随机过程-习题-第6章

合集下载

随机过程习题与答案

随机过程习题与答案

西 南 交 通 大 学本科生考试试卷B课程名称 随 机 过 程二零零三年二零零四年第一学期 考试日期班级 学号 姓名 成绩一顾客来到服务台要求服务当服务台中的服务员都正在为别的顾客服务时来到的顾客就要排队等待服务顾客的到达是随机的每个顾客所需服务时间也是随机的若令为t 时刻的队长)(t X 即正在被服务的顾客和等待服务的顾客的总数目Y (t )为t 时刻来到的顾客所需等待时间}),({},),({T t t Y T t t X ∈∈是随机过程吗为什么二试写出随机过程),( ) sin()(+∞−∞∈Θ+=t t A t X ω的任意两个样本函数并画出其图形 1若A 是在(上均匀分布的随机变量)1 ,1−−ω在(0, 2π)上服从均匀分布而Θ为常数 2若A 服从上均匀分布)1 ,1(−Θ服从(0, 2π)上均匀分布而ω为常数三一书亭用邮寄订阅销售杂志订阅的顾客数是强度为6的一个泊松过程每位顾客订阅1年2年3年的概率分别为0.20.30.5彼此如何订阅是相互独立的每订阅一年店主即获利5元设Y (t )是[0, t )时段内店主从订阅中所获得总收入试求 1)]([t Y E 即[0, t )时段内总收入的平均收入2)]([t Y D四在电报信号传输中信号是由不同的电流符号给出C C −,且对于任意的t电路中电流X (t )具有概率分布2121)(i p C Ct X −因电流的发送有一个任意的持续时间电流变换符号的时间是随机的设X (t )在[0, t )内变量的次数N (t )为强度λ的泊松过程试讨论{的平稳性}0),(≥t tX五若每隔一分钟观察噪声电压以X (n )表示第n分钟观察噪声电压所得结果则X (n )为一随机变量}1),({≥n n X 为一随机过程此过程是马氏过程吗为什么六一质点在圆周上作随机游动圆周上共有N 格质点以概率p 顺时针游动一格以概率逆时针移动一格p q −=1试用马氏链描述游动过程并确定状态空间及转移概率矩阵七设一齐次马氏链的概率转移图如下图}0),({≥n n X 且已知其初始分布为31})0({==i XP 3,2,1=i21试求1 二步转移概率矩阵2 3)3(,2)1({==X X P }2)5(,=X参考解答一顾客来到服务台要求服务当服务台中的服务员都正在为别的顾客服务时来到的顾客就要排队等待服务顾客的到达是随机的每个顾客所需服务时间也是随机的若令)(t X 为时刻的队长t 即正在被服务的顾客和等待服务的顾客的总数目Y (t )为t 时刻来到的顾客所需等待时间}),({},),({T t Y T t t X ∈∈是随机过程吗t 为什么解答若令X (t )为t 时刻的队长,则固定t 时, X (t )为一随机变量,其可能取值为0,1,2,…, 其参数空间为表示t 时刻的状态,故状态空间为因此为一随机过程}0|{≥=t t T ,n t X =)(},2,1,0{L =E , }0),({≥t t X若令Y (t )为t 时刻来到的顾客所需等待的时间, 则固定t 时, Y (t ) 为一随机变量,其可能取值为即其参数空间为为t 时刻的状态,故状态空间为因此亦为一随机过程0≥t , }0|{≥=t t T ,s t X =)(}0|{≥=s s E ,}0),({≥t t Y 二试写出.(1) 若A 是(-1, 1)上均匀分布, 为常数解答()sin()()X t A t t R ω=+Θ∈的任意两个样本函数,ωΘ图1取 12A =±得随机过程的两个样本函数图形如图111(sin(x t ω=+Θ2))21()sin()2t x t t ω=−+Θ(2)若 服为常Θ从(0,2),,U A πω数 解答 ()12,ππ=2()sin()cos()2sin()sin()X t A tA t X t A t A t πωωωπωΘ=+==+=−取三一书亭用邮寄订阅销售杂志订阅的顾客数是强度的一个泊松过程图2每为6位顾客订阅1年2年3年的概率分别为0.20.30.5彼此如何订阅是相互独立的每订阅一年店主即获利5元设Y (t [0t )时段内)是, 店主从订阅中所获得总收入试求1)]([t Y E 即[0, )时段内总收入的平均收入t2)]([t YD解答(1) 法一 设N(t)为订阅杂志的顾客数, 为订阅j 年的顾客数()j N t 123()()()()()N t N t N t N t N t ⇒=++且 (6)t π故由已知π123232323()3),()(2),()()()[0,)()10()15()()()10()15()531021550()2()100()225()2531002225500N t t N t t N t t Y t t t N t N t EY t t EN t EN t t t t tDY t t DN t DN t t t t tππ++∴=++=×+×+==++=⋅+⋅+=111服从服从服从均为泊松过程记为内店主的总收入则Y(t )=5N 5EN 5D N法二 设店主从第n 个订阅者处获利X(n)则5 10 15X(n) p k 1/2 1/3 1/6X(n)相互独且 立 EX(n)=50/6, DX(n)=500/6()()()N t Y t X n =∑总获利100221()[(()/())](()/())(())5050(())(())5066(2)()(()())[[(()())/()]]500(())5006n k k EY t E E Y t N t E Y t N t k P N t k kP N t k E N t tDY t E Y t EY t E E Y t EY t N t E N t t =∞=∞==========−=−==∑∑四在电报信号传输中信号是由不同的电流符号给出C C −,且对于任意的t电路中电流X (t )具有概率分布2121)(ip C Ct X − 因电流的发送有一个任意的持续时间电流变换符号的时间是随机的 设X (t )在[0, t )内变量的次数N (t )为强度λ的泊松过程试讨论}0),({≥t t X的平稳性解答1对于任意的tEX (t)=02 +∞<=22)(c t EX3对于 时21t t <})()({})()({)()(),(221222122121c t X t X P c c t X t X P c t X t EX t t R X −=−===})({})({122122奇数偶数=−−=−=t t N P c t t N P c )(0121220)(21221212)!12())(()!2())((t t k k k t t k e k t t c e k t t c −−+∞=++∞=−−∑∑+−−−=λλλλ )(!))((122)(22)(01221212t t R c e c e k t t c X t t t t k k −==−−=−−−−+∞=∑λλλ类似地, 对于时, 有12t t <)(),(21221t t R c t t R X X −=因此,合并两式即得, )(),(122222112t t R c ec t t R X t t X −==−−λ与无关,可见,t }0),({≥t t X为宽平稳过程五 若每隔一分钟观察噪声电压以X (n )表示第n 分钟观察噪声电压所得结果则X (n )为一随机变量}1),({≥n n X 为一随机过程此过程是马氏过程吗为什么解答: 由于第n 分钟观察噪声电压所得结果与其它各次观察噪声电压所得结果互不影响,显然为独立随机序列}1),({≥n nX 因此对于任意的正整数, 的条件联合分布函数为 n n n n m <<<<L 21)(),(,),(),(21n X n X n X n X m L })(,)(|)({),,,,,,,|,(112121m m m n x n X x n X x n X P n n n x x x n x F ≤≤≤=L L L })(,)({})(,)(,)({1111m m m m x n X x n X P x n X x n X x n X P ≤≤≤≤≤=L L})({})({})({})({})({})({})({})({1111m m m m m m m m x n X P x n X P x n X P x n X P x n X P x n X P x n X P x n X P ≤≤≤=≤≤≤≤≤=L L},|,{})(|)({})({})(,)({m m m m m m m m n x n x F x n X x n X P x n X P x n X x n X P =≤≤=≤≤≤=满足马尔科夫性,因此此过程是马氏过程六 一质点在圆周上作随机游动圆周上共有N 格质点以概率p 顺时针游动一格以概率逆时针移动一格p q −=1试用马氏链描述游动过程并确定状态空间及转移概率矩阵解答 将N 个格点分别记为1,2,…..,N如图排列 用X(n)表示n 时质点的位置显然它只与 X(n-1)时的位置有关与X(n-1)以前的位置无关满足马尔科夫性,因此为马氏过程}1),({≥n n X 其状态空间为E={ 1, 2, . . . . . .,N},参数空间为}1{≥=n T 故 为一马氏链}1),({≥n n X 其一步转移概率为((1)/())111ij p P X k j X k i p j i q j i i N o =+===+⎧⎪==−<<⎨⎪⎩其它1((1)/()1)2((1)/())11j N j p P X k j X k p j q j N o p P X k j X k N p j q j N o =+===⎧⎪==⎨⎪⎩=+===⎧⎪==−⎨⎪⎩其它其它七设一齐次马氏链{的概率转移图如下图}0),(≥n n X 且已知其初始分布为31})0({==i XP 3,2,1=i21试求1二步转移概率矩阵2}2)5(,=X 3)3(,2)1({==X XP解答1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0012/12/102/12/10P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2/12/104/14/12/14/14/12/10012/12/102/12/100012/12/102/12/102P 2}2)5(,3)3(,2)1({===X X X P}3)3(|2)5({}2)1(|3)3({}2)1({======X X P X X P X P2412141]02121[31])0([)2(31)2(23231=××++==∑=p p p p i i i西 南 交 通 大 学本科生考试试卷A课程名称随 机 过 程二零零二年二零零三年第一学期 考试日期 2003.1.6班级 学号 姓名 成绩 一10分设质点M 在一直线上移动每单位时间移动一次且只能在整数点上移动质点M 的移动是随机的试建立描述这一随机现象的随机过程 二20分试写出随机过程),( ) sin()(+∞−∞∈Θ+=t t A t X ω的任意两个样本函数并画出其图形1若A 是上均匀分布的随机变量)1 ,1(−ω, Θ均为常数2若Θ服从(0, 2π)上的均匀分布A , ω为常数三10分试求随机过程的一维分布函数} , cos )({R t t A t X ∈=ω一维概率密度函数自相关函数与协方差函数其中A 服从标准正态分布N (0,1)四20分设在[0, t )时段内乘客到达某售票处的数目为一强度是3=λ人/分的泊松过程试求1在5分钟内有7位乘客到达售票处的概率2第3位乘客在3分钟内到达售票处的概率 五10分设)},( sin cos )({+∞−∞∈+=t t B t A t X ωωω为常数为一随机过程其中A 与B 是互不相关随机变量且 0)()(==B E A E2)()(σ==B D A D 试问此随机过程是否平稳过程为什么六20分设在每次试验中事件A 发生的概率为)10(<<p p 现将这项试验独立地重复进行多次以X (n )表示到第n 次为止事件A 发生的次数1试问{是何种随机过程},2,1),(L =n n X2试写出{的一维概率分布},2,1),(L =n n X七10分一只老鼠放在迷宫内见下图每隔单位时间老鼠在迷宫中移动一次随机地通过格子也就是说如果有R 条通路供离开那么选取其中任一条通路的概率为R1试用马氏链描述老鼠的移动规律给出它的状态空间和一步转移矩阵参考解答:一10分设质点M 在一直线上移动每单位时间移动一次且只能在整数点上移动质点M 的移动是随机的试建立描述这一随机现象的随机过程 解答设Y 为第n 个单位时刻质点M 所在位置, 而令随机变量n⎩⎨⎧−=向左移动一个整数单位质点向右移动一个整数单位质点M M X i 11L ,2,1=i 由于质点M 的移动是随机的, 故 21}1{}1{=−===X P X P 则在时刻 t=n 时, 质点所在的位置为M 1nn i i Y X ==∑,易知参数集为状态集为, 因此}1,{≥=n n T ,},2,1,0{L ±±=E {,1}n Y n ≥成为描述上述随机现象的随机过程二试写出. (1) 若A 是(-1, 1)上均匀分布, 为常数解答()sin()()X t A t t R ω=+Θ∈的任意两个样本函数,ωΘ图1取 12A =±得随机过程的两个样本函数图形如图111(sin(x t ω=+Θ2))21()sin()2t x t t ω=−+Θ 见图1(2)若 服为常Θ从(0,2),,U A πω数解答 ()12,2()sin()cos()2sin()sin()Xt A t A t X t A t A t πππωωωπωΘ=取=+==+=− 见图2{()cos ,}X t A t t R ωω=∈是一常数三试求随机过程的一维分布函数一维概率其中A 服从标准正态分布N (0, 1)密度函数自相关函数与自协方差函数 解答在一个给定时刻t 0随机变量X (t )为A 的性函数0线而A 服从标准正态分布N (0, 1)由概率论知(t X 0)服从正态分布0(0,(cos ))N t ω2故一维率密度函数为概一维分布函数为自相关函数为12=((),())R X t X t 212(cos cos E A t t ωω)])t t DA A ωω=+212cos cos ([E 因为所以自协方差函数1,0,DA EA ==12cos cos t t ωω= 12121(2),())((),())()()X X C X t X t R X t X t m t m t =−0 所以 Co 2t X 2ωω=(因为,()X t R m t ∀∈=))(),((v 1t X 1t t cos cos 四设在[0,t )时段内乘客到达某售票处的数目为一强度是3=λ人/分的泊松过程试求1在5分钟内有7位乘客到达售票处的概率2第3位乘在客3分钟内到达售票处的概率 解答设N(t)为[0t 内到达的乘客数则 N(t)(1) (3)t π773515(35((5)7N ==)15)7!7!P e e −×−×= 153315(3)((3)3)!n k k n P P N ek ττ∞−=≤=≥=∑表第个乘客到达的时间()21000 cos t 0cos 2t ωω⎧⎫⎛⎞⎪≠⎬⎪⎭1(,)f x t =()200 cos t 0cos 2dx t ω⎧⎫⎛⎞⎪≠⎬⎪⎭101(,)xF x t ω−∞=∫(2)。

随机过程习题和答案

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

2012-2013秋季学期《随机过程》第六章习题

2012-2013秋季学期《随机过程》第六章习题

中科院研究生院2012~2013第一学期 随机过程讲稿 孙应飞第六章 高斯过程(维纳过程) 习题1、 设有随机过程Y ,∞<<−=t X t t 0,1)(2X 是正态随机变量,期望为0,方差为。

2X σ(1) 过程Y 是否正态过程?是否平稳过程?均需说明理由;)(t (2) 过程,在均方可积意义下是否存在?存在的话,试求其相关函数。

0,)()(0>=∫t ds s Y t Z t2、 设是初值为零的标准布朗运动,令0,)(≥t t B 10)],1/([)1()(<≤−−=t t t B t t ξ,的常数,试求随机过程0,0),12>≥−a t at η()(=−e B e t at )(t ξ和)(t η的均值函数和相关函数,并说明)(t ξ和)(t η是否是正态过程。

3、 设是标准的布朗运动,试求与的相关系数,其中:。

}0,)({≥t t B 1≤≤t )(t B ∫10)(du u B 04、 已知是初值为0的标准布朗运动,求在0),(>t t B 0)1(=B 时的条件概率分布密度函数。

)10()(<<t t B 5、 已知是初值为零的标准布朗运动,令0,)(≥t t B b t B a t +=)()(ξ,b at B t +=)()(η,其中常数a ,t 。

试分析此两随机过程的前二阶矩是否相同?此两过程是否同分布?说明理由。

0>b ,0>0≥6、 设{为零初值的标准布朗运动,试求:}0),(≥t t B (1) 在的条件下,的条件概率密度函数,其中t ;01)(x t B =)(2t B 12t >(2) 布朗运动的对称性,即证明:当 t 时,有0,00>>t 2/1})()({})()({00000000==≤+==>+x t B x t t B P x t B x t t B P ;(3) 令:T })(,0:inf{a t B t t a =>=a ,T 表示布朗运动首次到达a 的时刻,当时,试求T 的分布函数。

思考题及作业解答

思考题及作业解答

思考题习题解答第1章 绪论( 思考题 )1–2 何为数字信号?何为模拟信号?答:如果电信号的参量仅可能取有限个值,则称之为数字信号。

如果电信号的参量取值连续(不可数、无穷多),则称之为模拟信号。

1–3 何为数字通信?数字通信有哪些优缺点?答:利用数字信号来传递信息的通信称之为数字通信。

数字通信的优点及缺点如下:优点:抗干扰能力强,且噪声不积累;传输差错可控;便于处理、变换、存储;便于将来自不同信源的信号综合到一起传输;易于集成,使通信设备微型化,重量轻;易于加密处理,且保密性好。

缺点:需要较大的传输带宽;对同步要求高。

1–9 按数字信号码元的排列顺序可分为哪两种通信方式?它们的适用场合及特点?答:按数字信号码元的排列顺序可分为并行传输和串行传输两种通信方式。

并行传输只适用于设备之间的近距离通信。

其优点是节省传输时间,速度快;不需要字符同步措施。

缺点是需要 n 条通信线路,成本高。

串行传输适用于远距离数字传输。

其优点是只需一条通信信道,节省线路铺设费用。

缺点是速度慢,需要外加码组或字符同步措施。

1–11 衡量数字通信系统有效性和可靠性的性能指标有哪些?答:衡量数字通信系统有效性的性能指标有:码元传输速率R B 、信息传输速率R b 、频带利用率η。

衡量数字通信系统可靠性的性能指标有:误码率P e 和误信(比特)率P b 。

1–12 何谓码元速率和信息速率?它们之间的关系如何?答:码元速率R B 是指单位时间(每秒)传送码元的数目,单位为波特(Baud ,B )。

信息速率R b 是指单位时间内传递的平均信息量或比特数,单位为比特/秒(b/s 或bps )。

码元速率和信息速率的关系: 或 其中 M 为M 进制(M =2 k ,k = 1, 2, 3, …)。

1–13 何谓误码率和误信率?它们之间的关系如何?答:误码率P e 是指错误接收的码元数在传输总码元数中所占的比例。

误信率P b 是指错误接收的比特数在传输总比特数中所占的比例。

随机过程习题和答案

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

《随机过程及其在金融领域中的应用》习题六答案

《随机过程及其在金融领域中的应用》习题六答案

P X t h X t 1 X t 为偶数 h h
取初始条件 X 0 0 ,求下列概率
p1 t P X t 奇数, p2 t P X t 偶数
答:
记 p1 t P X t 奇数 X 0 0, p2 t P X t 偶数 X 0 0
k 1
k 1
m0


z m t Pim
m0
t
zm

z2 t
z
m0
Pim
t zm

z2
t
G t, z
z

1
t
Pi1
t

k1
k 1
t
Pik 1
t
zk1 z Nhomakorabea
k 1
P X t h 偶数 X t 奇数 p1 t P X t h 偶数 X t 偶数 p2 t
h 1 p2 t 1 h p2 t h
p2 t p2 t
于状态 0 的概率 P00 t 。
答:
设 x t 为 t 时刻所处状态,记
P00 t P xt 0 x0 0, P01 t Px t 1 x 0 0
易知: P00 t P01 t 1 ,采用无穷小分析法
P00 t t P x t t 0 x 0 0 P x t t 0, x t 0 x 0 0 P x t t 0, x t 1 x 0 0 P00 t P x t t 0 x t 0 P01 t P x t t 0 x t 1

随机过程课件第6章

随机过程课件第6章
[ ] 每一个t∈T ,有 lim E | X (t + h) − X (t) |2 = 0 则称X(ht→)在0 t点均方连续,记作
l.i.m X (t + h) = X (t) h→0
若对T中的一切点都均方连续,则称X(t) 在T上均方连续。
6.3 随机分析简介
[ ] E | X (t + h) − X (t) |2 = RX (t + h, t + h)
解: 因为E[Xn]=0,
RX
(
n,n
−τ
)
=
E[
Xn
X n−τ
]
=
⎧σ
⎨ ⎩0
2, τ =0 ,τ ≠0
所以{Xn,n=0, ±1, ±2,…}是平稳随机序列。
6.1 平稳随机过程的概念
例6.3 设状态连续、时间离散的随机过程
X(t)=sin(2πΘt) ,其中Θ是(0,1)上的均
匀分布随机变量,t只取整数值1,2,…, 试讨论随机过程X(t)的平稳性。
三、均方导数
6.3 随机分析简介
定义6.7 二阶矩过程{X(t),t∈T},若存在
随机过程X′(t),满足
lim
⎡ E⎢
X
(t
+
h)

X
(t)

X ′(t)
2
⎤ ⎥
=
0
h→0 ⎢⎣
h
⎥⎦
则称X(t)在t点均方可微,记作
X ′(t) = dX (t) = l.i.m X (t + h) − X (t)
(3)
n→∞
l.i.m
n→∞
cnU
= cU
6.3 随机分析简介

大学_随机过程及其应用(陆大絟著)课后习题答案下载

大学_随机过程及其应用(陆大絟著)课后习题答案下载

随机过程及其应用(陆大絟著)课后习题答案下载随机过程及其应用(陆大絟著)课后答案下载《随机过程及其应用》着重讨论了随机过程的基本研究方法,论述了应用广泛的几种基本随机过程,并对其在控制和电子技术中的应用作了相应的介绍。

全书共分7章。

第1章提出随机过程的两类基本分析方法。

第2章、第3章是采用第一类分析方法研究马尔可夫过程和马尔可夫链,对马尔可夫过程着重研究的是参数连续状态离散的马尔可夫过程,对泊松过程作了较详细的讨论,并引出了排队问题。

第4章采用第二类分析方法研究二阶矩过程、平稳过程,并着重讨论了随机分析。

第5章研究谱分析和线性系统,先用相关函数方法研究初始状态为零的条件下线性系统的响应,然后进一步讨论非零初始情况下线性系统的.响应。

第6章讨论正态过程。

第7章为估值理论,它是随机过程应用的一个方面,也是为学习下一门课程“信号的统计检测和估值”作准备。

为了配合理论的学习,在各章后面配有一定数量的习题。

本书可供理工科大学有关专业的教师、研究生和高年级学生作教材或教学参考书,也可供有关工程技术人员自学。

随机过程及其应用(陆大絟著):内容介绍点击此处下载随机过程及其应用(陆大絟著)课后答案随机过程及其应用(陆大絟著):目录前言第一章概论1.随机过程2.随机过程的分类和举例3.随机过程的数宇特征4.两个或两个以上随机过程的联合分布和数字特征习题第二章马尔可夫过程(i)--马尔可夫链1.马尔可夫过程的定义2.切普曼一柯尔莫哥洛夫方程式3.马尔可夫链的一些简单例子4.独立增量过程5.马尔可夫链中状态的分类6.p(n)ij的渐近性质和平稳分布7.非常返态(滑过态)的分析习题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 6.2 6.36.4设有n 维随机矢量)(21n ξξξξτ =服从正态分布,各分量的均值为n i a E i ,,2,1, ==ξ,其协方差矩阵为⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=2222222000000σσσσσσσa a a B试求其特征函数。

解:n 元正态分布的特征函数为}21e x p {),,,(21][Bt t t j t t t n '-'=μφξn i a E i ,,2,1, ==ξ ),,,(21n t t t t =' ,则 ∑=='ni ijat t j 1μ()()),,,(2122322222121'++='n n tt t t t a t t a t t Bt t σσσσσσ=22223232222221221σσσσσσn t t a t t t a t t t ++++++ =∑∑-=+=+1121122n i i i ni i a t t t σσ∴]21exp[)]21(exp[),,,(112112221][∑∑-=+=--=n i i i ni i i n a t t t jat t t t σσφξ 6.5. 设n 维正态分布随机矢量)(21n T ξξξξ =各分量的均值为i E i =ξ,n i ,3,2,1=,各分量间的协方差为n i m i m n b i m ,3,2,1,|,|,=--=设有随机变量∑==ni i 1ξη,求η的特征函数。

解:易得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n ξξξη 21]111[2)1(][][11+===∑∑==n n i E E ni n i i ξη 协方差矩阵为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=n nn n n n n n n n321312211121B所以 ]111[]111['⋅⋅= B ηD =223n n +由于高斯分布的随机变量的线形组合依旧是高斯分布的,所以η的特征函数为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+=2456822)1(exp )(t n n n t n n j t ηΦ6.6 设有三维正态分布随机矢量)(321ξξξξ=T ,其各分量的均值为零,即0][=i E ξ)3,2,1(=i ,其协方差矩阵为⎪⎪⎪⎭⎫⎝⎛=333231232221131211b b b b b b b b b B其中,2332211σ===b b b ,试求:(1)[]321ξξξE(2)[]232221ξξξE(3))])()([(223222221σξσξσξ---E 解:(1) 由教材467P 页可看出()()3,2,1,,,,321321=Φ-=∂Φ∂i t t t u t t t t i i()()()j i j i t t t u u t t t b t t t t t j i ij ji ≠=Φ+Φ-=∂∂Φ∂且3,2,1,,,,,,,3213213212,()()()()()()()3213211232133123213213211233212133213123213213,,,,,,,,,,,,t t t u u u u b u b u b t t t u u u t t t u b t t t u b t t t u b t t t t t t Φ-++=Φ-Φ+Φ+Φ=∂∂∂Φ∂ 其中:()321,,t t t Φ为零均值的三元正态分布随机变量321,,ξξξ的特征函数()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=Φ∑=3132121exp ,,k k k u t t t t∑==31i i ki k t b u令0321===t t t ,则()3,2,1,0,10,0,0===Φk u k ,所以[]()()0,,032132133213213=∂∂∂Φ∂====-t t t t t t t t t jE ξξξ(2)设()321123213312u u u u b u b u b N -++=,则()()3213213213,,,,t t t N t t t t t t Φ=∂∂∂Φ∂21333123321333123312321233122321222132312221133112321111231312123131222213332122231133221132132222u u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nb b b b b b b b b b b b t t t N---+=∂∂---+=∂∂---+=∂∂++++=∂∂∂∂()()()()()()()2313123322110132321223132123213212321321303213213023222132164,,,,,,,,,,,,321321321b b b b b b t N t t t t t t N t t t t t t N t t t t t t t t t t t N t t t t t t N t t t t t t t t t t t t t t t -=⎪⎪⎭⎫ ⎝⎛∂∂∂∂Φ∂+∂∂∂∂Φ∂+∂∂∂∂Φ∂+Φ∂∂∂∂=∂∂∂Φ∂=∂∂∂Φ∂========= []()()()()231312332211023222132162322214,,63216b b b b b b jt t t t t t jE t t t -=∂∂∂Φ∂=--===ξξξ(3)()()()[]()()()()[]()2121122221222121122122112221121222112121122122221214,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3131132321332131132133113231121333113131133122321314,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3232232322332232232233223232222333223232233222322324,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂[]()21222110222121422212,21b b b t t t t E t t +=∂∂Φ∂===ξξ []()21333110232131423212,31b b b t t t t E t t +=∂∂Φ∂===ξξ []()22333220232232423222,32b b b t t t t E t t +=∂∂Φ∂===ξξ()()()[][][][][]()()()22321321222313126232221423222321222122322212232222212224b b b b b b E E E E E E E E ++--=-+++++-=---σσξξξσξξξξξξσξξξσξσξσξ另一种方法是利用6.7设有三维正态分布的随机矢量T ξ=[1ξ,2ξ,3ξ]的概率密度为f []ξ(x 1,x 2,x 3)=C )}422(21exp{2321222121x x x x x x x +-+--(1)证明经过线性变换η=A ξ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---100721021411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321ξξξ 得矢量T η=[321,,ηηη],则321,,ηηη是相互统计独立的随机变量。

(2)求C 值。

解:2331222121422x x x x x x x +-+-=[x 1,x 2,x 3]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----401015.015.02[x 1,x 2,x 3]T B 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----401015.015.02,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡75.15.015.07212461,B =61 (1)32124111ξξξη--= 37222ξξη-=33ξη=E[21ηη]=E[23713221321412241317221ξξξξξξξξξξ+-+--]=0 同样可得:E[31ηη]=0,E[32ηη]=0 所以321,,ηηη是相互统计独立的随机变量 (2) C=212)2(1Bnπ=213361()2(1π=ππ616.11 设有零均值平稳实高斯随机过程)(t ξ,其功率谱密度为其它频率范围)(0)()(2{)(0f f f P S f S ∆<∆==ξ如果对该过程每隔f∆21秒作一次抽样,得到样本值),0(ξ ),22(),21(f f ∆∆ξξ (1) 写出前面n 个样本点)(t ξ所取值))21(),0((fn ∆-ξξ 的n 维联合概率密度。

(2) 定义随机变量∑-=∆=102(1n k n fkn ξη 求概率}{aP P n >η的表示式,α为常数,α>0。

解:(1) 首先由功率谱密度求出自相关函数,参见P345,图5-5结论。

τπτπττππτξf f P f f f S R ∆∆=∆∆⋅∆=2)2sin()2sin()(0 )(t ξ是零均值的、平稳实高斯过程均值向量μ=0,协方差阵1,1,0,2(2(cov[,)(-=∆∆==⨯n k i fkf i b b B ik n n ik ξξ其中 由功率谱密度的表达式,我们可以看到,该信号最大频率分量为f ∆,而对该过程的采样频率取为2f ∆,这样所得样本值),0(ξ 22(),21(ff ∆∆ξξ为相互统计独立的随机变量,其协方差阵B 为对角阵,P R b ii ==)0(ξ,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P P P B 所求的n 元正态分布的联合概率密度为)}()(21exp{)2(1),,,(121221][μμπξ-'--⋅=-X B X Bx x x f n n=}21exp{)2(112212∑=-⋅ni i n Px Pπ (2) 记∑-=∆=10)2(1n k n f k n ξη=ξa ',其中]111[nn na ='。

根据线性变换前后的关系,得∑-==∆=1002([1n k n f k E n E ξη,22nP Ba a ='=ησ所以,}2exp{2)(222Pn x Pn x f -⋅=πηdx x f dx x f P P P Pn ⎰⎰+∞-∞-+=>αηαηαη)()(}{=6.12. 设有图题6-12所示的接收机。

相关文档
最新文档