6第六章正态随机过程

合集下载

随机过程及其统计描述ppt课件.ppt

随机过程及其统计描述ppt课件.ppt

任意时刻下,观测目的是X取什么值;全程的情况下, 观测目的是X(t)的函数形式.
7
12.1 随机过程的概念
随机相位正弦波
随机过程举例
考虑: X (t) a cos(t ), t (,)
式中 a,是正常数,是 (0, 2 ) 上服从均匀分布的随机变量。
当 在(0, 2 ) 内随机的取一个值 i ,可得样本函数:
2
0 cos(t1 ) cos(t2 ) f ( )d
a2
2
2
0 cos(t1 ) cos(t2 )d
a2
4
2
0 {cos[(t1 t2 ) 2 ] cos(t1 t2 )}d
a2 2
cos (t1
t2 )
方差函数
2 X
(t)
RX
(t , t )
2 X
(t)
a2 2
18
12.2 随机过程的统计描述
随机过程举例
抛掷一枚硬币的试验,样本空间是S={H,T}, 现借此定义随机过程:
cos t,
X (t) t,
当出现H, 当出现T,
t (, )
可将此随机过程改写为
X (t) Y cost (1Y )t ,
其中
Y
1, 0,
出现H 出现T
,
t (, )
X对Y和t的依赖,决定了X是一个随机过程. 确定了 Y之后,即可确定任意时刻和全程的观测结果.
集平均(统计平均)
X (t)是随机过程的所有样本函数在时刻 t 的函数值的平均值,通常称
这种平均为集平均或统计平均。
12
12.2 随机过程的统计描述
(二) 随机过程的数字特征
均方值函数
Ψ

概率论与随机过程考点总结

概率论与随机过程考点总结

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()( 2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差两个随机变量Y X ,:EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数两个随机变量Y X ,:DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关;独立⇒不相关⇔0=ρ4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞===0)()(k kk kzp z E z g!)0()(k g p k k =)1()('g X E =2''")]1([)1()1()(g g g X D -+=5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N XT n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ⨯=)(正定协方差阵3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程;简记为{}T t t X ∈),(;含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性;另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的;当t 固定时,),(e t X 是随机变量;当e 固定时,),(e t X 时普通函数,称为随机过程的一个样本函数或轨道;分类:根据参数集T 和状态空间I 是否可列,分四类; 也可以根据)(t X 之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等; 2.随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性;随机过程{}T t t X ∈),(的一维分布,二维分布,…,n 维分布的全体称为有限维分布函数族;随机过程的有限维分布函数族是随机过程概率特征的完整描述;在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代;1均值函数)()(t EX t m X = 表示随机过程{}T t t X ∈),(在时刻t 的平均值; 2方差函数2)]()([)(t m t X E t D X X -=表示随机过程在时刻t 对均值的偏离程度; 3协方差函数)()()]()([))]()())(()([(),(t m s m t X s X E t m t X s m s X E t s B X X X X X -=--= 且有)(),(t D t t B X X =4相关函数)]()([),(t X s X E t s R X = 3和4表示随机过程在时刻s ,t 时的线性相关程度;5互相关函数:{}T t t X ∈),(,{}T t t Y ∈),(是两个二阶距过程,则下式称为它们的互协方差函数;)()()]()([))]()())(()([(),(t m s m t Y s X E t m t Y s m s X E t s B Y X Y X Y X -=--=,那么)]()([),(t Y s X E t s R XY =,称为互相关函数;若)()()]()([t m s m t Y s X E Y X =,则称两个随机过程不相关; 3.复随机过程 t t t jY X Z += 均值函数tt Z jEY EX t m +=)( 方差函数]))(())([(|])([|)(2t m Z t m Z E t m Z E t D Z t Z t Z t Z --=-=协方差函数)()(][]))(())([(),(t m s m Z Z E t m Z s m Z E t s B Z Z t s Z t Z s Z -=--=相关函数][),(t s Z Z Z E t s R =4.常用的随机过程1二阶距过程:实或复随机过程{}T t t X ∈),(,若对每一个T t ∈,都有∞<2)(t X E 二阶距存在,则称该随机过程为二阶距过程;2正交增量过程:设{}T t t X ∈),(是零均值的二阶距过程,对任意的T t t t t ∈<<<4321,有0]))()(())()([(3412=--t X t X t X t X E ,则称该随机过程为正交增量过程;其协方差函数)),(m in(),(),(2t s t s R t s B XX X σ== 3独立增量过程:随机过程{}T t t X ∈),(,若对任意正整数2≥n ,以及任意的T t t t n ∈<<< 21,随机变量)()(,),()(),()(13412----n n t X t X t X t X t X t X 是相互独立的,则称{}T t t X ∈),(是独立增量过程; 进一步,如{}T t t X ∈),(是独立增量过程,对任意t s <,随机变量)()(s X t X -的分布仅依赖于s t -,则称{}T t t X ∈),(是平稳独立增量过程;4马尔可夫过程:如果随机过程{}T t t X ∈),(具有马尔可夫性,即对任意正整数n 及T t t t n ∈<<< 21,0))(,,)((1111>==--n n x t X x t X P ,都有{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P ,则则称{}T t t X ∈),(是马尔可夫过程;5正态过程:随机过程{}T t t X ∈),(,若对任意正整数n 及T t t t n ∈,,,21 ,)()(),(21n t X t X t X 是n 维正态随机变量,其联合分布函数是n 维正态分布函数,则称{}T t t X ∈),(是正态过程或高斯过程; 6维纳过程:是正态过程的一种特殊情形;设{}∞<<-∞t t W ),(为实随机过程,如果,①0)0(=W ;②是平稳独立增量过程;③对任意t s ,增量)()(s W t W -服从正态分布,即0),0(~)()(22>--σσs t N s W t W ;则称{}∞<<-∞t t W ),(为维纳过程,或布朗运动过程;另外:①它是一个Markov 过程;因此该过程的当前值就是做出其未来预测中所需的全部信息;②维纳过程具有独立增量;该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率;③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加; 7平稳过程:严狭义平稳过程:{}T t t X ∈),(,如果对任意常数τ和正整数n 及Tt t t n ∈,,,21 ,Tt t t n ∈+++τττ,,,21 ,)()(),(21n t X t X t X 与)()(),(21τττ+++n t X t X t X 有相同的联合分布,则称{}T t t X ∈),(是严狭义平稳过程;广义平稳过程:随机过程{}T t t X ∈),(,如果①{}T t t X ∈),(是二阶距过程;②对任意的T t ∈, 常数==)()(t EX t m X ;③对任意T t s ∈,,)()]()([),(s t R t X s X E t s R X X -==,或仅与时间差s t -有关;则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程;第三章 泊松过程一.泊松过程的定义两种定义方法1,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}T t t X ∈),(是具有参数λ的泊松过程;①(0)0X =;②独立增量过程,对任意正整数n ,以及任意的T t t t n ∈<<< 21)()(,),()(),()(12312----n n t X t X t X t X t X t X 相互独立,即不同时间间隔的计数相互独立;③在任一长度为t 的区间中,事件A发生的次数服从参数0t λ>的的泊松分布,即对任意,0t s >,有{}()()()0,1,!ntt P X t s X s n en n λλ-+-===[()]E X t t λ=,[()]E X t tλ=,表示单位时间内时间A发生的平均个数,也称速率或强度;2,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}(),0X t t ≥是具有参数λ的泊松过程;①(0)0X =;②独立、平稳增量过程;③{}{}()()1()()()2()P X t h X t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 第三个条件说明,在充分小的时间间隔内,最多有一个事件发生,而不可能有两个或两个以上事件同时发生,也称为单跳性; 二.基本性质1,数字特征 ()[()][()]X m t E X t t D X t λ=== (1)(,)(1)X s t s t R s t t s s tλλλλ+<⎧=⎨+≥⎩(,)(,)()()min(,)X X X X B s t R s t m s m t s t λ=-= 推导过程要非常熟悉2,n T 表示第1n -事件A发生到第n 次事件发生的时间间隔,{},1n T n ≥是时间序列,随机变量n T 服从参数为λ的指数分布;概率密度为,0()0,0t e t f t t λλ-⎧≥=⎨<⎩,分布函数1,0()0,0n t T e t F t t λ-⎧-≥=⎨<⎩均值为1n ET λ=证明过程也要很熟悉 到达时间的分布 略 三.非齐次泊松过程 到达强度是t 的函数①(0)0X =;②独立增量过程;③{}{}()()1()()()()2()P X t h X t t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 不具有平稳增量性;均值函数0()[()]()tX m t E X t s ds λ==⎰定理:{}(),0X t t ≥是具有均值为0()()tX m t s ds λ=⎰的非齐次泊松过程,则有 四.复合泊松过程设{}(),0N t t ≥是强度为λ的泊松过程,{},1,2,k Y k =是一列独立同分布的随机变量,且与{}(),0N t t ≥独立,令()1()N t kk X t Y==∑ 则称{}(),0X t t ≥为复合泊松过程;重要结论:{}(),0X t t ≥是独立增量过程;若21()E Y <∞,则1[()]()E X t tE Y λ=,21[()]()D X t tE Y λ=第四章 马尔可夫链泊松过程是时间连续状态离散的马氏过程,维纳过程是时间状态都连续的马氏过程;时间和状态都离散的马尔可夫过程称为马尔可夫链;马尔可夫过程的特性:马尔可夫性或无后效性;即:在过程时刻0t 所处的状态为已知的条件下,过程在时刻0t t >所处状态的条件分布与过程在时刻0t 之前所处的状态无关;也就是说,将来只与现在有关,而与过去无关;表示为{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P一.马尔可夫链的概念及转移概率1.定义:设随机过程{},∈n X n T ,对任意的整数∈n T 和任意的011,,,n i i i I +∈,条件概率满足{}{}11001111,,,n n n n n n n n P X i X i X i X i P X i X i ++++=======,则称{},∈n X n T 为马尔可夫链;马尔可夫链的统计特性完全由条件概率{}11n n n n P X i X i ++==所决定;2.转移概率 {}1n n P X j X i +==相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到j 的概率;记为()ij p n ;则()ij p n {}1n n P X j X i +===称为马尔可夫链在时刻n 的一步转移概率;若齐次马尔可夫链,则()ij p n 与n 无关,记为ij p ;[],1,2,ij P p i j II =∈= 称为系统的一步转移矩阵;性质:每个元素0ij p ≥,每行的和为1;3.n 步转移概率()n ij p ={}m n m P X j X i +== ;()()[],1,2,n n ij P p i j II =∈=称为n步转移矩阵;重要性质:①()()()n l n l ij ik kj k Ip p p -∈=∑ 称为C K -方程,证明中用到条件概率的乘法公式、马尔可夫性、齐次性;掌握证明方法:{}{}{}{}{}{}{}{}{}()()()()(),,,,,,,()()m m n n ijm nm m m m l m n k Tm m m l m n m m l k Tm m l m n l l l n l kj ik ik kj k Ik IP X i X j p P X j X i P X i P X i X k X j P X i P X i X k X j P X i X k P X i X k P X i p m l p m p p ++++∈+++∈+--∈∈==================⋅====+⋅=⋅∑∑∑∑②()n n P P = 说明n 步转移概率矩阵是一步转移概率矩阵的n 次乘方;4.{},∈n X n T 是马尔可夫链,称{}0j p P X j ==为初始概率,即0时刻状态为j 的概率;称{}()j n p n P X j ==为绝对概率,即n 时刻状态为j 的概率;{}12(0),,T P p p =为初始概率向量,{}12()(),(),T P n p n p n =为绝对概率向量;定理:①()()n j i ij i Ip n p p ∈=∑矩阵形式:()()(0)T T n P n P P =②()(1)j i ij i Ip n p n p ∈=-∑定理:{}111122,,,n n n n i iii i i IP X i X i X i p p p -∈====∑ 说明马氏链的有限维分布完全由它的初始概率和一步转移概率所决定; 二.马尔可夫链的状态分类1.周期:自某状态出发,再返回某状态的所有可能步数最大公约数,即{}():0n ii d GC D n p ⋅⋅=>;若1d >,则称该状态是周期的;若1d =,则称该状态是非周期的;2.首中概率:()n ij f 表示由i 出发经n 步首次到达j 的概率; 3.()1n ij ij n f f ∞==∑表示由i 出发经终于迟早要到达j 的概率;4.如果1ii f =,则状态i 是常返态;如果1ii f <,状态i 是非常返滑过态;5.()1n i ii n nf μ∞==∑表示由i 出发再返回到i 的平均返回时间;若i μ<∞,则称i 是正常返态;若i μ=∞,则称i 是零常返态;非周期的正常返态是遍历状态; 6.状态i 是常返充要条件是()0iin n p∞==∞∑;状态i 是非常返充要条件是()11iin n iip f ∞==-∑; 7.称状态i 与j 互通,,i j i j j i ↔→→即且;如果i j ↔,则他们同为常返态或非常返态,;若i ,j 同为常返态,则他们同为正常返态或零常返态,且i ,j 有相同的周期;8.状态i 是遍历状态的充要条件是()1lim 0n iin ip μ→∞=>;一个不可约的、非周期的、有限状态的马尔可夫链是遍历的;9.要求:熟悉定义定理,能由一步转移概率矩阵画出状态转移图,从而识别各状态; 三.状态空间的分解1.设C 是状态空间I 的一个闭集,如果对任意的状态i C ∈,状态j C ∉,都有0ij p =即从i 出发经一步转移不能到达j ,则称C 为闭集;如果C 的状态互通,则称C 是不可约的;如果状态空间不可约,则马尔可夫链{},∈n X n T 不可约;或者说除了C 之外没有其他闭集,则称马尔可夫链{},∈n X n T 不可约;2.C 为闭集的充要条件是:对任意的状态i C ∈,状态j C ∉,都有()0ijn p =;所以闭集的意思是自C 的内部不能到达C 的外部;意味着一旦质点进入闭集C 中,它将永远留在C 中运动;如果1ii p =,则状态i 为吸收的;等价于单点{}i 为闭集;3.马尔可夫链的分解定理:任一马尔可夫链的状态空间I ,必可唯一地分解成有限个互不相交的子集12,,,nD C C C 的和,①每一个n C 都是常返态组成的不可约闭集;②n C 中的状态同类,或全是正常返态,或全是零常返态,有相同的周期,且1ij f =;③D 是由全体非常返态组成; 分解定理说明:状态空间的状态可按常返与非常返分为两类,非常返态组成集合D ,常返态组成一个闭集C ;闭集C 又可按互通关系分为若干个互不相交的基本常返闭集12,,nC C C ; 含义:一个马尔可夫链如果从D 中某个非常返态出发,它或者一直停留在D 中,或某一时刻进入某个基本常返闭集n C ,一旦进入就永不离开;一个马尔可夫链如果从某一常返态出发,必属于某个基本常返闭集n C ,永远在该闭集n C 中运动;4.有限马尔可夫链:一个马尔可夫链的状态空间是一个有限集合;性质:①所有非常返态组成的集合不是闭集;②没有零常返态;③必有正常返态;④状态空间12n I D C C C =++++,D 是非常返集合,12,,n C C C 是正常返集合;不可约有限马尔可夫链只有正常返态;四.()n ij p 的渐近性质与平稳分布 1.为什么要研究转移概率()n ij p 的遍历性研究()n ij p 当n →∞时的极限性质,即{}0n P X j X i ==的极限分布,包含两个问题:一是()lim n ij n p →∞是否存在;二是如果存在,是否与初始状态有关;这一类问题称作遍历性定理;如果对,i j I ∈,存在不依赖于i 的极限()lim n ijn p →∞0j p =>,则称马尔可夫链具有遍历性; 一个不可约的马尔可夫链,如果它的状态是非周期的正常返态,则它就是一个遍历链; 具有遍历性的马尔可夫链,无论系统从哪个状态出发,当转移步数n 充分大时,转移到状态j 的概率都近似等于j p ,这时可以用j p 作为()n ij p 的近似值;2.研究平稳分布有什么意义判别一个不可约的、非周期的、常返态的马尔可夫链是否为遍历的,可以通过讨论()lim n ij n p →∞来解决,但求极限时困难的;所以,我们通过研究平稳分布是否存在来判别齐次马尔可夫链是否为遍历链;一个不可约非周期常返态的马尔可夫链是遍历的充要条件是存在平稳分布,且平稳分布即极限分布()lim n ij n p →∞=1,jj I μ∈;3.{},0≥n X n 是齐次马尔可夫链,状态空间为I ,一步转移概率为ij p ,概率分布{},j j I π∈称为马尔可夫链的平稳分布,满足1j i iji Ijj Ip πππ∈∈==∑∑4.定理:不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布,且此平稳分布就是极限分布1,jj I μ∈; 推论:有限状态的不可约非周期马尔可夫链必存在平稳分布;5.在工程技术中,当马尔可夫链极限分布存在,它的遍历性表示一个系统经过相当长时间后达到平衡状态,此时系统各状态的概率分布不随时间而变,也不依赖于初始状态;6.对有限马尔可夫链,如果存在正整数k ,使()0k ij p >,即k 步转移矩阵中没有零元素,则该链是遍历的;第六章 平稳随机过程一.定义第一章严平稳过程:有限维分布函数沿时间轴平移时不发生变化;宽平稳过程:满足三个条件:二阶矩过程2[()]E X t <∞;均值为常数[()]E X t =常数;相关函数只与时间差有关,即(,)()()()X X R t t E X t X t R τττ⎡⎤-=-=⎣⎦;宽平稳过程不一定是严平稳过程,而严平稳过程一定是宽平稳过程; 二.联合平稳过程及相关函数的性质1.定义:设{}(),X t t T ∈和{}(),X t t T ∈是两个平稳过程,若它们的互相关函数()()E X t Y t τ⎡⎤-⎣⎦及()()E Y t X t τ⎡⎤-⎣⎦仅与时间差τ有关,而与起点t 无关,则称()X t 和()Y t 是联合平稳随机过程;即,(,)()()()XY XY R t t E X t Y t R τττ⎡⎤-=-=⎣⎦ (,)()()()YX YX R t t E Y t X t R τττ⎡⎤-=-=⎣⎦当然,当两个平稳过程联合平稳时,其和也是平稳过程;2.相关函数的性质:①(0)0X R ≥;②()()X X R R ττ≥,对于实平稳过程,()X R τ是偶函数;③()(0)X X R R τ≤④非负定;⑤若()X t 是周期的,则相关函数()X R τ也是周期的,且周期相同;⑥如果()X t 是不含周期分量的非周期过程,()X t 与()X t τ+相互独立,则||()lim X X X R m m ττ→∞=;联合平稳过程()X t 和()Y t 的互相关函数,()(0)(0)XY X Y R R R τ≤,()(0)(0)YX X Y R R R τ≤;()()XY YX R R ττ-=;()X t 和()Y t 是实联合平稳过程时,则,()()XY YX R R ττ-=;三.随机分析 略四.平稳过程的各态历经性 1.时间均值1()..()2TTT X t l i mX t dt T-→∞=⎰时间相关函数1()()..()()2TTT X t X t l i mX t X t dt Tττ-→∞-=-⎰2.如果()[()]()X X t E X t m t ==以概率1成立,则称均方连续的平稳过程的均值有各态历经性;如果()()[()()]()X X t X t E X t X t R τττ-=-= 以概率1成立,则称均方连续的平稳过程的相关函数有各态历经性;如果均方连续的平稳过程的均值和相关函数都有各态历经性,则称该平稳过程是各态历经的或遍历的;一方面表明各态历经过程各样本函数的时间平均实际上可以认为是相同的;另一方面也表明[()]E X t 与[()()]E X t X t τ-必定与t 无关,即各态历经过程必是平稳过程;3.讨论平稳过程的历经性,就是讨论能否在较宽松的条件下,用一个样本函数去近似计算平稳过程的均值、协方差函数等数字特征,即用时间平均代替统计平均; 只在一定条件下的平稳过程,才具有各态历经性;4.均值各态历经性定理:均方连续的平稳过程的均值具有各态历经的充要条件是5.相关函数各态历经性定理:均方连续的平稳过程的相关函数具有各态历经的充要条件是第七章 平稳过程的谱分析 一.平稳过程的谱密度 推导过程:随机过程{}(),X t t -∞<<∞为均方连续过程,作截尾处理(),()0,T X t t TX t t T ⎧≤⎪=⎨>⎪⎩,由于()T X t 均方可积,所以存在FT,得(,)()()Tj tj t T TF T X t edt X t e dt ωωω∞---∞-==⎰⎰,利用paserval 定理及IFT 定义得2221()()(,)2TT TX t dt X t dt F T d ωωπ∞∞-∞--∞==⎰⎰⎰该式两边都是随机变量,取平均值,这时不仅要对时间区间[,]T T -取,还要取概率意义下的统计平均,即 定义221()2lim TTT E X t dt Tψ-→∞⎡⎤=⎢⎥⎣⎦⎰为{}(),X t t -∞<<∞平均功率;21()(,)2limX T s E F T T ωω→∞⎡⎤=⎣⎦为{}(),X t t -∞<<∞功率谱密度,简称谱密度; 可以推出当{}(),X t t -∞<<∞是均方连续平稳过程时,有 21()2X s d ψωωπ∞-∞=⎰说明平稳过程的平均功率等于过程的均方值,或等于谱密度在频域上的积分;2.平稳过程的谱密度和相关函数构成FT 对;若平稳随机序列{},0,1,2,n X n =±±,则其谱密度和相关函数构成FT 对二.谱密度的性质1.①()X s ω是()X R τ的FT;()()j X X s R e d ωτωττ∞--∞=⎰如果{}(),X t t -∞<<∞是均方连续的实平稳过程,有()()X X R R ττ=-,()X s ω是也实的非负偶函数,则②()X s ω是ω的有理分式,分母无实根;2.谱密度的物理含义,()X s ω是一个频率函数,从频率域来描绘()X t 统计规律的数字特征,而()X t 是各种频率简谐波的叠加,()X s ω就反映了各种频率成分所具有的能量大小;3.计算 可以按照定义计算,也可以利用常用的变换对()1t δ↔ 12()πδω↔ 2220a ae a a τω-↔>+22τω↔-00()()j X X R e s ωττωω⋅↔- ()()j T X X R T s e ωτω+↔⋅001,sin 0,ωωωτωωπτ⎧<⎪↔⎨≥⎪⎩等 三.窄带过程及白噪声过程的功率谱密度1.窄带随机过程:随机过程的谱密度限制在很窄的一段频率范围内;2.白噪声过程:设{}(),X t t -∞<<∞为实值平稳过程,若它的均值为零,且谱密度在所有的频率范围内为非零的常数,即0()X s N ω=,则称{}(),X t t -∞<<∞为白噪声过程; 是平稳过程;其相关函数为0()()X R N τδτ=;表明在任意两个时刻1t 和2t ,1()X t 和2()X t 不相关,即白噪声随时间的变换起伏极快,而过程的功率谱极宽,对不同输入频率的信号都有可能产生干扰;四.联合平稳过程的互谱密度互谱密度没有明确的物理意义,引入它主要是为了能在频率域上描述两个平稳过程的相关性;1.互谱密度与互相关函数成FT对关系 2.性质()()XY XY s s ωω= ()XY s ω的实部是ω的偶函数,虚部是ω的奇函数,()YX s ω也是; 2()()()XY X Y s s s ωωω≤;若()X t 和()Y t 相互正交,有()0XY R τ=,则()()0XY YX s s ωω== ;五.平稳过程通过线性系统1.系统的频率响应函数()H ω也可以写成()H j ω一般是一个复值函数,是系统单位脉冲响应的FT;2.系统输入()X t 为实平稳随机过程,则输出()Y t 也是实平稳随机过程;即输出过程的均值为常数,相关函数是时间差的函数;且有()()()()()()Y XY X R R h R h h ττττττ=*-=**-说明输出过程的相关函数可以通过两次卷积产生;()()()XY X R R h τττ=*的应用:给系统一个白噪声过程()X t ,可以从实测的互相关资料估计线性系统的未知脉冲响应;因为0()()X R N τδτ=,00()()()()()()XY X R R h N u h u du N h τττδττ∞-∞=*=-=⎰,从而3.输入输出谱密度之间的关系 2()()()Y X s H s ωωω=2()()()H H H ωωω=称为系统的频率增益因子或频率传输函数;有时,采用时域卷积的方法计算输出的相关函数比较烦琐,可以先计算输出过程的谱密度,然后反FT 计算出相关函数;2()()()()()X Y X Y R s H s R τωωωτ→=→另外()()()XY X R R h τττ=*,所以()()()XY X s H s ωωω= ,()()()YX X s H s ωωω= 补充:排队轮平均间隔时间=总时间/到达顾客总数 平均服务时间=服务时间总和/顾客总数平均到达率=到达顾客总数/总时间 平均服务率=顾客总数/服务时间总和一.当顾客到达符合泊松过程时,顾客相继到达的间隔时间T 必服从负指数分布;对于泊松分布,λ表示单位时间平均到达的顾客数,所以1λ表示顾客相继到达的平均间隔时间;服务时间符合负指数分布时,设它的概率密度函数和分布函数分别为()(){}[]1tttt t tf t e F t P T t e dt d e e μμμμμμ----==≤==-=-⎰⎰ 其中μ表示单位时间能够服务完的顾客数,为服务率;而1μ表示一个顾客的平均服务时间; 二.排队模型的求解把系统中的顾客数称为系统的状态;若系统中有n 个顾客,则称系统的状态是n ;瞬态和稳态:考虑在t 时刻系统的状态为n 的概率,它是随时刻t 而变化的,用()n P t 表示,称为系统的瞬态;求瞬态解是很不容易的,求出也很难利用;因此我们常用稳态概率n P ,表示系统中有n 个顾客的概率; 各运行指标:1队长:把系统中的顾客数称为队长,它的期望值记作s L ,也叫平均队长,即系统中的平均顾客数;而把系统中排队等待服务的顾客数称为排队长队列长,它的期望值记作q L ,也叫平均排队长,即系统中的排队的平均顾客数; 显然有 队长=排队长+正被服务的顾客数;2逗留时间:一个顾客从到达排队系统到服务完毕离去的总停留时间称为逗留时间,它的期望值记作s W ;一个顾客在系统中排队等待的时间称为等待时间,它的期望值记作q W ;逗留时间=等待时间+服务时间;3忙期:从顾客到达空闲服务机构起,到服务台再次变为空闲为止; 4顾客损失率:由于服务能力不足而造成顾客损失的比率;5服务强度服务机构利用率:指服务设备工作时间占总时间的比例; 三.几种典型的排队模型1.//1//M M ∞∞:单服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,λρμ=服务强度; 状态转移图 , 稳态概率方程 得 系统中无顾客的01P ρ=- 系统中有n 个顾客的概率0(1)n n n P P ρρρ=-=且必有s q L L uλ=+qq L W λ=1s q W W μ=+2.//1//M M N ∞:单服务台,系统容量为N 说明若到了系统最大容量,顾客将不能进入系统,顾客源无限;λ到达率,μ服务率,λρμ=服务强度;☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆状态转移图 , 稳态概率方程 得 系统中无顾客的0111N P ρρ+-=- 系统中有n 个顾客的概率0n n P P ρ= 3.//1//M M m ∞:单服务台,系统容量无限,顾客源m;λ到达率,μ服务率;状态转移图 , 稳态概率方程 得 系统中无顾☆客的001!()!()mii P m m i λμ==-∑系统中有n 个顾客的概率0!()()!n n m P P m n λμ=-1n m ≤≤0(1)s L m P μλ=--;00()(1)(1)q s P L m L P λμλ+-=-=--01(1)s m W P μλ=--1q s W W μ=-4. ////M M c ∞∞:多服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,c λρμ=服务强度; 状态转移图 , 稳态概率方程 得☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆系统中无顾客的110011!!1k c c k P k c λλμμρ--=⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪ ⎪-⎝⎭⎝⎭⎢⎥⎣⎦∑系统中有n 个顾客的概率001()!1()!nn n n c P n c n P P n c c cλμλμ-⎧≤⎪⎪=⎨⎪>⎪⎩。

第六章系统辨识与参数估计-数据预处理及相容性检验(精品)

第六章系统辨识与参数估计-数据预处理及相容性检验(精品)

1第六章 数据预处理及相容性检验6.1 前言航行器航行试验数据用于参数辨识之前,需要对试验数据进行预处理和数据相容性检验,目的在于尽可能消除含在数据中的各种噪声和系统误差,以提高辨识结果的准确度。

数据预处理包括:数据野值的识别、剔除与补正;数据加密;数据平滑与微分平滑;滤除高频噪声及以传感器位置校正等。

数据相容性检验的主要功能是将数据中的常值误差,特别是零位漂移误差辨识出来并重新建立没有常值误差的试验数据。

本章还以某型航行器的实测数据预处理为例,给出了具有实际应用意义的数据处理技术及结果。

6.2 数据处理的理论基础6.2.1 信号的分类用数学来描述待辨识系统的某一组输入和某一组输出时间函数间的关系是辨识的基础。

在选择信号的描述方法时,必须考虑信号表示的两个方面:①要表现出信号载有信息的属性;②要给出研究过程信息传递特性的方法。

按时间函数的特点来表达信息,可将信号分为连续信号和采样信号。

在许多情况下,信号的记录可以采用这两种信号中的任一种。

两种信号的记录均有各自的特点,但是利用计算机对记录的信号作处理时,往往需要采样信号,即使采用连续信号,也必须对信号作采样处理。

采样运算是线性运算,即当我们用算子ψ(.)表示这一运算时,对一切α和β,信号u(t)和y(t)均有ψαβαψβψ[()()][()][()]u t y t u t y t +=+(6-2-1)按幅度划分,信号可以分为模拟信号、量化信号和二进制信号。

二进制信号是量化信号的极限情况,量化运算是非线性运算。

因此,在处理量化信号时,这种非线性造成许多数学上的困难。

确定性信号与随机信号也是系统建模和参数辨识中常用的信号分析方式。

由于工程的实际环境,对随机信号的讨论更具有实际意义。

6.2.2 随机信号的描述为了讨论问题的方便,在此我们首先介绍随机信号的一些统计性质。

与确定性信号不一样,对随机信号询问其幅度的瞬时值是没有多少意义的,所以最有用的量是那些关于统计性质的量,如谱密度、数学期望值、方差和相关函数等。

第六章 正态分布及其应用

第六章 正态分布及其应用

一.正态分布

正态分布( 正态分布(normal distribution)也称
为常态分布, 为常态分布,是连续型随机变量概率分布的一 种,是在数理统计的理论与实际应用中占有最 重要地位的一种理论分布。 重要地位的一种理论分布。

正态分布由棣.莫弗于1733年发现的。 正态分布由棣.莫弗于1733年发现的。拉 1733年发现的
无限延伸,但永不与基线相交。 无限延伸,但永不与基线相交。 差为1。从Z=-3至Z=+3之间几乎分布着全 Z=-3 Z=+3 部数据。 部数据。

拐点为正负一个标准差处 ⑸.曲线的拐点为正负一个标准差处。 曲线的拐点为正负一个标准差处。
二.标准正态分布表及使用
1.标准正态分布表

利用积分公式可求出正态曲线下任何
2σ 2
公式所描述的正态曲线, 两个参数决定。 公式所描述的正态曲线,由σ和μ两个参数决定。
2.标准正态分布曲线
将标准分数代入正态曲线函数 并且, 并且,令σ=1 则公式变换为标准正态分布函数: 则公式变换为标准正态分布函数:
1 Y= ⋅e 2π
Z2 − 2

以Z为横坐标,以Y 为横坐标,
为纵坐标,可绘制标准正 为纵坐标, 态分布曲线。 态分布曲线。

标准正态分布曲线的
纵线高度Y为概率密度, 纵线高度Y为概率密度, 曲线下的面积为概率。 曲线下的面积为概率。
3.标准正态分布曲线的特点
♦ ♦ ♦ ♦
⑴.曲线在Z=0处达到最高点 曲线在Z=0 Z= ⑵.曲线以Z=0处为中心,双侧对称 曲线以Z=0处为中心, Z= ⑶.曲线从最高点向左右缓慢下降,向两侧 曲线从最高点向左右缓慢下降, 平均数为 ⑷.标准正态分布曲线的平均数为0,标准 标准正态分布曲线的平均数

随机过程-正态马尔可夫过程

随机过程-正态马尔可夫过程

所以, 是马尔可夫过程。 所以, ξ(t) 是马尔可夫过程。
例3.6
图示电路,输入为零均值平稳正态白噪声, 图示电路, 输入为零均值平稳正态白噪声,求
输出过程的特性。 输出过程的特性。
R
ξ(t)
C
η(t)
解:系统传递函数的模平方为
α2 H( jf ) = 2 α + (2π f )2
2
1 α 其中, 输入平稳正态白噪声, 1。 其中, = 。输入平稳正态白噪声,即Sξ ( f ) = 1。于 RC
2 n
设 a= C(1)/C(0),由于 C(1) ≤C(0),故|a|≤1 ,因此 , ,
C(n) = anC(0)(n ≥ 0)
充分性:如果 C(n)/C(0)=an,设n=n1+n2,则 充分性:
C(n1) C(n2 ) C(n1)C(n2 ) C(n) = an1 an2 = ⇒ C(n) = C(0) C(0) C(0) C(0)
C(τ ) = eaτ C(0)
因为|C(τ)|<C(0),故τ >0 时,a<0 , 因为 充分性:如果 充分性:如果C(τ)=eaτC(0) ,则
C(τ + s) C(τ ) C(s) = ea(τ +s) = eaτ eas = C(0) C(0) C(0)

C(τ )C(s) C(τ + s) = C(0)
是输出为
α2 Sη ( f ) = H( jf ) Sξ ( f ) = 2 α + (2π f )2
2
由此可得
Rη (τ ) =
α
2
e
−α τ
由E{ξ(t)}=0得E{η(t)}=0 ,因此 得

通信原理考试重点题型外加完整答案

通信原理考试重点题型外加完整答案

通信原理考试题复习集1.某2FSK 系统的传码率为300波特,“1”和“0”码对应的频率分别为f 1=1200H Z ,f 2=2400H Z ,在频率转换点上相位不连续,该2FSK 信号的频带宽度应为 1800Hz 。

若2PSK 系统传码率为300波特,2PSK 信号的频带宽度为 600Hz 。

2.用包络检波法接收2ASK 信号,当发端发“1”码时,包络检波器输出服从莱斯分布,当发端发“0”时,包络检波器服从 瑞利 分布。

3.若频率为5KH Z ,振幅为2V 的正弦调制信号,对频率为100MH Z 的载波进行频率调制,已知信号的最大频偏为75KH Z ,则调频波的带宽为 60KH Z 。

4.某调频波8()20cos 2108cos 4000s t t t ππ⎡⎤=⨯+⎣⎦,则调频波信号功率为 200 w ,调制指数为 8 ,最大频偏为 16 KH Z ,信号带宽为 36 KH Z 。

5.为解决在BPSK 相干解调恢复载波相位模糊问题,可采取 相对相移键控 措施。

6. 一个能量信号的自相关函数R(τ)与能量谱密度P(w)之间的关系是______傅立叶变换_____,R(0)的物理意义表示___平均功率________。

7.信号通过线性系统不失真的条件是与 ()()y t kx t τ=-8.平稳随机过程的自相关函数与功率谱密度的关系是互为傅里叶变换对。

9.正态随机过程X (t )通过传输函数为H(W)的线性系统后,其输出Y(t)与输入的功率谱密度()Y P w ,()X P w 的关系是2()()()Y X P w P w H w =。

10.如果随机过程的____数学期望______与时间无关,而且____相关函数______仅与时间间隔有关,那么该随机过程就称为广义平稳的。

11.高斯过程的n 维分布完全可以由它的___数学期望_______、____方差_____及____相关函数______决定。

第六讲 正态随机过程

第六讲 正态随机过程

2012-8-20
信息科学与工程学院
1
2 概率密度函数
f X ( x1 , x 2 , , x n ; t1 , t 2 , , t n ) (2 ) 1
n 2 1
K
2
( X m X )T K 1 ( X m X exp 2
)
上式中,mX是n维均值向量,K是n维协方差矩阵
x1 x 2 X xn
mX
m X ( t1 ) m X (t2 ) m X (tn )
2012-8-20
信息科学与工程学院
2
K 11 K K 21 K n1
K 12 K 22 K n2
则正态随机过程在n个不同时刻的取值不相关。 (2) 如果Xn(n=1,2,…,)两两之间互不相关,则
0 K X ( t i , t j ) E [( X i m i )( X j m j )] 2 i
2012-8-20
i j i j
9
信息科学与工程学院
12 所以 K 0
K ij K X ( t i , t j ) E [( X i m i )( X j m j )] rij i
j
rij
K X (ti , t j )
i
j
2012-8-20
信息科学与工程学院
3
3 性质
正态随机过程的n维概率密度函数只取决于均值和 协方差和相关系数。
2
... ...
2
0 2 n
2

K
1
1- 2 0
... ...

随机信号处理考题答案

随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CY (u ) = e jub C X (au )
证明: 证明:
CY (u )=E[e ju ( aX +b ) ] = e jub E[e juaX ] = e jubC X (ua )
2 例题: 例题: X ~ N (a, σ ), 求C X (u ) ?
解:
构造 Y = σX + a
其中 X ~ N (0,1)

(2π ) | D |
0 d2 . . 0 . . . 0 0 dn .
n 2
1 2
d1 0 其中,D = . . 0
r r 2、 X ~ N (a, C ) 、
证明
的特征函数为 C
rT X
rT (u ) = e
r r 1 r r ju T a − u T C u 2
第五章: 第五章: 正态随机过程
多维正态随机变量的定义与 多维正态随机变量的定义与协方差矩阵 定义 多维正态随机变量的性质 多维正态随机变量的性质 正态随机过程的定义 正态随机过程的定义 正态随机过程的性质 正态随机过程的性质
定义: 如果对一个随机过程任意选取n个时刻 个时刻,则得 如果对一个随机过程任意选取 个时刻 则得 个相应的随机变量, 到n个相应的随机变量 若此 个随机变量的联合 个相应的随机变量 若此n个随机变量的联合 分布都是n维正态分布 则称随机过程X(t)是正态 维正态分布, 分布都是 维正态分布,则称随机过程 是 随机过程(高斯过程)。 随机过程(高斯过程)。
说明
r r r Y = A( X − a) 中的分量 1,Y2, …,Yn是独立的随机变量, 中的分量Y 是独立的随机变量,
r f (x) =
r X r r r Y = A( X + a )
1 (2π ) | C | r f ( y) =
r Y n 2 1 2
1 r r T −1 r r exp{− ( x − a ) C ( x − a )} 2 1 1 rT −1 r exp{− y D y} 2
C x1 ,... xn (u1 ,...un ) = C X1 (u1 )...C X n (un )
+∞ +∞
解:
C x1 , x2 (u1 , u2 ) = E[e ju1 x1 + ju2 x2 ] =
−∞ −∞
∫∫
e ju1 x1 + ju2 x2 f ( x1 ,x2 ) dx1dx2
若独立,则
K l 若E(X - EX) Y - EY)]存在,K,l = 1,..., ( 2 [
则称它为X和Y的K + l阶混合中心矩。
E[X n ] = ( j ) − n
证明: 当n=1时
d nC X (u ) |u =0 n du
+∞
d jux −1 dC X (u ) −1 j |u =0 = j ∫ [e f ( x)dx] |u =0 du du −∞ = j −1 ∫ jxe jux f ( x)dx |u =0
=e
rT r jv b
r C X T (v T A)
比较: 比较: Y=aX+b
CY (u) = e jubC X (ua)
一维正态随机变量的概念: 一维正态随机变量的概念: 一维正态随机变量X的概率密度函数可以表示 为 ( x−a )2 − 1 2σ 2 f X ( x) = e 2πσ 记为
X ~ N(a,σ2)
C x1 ...xn (u1 ...un ) = E[e
即:
r r rT ju T X r C X T2 统计独立,则: 统计独立, 、 ,
C x1 , x2 (u1 , u2 ) = C x1 (u1 )C x2 (u2 )
推广到n个 推广到 个
若随机变量X1,X2的联合概率密度函数可以表示为
σ2
)2 ]}
则称X1,X2为二维正态随机变量。其中ρ为X1和X2的相 相 关系数。对于上述二维随机变量,其边际概率密度函 关系数 数可表示为
1 f X1 ( x) = e 2πσ1

( x1 −a1 )2 2σ12
− 1 f X 2 ( x) = e 2πσ 2
1 σ 12 (1 − ρ 2 ) = ρ − (1 − ρ 2 )σ 1σ 2 − 2 (1 − ρ )σ 1σ 2 1 2 σ 2 (1 − ρ 2 )
ρ
二维正态随机变量的联合密度也可表示为
1 r r T −1 r r f ( x1 , x2 ) = ( x − a ) C ( x − a )} 2 1 exp{− 2 2 2 (2π ) | C | 1
r r r rT r rT ju X 3、已知 C r T (u ) = E[e 、 ], 且Y = AX + b , 则 X
rT r rT rT jv b r CYrT (v ) = e C X T (v A)
r r rT ju T x r 证明: 已知C X T (u ) = E[e ], 则 : rT r rT r rT r r rT r rT CYrT (v ) = E[e jv Y ] = E[e jv (AX+b) ] = e jv b E[e j ( v A)X ]
随机变量的特征函数 随机变量的概率密度函数和特征函数之间存 随机变量的概率密度函数和特征函数之间存 概率密度函数 在一一对应关系, 在一一对应关系,因此在得知随机变量的特征函 数后,就可以知道它的概率密度函数。 数后,就可以知道它的概率密度函数。
一、特征函数的定义 设 X 为随机变量,称 e juX 的数学期望为随机 变量 X 的特征函数。记为 C X (u) = E[eiuX ]
−∞
2、边际特征函数 C X 、 推广到n个 推广到 个
1,X2
(u1 , 0) = C X1 (u1 )
C X1 ,... X n (u1 ,...un −1 , 0) = C X1 ... X n−1 (u1...un −1 )
解:
C X1 , X 2 (u1 , 0) = E[e ju1x1 + ju2 x2 ] |u2 =0 = E[e ju1x1 ] = C X1 (u1 )
−∞ +∞
=
+∞
−∞
∫ xf ( x)dx = E[ X ]
证明:
三、多维随机变量的特征函数 1)定义 ) 若
x1 r . X= . xn u1 r . u= . un
ju1 x1 + ju 2 x2 +.... ju n xn
Cx1 , x2 (u1 , u2 ) = =
f ( x1 , x2 ) = f1 ( x1 ) f 2 ( x2 )
+∞ +∞ −∞ −∞ +∞

e ju1x1 + ju2 x2 f1 ( x1 ) f 2 ( x2 )dx1dx2 ∫
+∞
−∞
e ju1x1 f1 ( x1 )dx1 ∫ e ju2 x2 f 2 ( x2 )dx2 = C X1 (u1 )C X 2 (u2 ) ∫
其中
r x1 x = , x2
r a1 a = a2
σ 12 C= ρσ 1σ 2
ρσ 1σ 2 2 σ2
x1 − a1 2 ( x1 − a1 )( x2 − a2 ) 1 f ( x1, x2 ) = exp{ − [( ) − 2ρ 2 2 2(1 − ρ ) σ1 σ1σ 2 2πσ1σ 2 1 − ρ 1 +( x2 − a2
σ2u2
2
特征函数为: 特征函数为
CX (u) =e
jau −
=exp( jau−
σu
2
2 2
)
二维正态随机变量的概念: 二维正态随机变量的概念:
(x1 − a1)(x2 − a2 ) x1 − a1 2 1 f (x1, x2 ) = exp{ − [( ) − 2ρ 2 2 σ1σ 2 2(1− ρ ) σ1 2πσ1σ 2 1− ρ 1 +( x2 − a2
C X (u ) = ∫ e juX
−∞ +∞
1 e 2π

x2 2
dx = e

u2 2
P8例题1.2
2 例题: 例题: X ~ N (a, σ ), 求C X (u ) ?
二、性质 1) )
C X (u ) ≤ C X (0) = 1
2)X的特征函数为 C X (u) ,则Y=aX+b的特征函数为: ) 的特征函数为 的特征函数为: 的特征函数为
2
2
2
1 rT r rT − V DV CYrT (V ) = e 2
d1 0 D= . . 0
0 d2
. .
0 . 0 0 dn .
由特征函数线性变换的性质,对于
r r r −1 X = A Y +a
可以得到: r
C x T (u ) = e r
( x2 − a2 )2 2σ 22
因此其边际分布为一维正态分布 X1 ~ N(a1,σ12)
,X2 ~ N(a2,σ2 )
2
二维正态分布的协方差矩阵可表示为
C11 C = C21 C12 σ 12 = C22 ρσ 1σ 2
ρσ 1σ 2 2 σ2
二维正态分布的协方差矩阵具有如下性质: 1. 实对称矩阵; 2. 正定矩阵 3. 其逆矩阵可表示为 C −1
r r r 总存在正交矩阵A,通过变换 Y = A( X − a )
此时随机向量的协方差矩阵,且 ACAT = D
相关文档
最新文档