随机信号分析第六章 带通随机过程PPT
合集下载
《随机信号分析》课件

表示随机信号的波动范围,即信号值偏离均值的程度。
方差
均值
自相关函数描述了随机信号在不同时间点之间的相关性。
自相关函数可以用于分析信号的周期性和趋势性。
谱密度函数描述了随机信号的频率成分。
通过谱密度函数,可以了解信号在不同频率下的强度和分布。
04
CHAPTER
随机信号的频域分析
傅立叶变换是信号处理中的基本工具,用于将时间域的信号转换为频域的表示。通过傅立叶变换,我们可以分析信号的频率成分和频率特性。
02
时间变化特性
由于随机信号的取值是随机的,因此其时间变化特性也是随机的,表现为信号的幅度、频率和相位都是随机的。
在通信领域,随机信号可以用于扩频通信、信道编码等,以提高通信的可靠性和抗干扰能力。
通信
在雷达领域,随机信号可以用于雷达测距、目标跟踪等,以提高雷达的抗干扰能力和探测精度。
雷达
在地球物理学领域,随机信号可以用于地震勘探、矿产资源探测等,以提高探测的精度和可靠性。
线性系统的输出信号的统计特性与输入信号的统计特性和系统的传递函数有关。通过分析线性系统对随机信号的作用,我们可以了解系统对信号的影响和信号经过系统后的变化情况。
05
CHAPTER
随机信号的变换域分析
总结词
拉普拉斯变换是一种将时域信号转换为复平面上的函数的方法,用于分析信号的稳定性和可预测性。
详细描述
详细描述
06
CHAPTER
随机信号处理的应用
信号传输
随机信号分析在通信系统中用于信号传输的调制和解调过程,通过对信号的随机性进行编码和解码,实现可靠的信息传输。
目标检测
01
随机信号分析在雷达系统中用于目标检测和跟踪,通过对接收到的回波信号进行分析和处理,实现高精度和高可靠性的目标定位和识别。
方差
均值
自相关函数描述了随机信号在不同时间点之间的相关性。
自相关函数可以用于分析信号的周期性和趋势性。
谱密度函数描述了随机信号的频率成分。
通过谱密度函数,可以了解信号在不同频率下的强度和分布。
04
CHAPTER
随机信号的频域分析
傅立叶变换是信号处理中的基本工具,用于将时间域的信号转换为频域的表示。通过傅立叶变换,我们可以分析信号的频率成分和频率特性。
02
时间变化特性
由于随机信号的取值是随机的,因此其时间变化特性也是随机的,表现为信号的幅度、频率和相位都是随机的。
在通信领域,随机信号可以用于扩频通信、信道编码等,以提高通信的可靠性和抗干扰能力。
通信
在雷达领域,随机信号可以用于雷达测距、目标跟踪等,以提高雷达的抗干扰能力和探测精度。
雷达
在地球物理学领域,随机信号可以用于地震勘探、矿产资源探测等,以提高探测的精度和可靠性。
线性系统的输出信号的统计特性与输入信号的统计特性和系统的传递函数有关。通过分析线性系统对随机信号的作用,我们可以了解系统对信号的影响和信号经过系统后的变化情况。
05
CHAPTER
随机信号的变换域分析
总结词
拉普拉斯变换是一种将时域信号转换为复平面上的函数的方法,用于分析信号的稳定性和可预测性。
详细描述
详细描述
06
CHAPTER
随机信号处理的应用
信号传输
随机信号分析在通信系统中用于信号传输的调制和解调过程,通过对信号的随机性进行编码和解码,实现可靠的信息传输。
目标检测
01
随机信号分析在雷达系统中用于目标检测和跟踪,通过对接收到的回波信号进行分析和处理,实现高精度和高可靠性的目标定位和识别。
随机过程课件PPT资料(正式版)

应怎样分才合理呢➢?」
☞随机事件:样本空间的子集,常记为 A ,B ,…它是满足某些条件的样本点所组成的集合.
排队和服务系统 ◙A∩勤B 奋⇔、A刻B :苦A、与合➢B作的、积探事索件;; 更新过程 为从事科学研究打下坚实的基础;
☞抽取的是精装中➢文版数学书 ⇒
➢ 时间序列分析
➢ 鞅过程
绪论
《随机过程》基础
概率(或然率或几率) ——随机事件出现的可能 性的量度;
概率论其起源与博弈、 、天气预报等问题有 关
⊕16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;
⊕17世纪中叶,「现有两个赌徒相约赌若干 局,谁先赢S局就算赢了,当赌徒A赢K局(K<S), 而赌徒B赢L局(L<S)时,赌博中止,赌资应怎 样分才合理呢?」
随机过程课件
《随机过程》
➢ 教材: ◙ 张卓奎,陈慧婵,随机过程.西安电子科技大 学.2003.
➢ 主要参考文献: ◙ 胡奇英编著,随机过程.西安电子科技大学.1998. ◙ 周荫清 ,随机过程习题集. 清华大学出版社, 2004. ◙ 林元纟金烈 ,应用随机过程. 清华大学出版社, 2002.
……
➢ 随机过程理论在社会科学中例如在社会统计, 学、经 济、金融工程、管理中也得到极其广泛的应用。
➢ 为从事科学研究打下坚实的基础;
绪论
教学目标
➢ 充分理解、熟练掌握教材的内容 ◙ 熟练掌握基本的数学概念和定理;
◙ 熟练掌握随机过程研究对象的数学描述;
Hale Waihona Puke ➢ 通过学习和练习,具备一定的分析、解决本专业具体 问题的能力;
☞拉普拉斯曾说:“生活中最重要的问题,其中 绝大多数在实质上只是概率的问题”。
☞概率论是研究随机现象数量规律的数学分支。 在实际中,人们往往还需要研究在时间推进中某 一特定随机现象的演变情况,描述这种演变的就 是概率论中的随机过程。
☞随机事件:样本空间的子集,常记为 A ,B ,…它是满足某些条件的样本点所组成的集合.
排队和服务系统 ◙A∩勤B 奋⇔、A刻B :苦A、与合➢B作的、积探事索件;; 更新过程 为从事科学研究打下坚实的基础;
☞抽取的是精装中➢文版数学书 ⇒
➢ 时间序列分析
➢ 鞅过程
绪论
《随机过程》基础
概率(或然率或几率) ——随机事件出现的可能 性的量度;
概率论其起源与博弈、 、天气预报等问题有 关
⊕16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;
⊕17世纪中叶,「现有两个赌徒相约赌若干 局,谁先赢S局就算赢了,当赌徒A赢K局(K<S), 而赌徒B赢L局(L<S)时,赌博中止,赌资应怎 样分才合理呢?」
随机过程课件
《随机过程》
➢ 教材: ◙ 张卓奎,陈慧婵,随机过程.西安电子科技大 学.2003.
➢ 主要参考文献: ◙ 胡奇英编著,随机过程.西安电子科技大学.1998. ◙ 周荫清 ,随机过程习题集. 清华大学出版社, 2004. ◙ 林元纟金烈 ,应用随机过程. 清华大学出版社, 2002.
……
➢ 随机过程理论在社会科学中例如在社会统计, 学、经 济、金融工程、管理中也得到极其广泛的应用。
➢ 为从事科学研究打下坚实的基础;
绪论
教学目标
➢ 充分理解、熟练掌握教材的内容 ◙ 熟练掌握基本的数学概念和定理;
◙ 熟练掌握随机过程研究对象的数学描述;
Hale Waihona Puke ➢ 通过学习和练习,具备一定的分析、解决本专业具体 问题的能力;
☞拉普拉斯曾说:“生活中最重要的问题,其中 绝大多数在实质上只是概率的问题”。
☞概率论是研究随机现象数量规律的数学分支。 在实际中,人们往往还需要研究在时间推进中某 一特定随机现象的演变情况,描述这种演变的就 是概率论中的随机过程。
随机过程课件

。每个可能取的值称为一个状态。
对随机过程 {X (t) , t T} 进行一次试验 (即在 T 上进行一次全程观测) , 其结果是 t 的函数, 记为
x(t) , t T , 称它为随机过程的一个 样 本 函 数 或 样本曲线 .
所有不同的试验结果构成一族样本函数.
随机过程 总体
样本函数 个体
(4)连续参数、连续状态的随机过程。如例3,T=[0,∞], 状态空间为[-∞,∞]。
离散参数的随机过程亦称为随机序列。
四、随机过程的分布函数族
给定随机过程 {X (t),t T}.
对固定的 t T, 随机变量 X (t) 的分布函数一 般与 t 有关, 记为 FX (x,t) P{X (t) x}, x R.
1 0.5
-4
-2
-0.5
2
4
-1
当t固定时,X(t)是随机变量,故{X(t), t>0}是一族随机变量。
另一方面,对随机变量 做一φ次试验得一个试验值 ,
就是一条样本曲线。X (t) a cos(0t )
二、随机过程的概念
1 定义 参数集:设T是实数轴 (, )上的一个子集,且包含无限多
个数。随机过程是一族随机变量,可用 {X (t),t T} 来表示。T称为 随机过程的参数集。
在次概数率是论一中个曾随指机出变,量在,单记位X时(t间)为内[0一,t]电内话的站呼接叫到次的数呼唤 次数可用一离散型随机变量 X()表示,且有
P{X() k} k e , k 0, 1,2, ,( 0)
k! 在[0,t]时间内接到的呼唤次数,这一随机变量可记为X(t)。
P{X(t) k} (t)k et , k 0, 1,2, ,( 0)
《随机过程》课件

f1(x1, t1)
F1(x1, t1) x1
4
● 随机过程 (t) 的二维分布函数:
F2 (x1, x2 ;t1,t2 , ) P (t1) x1, (t2 ) x2
● 随机过程 (t)的二维概率密度函数:
f2
(x1,
x2 ; t1, t2
)
2F2 (x1, x2;t1,t2 ) x1 x2
Dξ t Eξ 2 t 2atξ t a2 t
E[ξ 2 (t)] 2at Eξ t a2 (t)
E[ξ 2 (t)] a2 (t)
于
均
值
所以 a(t
,) 的方偏差离等程于x度2均f。1方(
x值,
t与)d均x值平[a方(t之)]差2
,
它
表
示
随
机
过
程
在
时
刻
t
对
均方值
均值平方
8
● 相关函数
在通信系统中所遇到的信号及噪声,大多数可视为平稳的随机过程。 因此,研究平稳随机过程有着很大的实际意义。
13
● 2.2 各态历经性 ● 问题的提出:我们知道,随机过程的数字特征(均值、相关函数)是对随 机过程的所有样本函数的统计平均,但在实际中常常很难测得大量的样本, 这样,我们自然会提出这样一个问题:能否从一次试验而得到的一个样本 函数x(t)来决定平稳过程的数字特征呢? ● 回答是肯定的。平稳过程在满足一定的条件下具有一个有趣而又非常有用 的特性,称为“各态历经性”(又称“遍历性”)。具有各态历经性的过 程,其数字特征(均为统计平均)完全可由随机过程中的任一实现的时间 平均值来代替。 ● 下面,我们来讨论各态历经性的条件。
R(t1,t2 ) E[ (t1) (t2 )]
随机过程第六章

2 X
mx2
若随机过程X(t)平稳,则其均值、均方值和方差均为常数。
对于严平稳随机过程X(t)的二维分布F2(X1,X2;t1,t2)=F2(X1,X2;t1+ ε,t2+ ε), 若令ε=-t1,则
F2(X1,X2;t1,t2)=F2(X1,X2;0,t2-t1),令t2-t1= τ ,则 F2(X1,X2;t1,t2)=F2(X1,X2; τ)
1.
l.i.mcn
lim
n
cn
c
2. l.i.mU U
3. l.i.m(cnU ) cU
4. l.i.m(aX n bYn ) aX bY
5.
lim
n
E[
X
n
]
E[ X
]
E[l.i.mXn
]
6.
lim
n,m
E[
X
nYm
]
E[
XY
]
E[(l.i.mX
n
)(l.i.mYm
)]
定理6.2
设{Xn}为二阶矩随机序列,则{Xn}均方收敛的充要条件为下列极限存在:
各态历经定理的意义:
一个实平稳过程,如果它是各态历经的,则可用任意一个样本函数的
时间平均代替过程的集合平均,即
mX
l.i.m 1 T T
T
x(t)dt,
0
RX
(t)
l.i.m
T
1 T
T
x(t)x(t )dt
0
若样本函数X(t)只在有限区间[0,T]上给出,则对于实平稳过程有下列估
计式
l.i.m 1
T 2T
T
T X (t) X (t ) dt RX ( )
随机过程 课件

fY
y
f
X
0
h
y
h
'
y , y
其它情况
,
h(y)是g(x)的反函数, min g x , max g x 。
1.2 二维随机变量及其概率分布
1.2.1 分布函数
定义1:二维分布函数
设X,Y为定义在同一概率空间 S,, P 上的两个随机变量,
则(X,Y)称为二维随机变量,对任意 x, y R ,令
,则n维向量 Y Y1,,Yn 的概率密度函数为
fY
y
fX hy
h
y
h1
h
y
y1
hn
y1
hn yn
hn yn
1.4 随机变量的数字特征
1.4.1数字期望(expected value, probabilistic average, mean) 1、一维随机变量的数学期望
E
X
x xpX
xf
则
P n1
An
n1
P
An
则称P(A)为事件A出现的概率,称(S, Ω, P)为一个概率空间。
定义2:随机变量
设已知一个概率空间 S,, P ,对于 s S , X(s)是一个取实数值的单值函数,若对于任意实数x,s : X s x 是一个随机事件,也就是 s : X s x ,则称X(s)为随机变量。
1.3.2 边沿分布
F xk F ,, xk ,,
1.3.3 独立性
定义2:如果 P X1 x1,, X n xn P X1 x1 P Xn xn
,则 X1,, X n 是相互独立得。
离散型:
P X1 x1,, X n xn P X1 x1 P X n xn
《随机过程教程》PPT课件幻灯片PPT

主要教学成果
编写出版了教材?通信与信息工程中的随 机过程? 开设的?随机过程?课程2002年12月被评为 江苏省优秀研究生课程 至今培养了7名硕士研究生获得硕士学位, 目前正在指导13名硕士研究生 协助指导5名博士研究生获得博士学位 指导本科毕业设计20名
教学理念
教者方面 认真、尽职 教的过程也是学的过程 学者方面 “贤良、喜悦、勤奋〞可使学习者臻于完善的 境地 共同方面 互换角度、互相尊重 互相配合、互相理解、互相学习
科研方向
主要科研方向
无线通信中的各种信号处理问题 无线通信系统中的无线资源管理问题
具体涉及的研究领越
DS/CDMA通信系统中的多用户检测 智能天线技术 MIMO系统中的空时编码技术 HSDPA技术 无线网络规划
完成的科研工程
1997年1月到12月,作为工程负责人完成了国 家863高技术开展工程“多址干扰抑制技术〞 1998年4月到2001年3月,作为工程技术负责人, 完成了本室与芬兰NOKIA移动 公司的国际合作 工程“移动通信中的新方法〞 2001年7月到2002年5月,作为工程负责人,完 成了深圳华为公司的委托工程 “WCDMA/HSDPA系统仿真分析〞
科研方向主要科研方向?无线通信中的各种信号处理问题?无线通信系统中的无线资源管理问题具体涉及的研究领越?dscdma通信系统中的多用户检测?智能天线技术?mimo系统中的空时编码技术?hsdpa技术?无线网络规划完成的科研项目1997年1月到12月作为项目负责人完成了国家863高技术发展项目多址干扰抑制技术1998年4月到2001年3月作为项目技术负责人完成了本室与芬兰nokia移动电话公司的国际合作项目移动通信中的新方法2001年7月到2002年5月作为项目负责人完成了深圳华为公司的委托项目wcdmahsdpa系统仿真分析2001年4月至今作为项目技术负责人负责本室与芬兰nokia移动电话公司的国际合作项目3g以后系统的基带算法研究2003年1月至今作为项目负责人正在进行深圳华为公司委托的开发项目hsdparrm调度算法建模和网络规划的建模2003年2月至今作为项目负责人正在进行和中国移动集团总公司的委托研究项目ngsobsss卫星系统和地面wcdma系统的干扰分析2002年9月至今作为项目副组长负责国家863高技术发展项目新型天线和分集技术研究的基带研究部分在研的科研项目主要教学成果编写出版了教材通信与信息工程中的随机过程开设的随机过程课程2002年12月被评为江苏省优秀研究生课程至今培养了7名硕士研究生获得硕士学位目前正在指导13名硕士研究生协助指导5名博士研究生获得博士学位指导本科毕业设计20名教学理念教者方面?认真尽职?教的过程也是学的过程学者方面?贤良喜悦勤奋可使学习者臻于完善的境地共同方面?互换角度互相尊重?互相配合互相理解互相学习一张去年的照片内容提要教者简介所教内容简介教学方式约定考核方式劝勉勤奋学习随机过程的内容随机对象
随机信号分析与处理ppt几种常用的随机过程

例1 分析用于表征通信系统的错误产生机制的马尔可夫模型, 假定其级数为2,求二步转移概率矩阵 。
p
0 0
q q
1 1
p
图6.2 二进制对称信道
3、平稳链
如果齐次链中所有时刻的状态概率分布列相同,即:
p(n) p(1)
则此齐次链是平稳的。 若齐次链中序列X1和X2的概率分布列相同,则此链平稳。
• 问题提出:
连续观察双汇股票自2005年2月21日至4月7日的价
格如下(资料来自中原证券),试预测2005年4月
7日后的第二个交易日该股票的价格走势。
应用2:天气预报
• 问题提出: 如果明天是否有雨与今日的天气(是否有雨)关 系最密切,不考虑以前的天气情况,并且规定: 今日有雨、明日有雨的概率为0.8,今日无雨、明 日有雨的概率为0.3,预测明天的天气
性质:
(1)
p ( n) 1
j 1
N
N
j
(2)
p (s, n) P{X
j 1 ij j 1
N i 1
N
n
a j |X s ai } 1
(3)
p j (n) pij ( s, n) pi ( s)
(4)
p(n) PT (s, n)p(s)
(5) 切普曼-柯尔莫哥洛夫方程
+
Xn
4 3 2 1 0
+ + + + +
1
2
3
4
5
6
7
t
典型马尔可夫链
二元通信信道
1- 0 0
Xn
1 1-
P( X n1 1| X n 0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
48/74
6.3 带通信号与调制
电子科技大学通信学院
49/74
6.4 窄带高斯信号
电子科技大学通信学院
50/74
6.4 窄带高斯信号
电子科技大学通信学院
51/74
6.4 窄带高斯信号
电子科技大学通信学院
52/74
6.4 窄带高斯信号
电子科技大学通信学院
53/74
6.4 窄带高斯信号
电子科技大学通信学院
电子科技大学通信学院
5/74
6.1希尔伯特变换与解析信号
电子科技大学通信学院
6/74
6.1希尔伯特变换与解析信号
电子科技大学通信学院
7/74
6.1希尔伯特变换与解析信号
电子科技大学通信学院
8/74
6.1希尔伯特变换与解析信号
电子科技大学通信学院
Байду номын сангаас
9/74
6.1希尔伯特变换与解析信号
电子科技大学通信学院
31/74
6.3 带通信号与调制
电子科技大学通信学院
32/74
6.3 带通信号与调制
电子科技大学通信学院
33/74
6.3 带通信号与调制
电子科技大学通信学院
34/74
6.3 带通信号与调制
电子科技大学通信学院
35/74
6.3 带通信号与调制
电子科技大学通信学院
36/74
6.3 带通信号与调制
60/74
6.3 带通信号与调制
电子科技大学通信学院
26/74
6.3 带通信号与调制
电子科技大学通信学院
27/74
6.3 带通信号与调制
电子科技大学通信学院
28/74
6.3 带通信号与调制
电子科技大学通信学院
29/74
6.3 带通信号与调制
电子科技大学通信学院
30/74
6.3 带通信号与调制
电子科技大学通信学院
18/74
6.2 复(值)随机信号
电子科技大学通信学院
19/74
6.2 复(值)随机信号
电子科技大学通信学院
20/74
6.2 复(值)随机信号
电子科技大学通信学院
21/74
6.2 复(值)随机信号
电子科技大学通信学院
22/74
6.2 复(值)随机信号
电子科技大学通信学院
23/74
6.3 带通信号与调制
6.3 带通信号与调制
电子科技大学通信学院
43/74
6.3 带通信号与调制
电子科技大学通信学院
44/74
6.3 带通信号与调制
电子科技大学通信学院
45/74
6.3 带通信号与调制
电子科技大学通信学院
46/74
6.3 带通信号与调制
电子科技大学通信学院
47/74
6.3 带通信号与调制
电子科技大学通信学院
电子科技大学通信学院
37/74
6.3 带通信号与调制
电子科技大学通信学院
38/74
6.3 带通信号与调制
电子科技大学通信学院
39/74
6.3 带通信号与调制
电子科技大学通信学院
40/74
6.3 带通信号与调制
电子科技大学通信学院
41/74
6.3 带通信号与调制
电子科技大学通信学院
42/74
10/74
6.1希尔伯特变换与解析信号
�
解析信号本质上是原信号的正频率部分,是实 信号的一种“简练”形式。
电子科技大学通信学院 11/74
6.1希尔伯特变换与解析信号
� �
确定信号的解析信号是确定的。 平稳随机信号的解析信号是随机的,它们联合平 稳。
电子科技大学通信学院
12/74
6.2 复(值)随机信号
电子科技大学通信学院
13/74
6.2 复(值)随机信号
电子科技大学通信学院
14/74
6.2 复(值)随机信号
电子科技大学通信学院
15/74
6.2 复(值)随机信号
电子科技大学通信学院
16/74
6.2 复(值)随机信号
电子科技大学通信学院
17/74
6.2 复(值)随机信号
电子科技大学通信学院
54/74
6.4 窄带高斯信号
电子科技大学通信学院
55/74
6.4 窄带高斯信号
电子科技大学通信学院
56/74
6.4 窄带高斯信号
电子科技大学通信学院
57/74
6.4 窄带高斯信号
电子科技大学通信学院
58/74
6.4 窄带高斯信号
电子科技大学通信学院
59/74
6.4 窄带高斯信号
电子科技大学通信学院
电子科技大学通信学院
24/74
6.3 带通信号与调制
带通系统是处理带通信号的系统。 � 频率响应的非零区间应该对准信号的非零 区域,可见,这类系统的冲激响应也是带 通的。 � 讨论多个带通信号与系统时,总是考虑它 们具有相同的频率区间,即有着相同或相 近的中心频率与带宽。
�
电子科技大学通信学院
25/74
随机信号分析
第6章 带通随机信号
电子科技大学通信学院
1
第6章 带通随机信号
带通信号:功率谱集中在某个非零频率处。 应用背景:通信、雷达和无线电技术。 本章讨论: 1)希尔伯特变换与复随机信号的分析方法; 2)带通信号的基本特性、表示方法与重要关 系、以及频谱搬移的原理; 3)三种带通信号的几种基本概率分布。 窄带高斯信号、窄带高斯噪声、窄带高斯噪 声中的高频正弦信号。 符号注意:小写字母也表示随机信号。
电子科技大学通信学院 2/74
第6章 带通随机信号
6.1 6.2 6.3 6.4 6.5 希尔伯特变换与解析信号 (复值)随机信号 带通信号与调制 带通高斯信号 带通高斯噪声中的高频信号
电子科技大学通信学院
3/74
6.1希尔伯特变换与解析信号
电子科技大学通信学院
4/74
6.1希尔伯特变换与解析信号