作系统内核(kernel.dll)的指令和数据(参见图5-1)。

同时,图11-4也说明了一个进程可以包含多个程序,该进程包含了eosapp.exe和kernel.dll两个程序。

可以按照下面的步骤来分别验证应用程序和操作系统内核在进程的4G虚拟地址空间中所处的位置:1. 由于此时在内核的CreateProcess函数内中断执行,所以在“调试”菜单的“窗口”中选择“反汇编”,会在“反汇编”窗口中显示CreateProcess函数的指令对应的反汇编代码。

“反汇编”窗口的左侧显示的是指令所在的虚拟地址。

可以看到所有指令的虚拟地址都大于0x80000000,说明内核(kernel.dll)处于高2G的虚拟地址空间中。

2. 在“调用堆栈”窗口中双击main函数项,设置main函数的调用堆栈帧为活动的。

在“反汇编”窗口中查看main函数的指令所在的虚拟地址都是小于0x80000000,说明应用程序(eosapp.exe)处于低2G的虚拟地址空间中。

3. 在“调用堆栈”窗口中双击CreateProcess函数项,重新设置CreateProcess函数的调用堆栈帧为活动的。

关闭“反汇编”窗口。

接下来观察eosapi.c文件中CreateProcess函数的源代码,可以看到此函数只是调用了EOS 内核函数PsCreateProcess并将创建进程所用到的参数传递给了此函数。

所以,按F11可以调试进入create.c文件中的PsCreateProcess函数,在此函数中才开始执行创建进程的各项操作。

4.5 调试PsCreateProcess函数创建进程最主要的操作就是创建进程控制块(PCB),并初始化其中的各种信息(也就是为进程分配各种资源)。

所以在PsCreateProcess函数中首先调用了PspCreateProcessEnvironment 函数来创建进程控制块。

调试PspCreateProcessEnvironment函数的步骤如下:1. 在PsCreateProcess函数中找到调用PspCreateProcessEnvironment函数的代码行(create.c文件的第163行),并在此行添加一个断点。

2. 按F5继续调试,到此断点处中断。

3. 按F11调试进入PspCreateProcessEnvironment函数。

由于PspCreateProcessEnvironment函数的主要功能是创建进程控制块并初始化其中的部分信息,所以在此函数的开始,定义了一个进程控制块的指针变量NewProcess。

在此函数中查找到创建进程控制块的代码行(create.c文件的第418行)Status = ObCreateObject( PspProcessType,NULL,sizeof(PROCESS) + ImageNameSize + CmdLineSize,0,(PVOID*)&NewProcess ); 这里的ObCreateObject函数会在由EOS内核管理的内存中创建了一个新的进程控制块(也就是分配了一块内存),并由NewProcess返回进程控制块的指针(也就是所分配内存的起始地址)。

按照下面的步骤调试进程控制块的创建过程:1. 在调用ObCreateObject函数的代码行(create.c文件的第418行)添加一个断点。

2. 按F5继续调试,到此断点处中断。

3. 按F10执行此函数后中断。

4. 此时为了查看进程控制块中的信息,将表达式*NewProcess添加到“监视”窗口中。

5. 将鼠标移动到“监视”窗口中此表达式的“值”属性上,会弹出一个临时窗口,在临时窗口中会按照进程控制块的结构显示各个成员变量的值(可以参考PROCESS结构体的定义)。

由于只是新建了进程控制块,还没有初始化其中成员变量,所以值都为0。

接下来调试初始化进程控制块中各个成员变量的过程:1. 首先创建进程的地址空间,即4G虚拟地址空间。

在代码行(create.c文件的第437行)NewProcess->Pas = MmCreateProcessAddressSpace(); 添加一个断点。

2. 按F5继续调试,到此断点处中断。

3. 按F10执行此行代码后中断。

4. 在“监视”窗口中查看进程控制块的成员变量Pas的值已经不再是0。

说明已经初始化了进程的4G虚拟地址空间。

根据执行的源代码,查看“监视”窗口中*NewProcess表达式的值,观察进程控制块中哪些成员变量是被哪些代码初始化的,哪些成员变量还没有被初始化。

6. 当从PspCreateProcessEnvironment函数返回到PsCreateProcess函数后,停止按F10。

此时“监视”窗口中已经不能再显示表达式*NewProcess的值了,在PsCreateProcess函数中是使用ProcessObject指针指向进程控制块的,所以将表达式*ProcessObject添加到“监视”窗口中就可以继续观察新建进程控制块中的信息。

7. 接下来继续使用F10一步步调试PsCreateProcess函数中的代码,同样要注意观察执行后的代码修改了进程控制块中的哪些成员变量。

当调试到PsCreateProcess函数的最后一行代码时,查看进程控制块中的信息,此时所有的成员变量都已经被初始化了(注意观察成员ImageName的值)。

8. 按F5继续执行,EOS内核会为刚刚初始化完毕的进程控制块新建一个进程。

激活虚拟机窗口查看新建进程执行的结果。

9. 在OS Lab中选择“调试”菜单中的“停止调试”结束此次调试。

10. 选择“调试”菜单中的“删除所有断点”。

4.6 练习通过编程的方式创建应用程序的多个进程使用OS Lab打开本实验文件夹中的参考源代码文件NewTwoProc.c,仔细阅读此文件中的源代码。

使用NewTwoProc.c文件中的源代码替换EOS应用程序项目中EOSApp.c文件内的源代码,生成后启动调试,查看多个进程并发执行的结果。

多个进程并发时,EOS操作系统中运行的用户进程可以参见图11-5。

验证一个程序(hello.exe)可以同时创建多个进程。

二、实验环境操作系统集成实验环境OS LabEOS 操作系统三、实验过程1. 设计思路和流程图2. 需要解决的问题及解答在PsCreateProcess函数中调用了PspCreateProcessEnvironment函数后又先后调用了PspLoadProcessImage和PspCreateThread函数,学习这些函数的主要功能。

能够交换这些函数被调用的顺序吗?思考其中的原因。

答:PspCreateProcessEnvironment的主要功能是创建进程控制块并且为进程创建了地址空间和分配了句柄表。

PspLoadProcessImage是将进程的可执行映像加载到了进程的地址空间中。

PspCreateThread创建了进程的主线程。

这三个函数被调用的顺序是不能够改变的就向上面描述的加载可执行映像之前必须已经为进程创建了地址空间这样才能够确定可执行映像可以被加载到内存的什么位置在创建主线程之前必须已经加载了可执行映像这样主线程才能够知道自己要从哪里开始执行,执行哪些指令。

相关文档
最新文档