论人工智能的发展历程
人工智能的发展历程及未来趋势

人工智能的发展历程及未来趋势随着科技的不断进步和发展,人工智能已经不再是显得牵强附会的事情,而是一个逐渐成为现实的领域。
人工智能技术已经在多个领域有了广泛的应用,如医疗、金融、教育和交通等等。
那么,人工智能的发展历程以及未来的趋势是什么呢?一、人工智能的发展历程1. 20世纪初,人工智能概念的提出早在20世纪初,就已经有学者开始提出人工智能的概念。
当时,人们认为人工智能的实现只需要简单的计算即可实现,然而实际上,人工智能的实现的确需要更多的理论和技术。
2. 二战期间的计算机技术发展二战期间,计算机技术得到了快速发展。
它们在战争中被广泛使用,这也为人工智能技术的发展奠定了基础。
随着计算机技术的不断进步,人工智能的研究也开始逐渐活跃起来。
3. 马文·明斯基和约翰·麦卡锡的贡献在人工智能的研究过程中,马文·明斯基(Marvin Minsky)和约翰·麦卡锡(John McCarthy)这两位计算机科学家的贡献不可忽视。
他们致力于研究人工智能的理论与模型,在当时,人工智能研究得到了极大的发展。
4. 1970年代,人工智能技术的发展停滞然而在20世纪70年代,人们突然发现,人工智能技术的发展似乎出现了停滞,这也对人工智能技术的研究产生了巨大的影响。
而这一时期人工智能技术停滞的原因,可能是由于当时的计算能力和人工智能算法的局限性有关。
5. 1990年代,人工智能技术的再次繁荣20世纪90年代,人工智能技术再次开始繁荣起来,这一时期的人工智能技术在自然语言处理、语音识别以及计算机视觉等领域得到了广泛应用。
6. 2000年代至今,人工智能技术的不断发展随着计算能力的不断提高和算法的不断完善,人工智能技术也开始得到了迅速的发展。
卷积神经网络、循环神经网络、深度强化学习等技术的出现,让许多人眼花缭乱,这也标志着人工智能技术的一个新的发展阶段之即使。
二、人工智能的未来趋势1. 机器学习技术的发展随着机器学习技术的不断深入研究和应用,可以预见,人工智能技术还会有更广泛的应用领域,如医疗、金融、文化创意等领域。
人工智能的发展过程

人工智能的发展过程人工智能(Artificial Intelligence,简称AI)作为一种模拟人类智能的技术,其发展追溯至上世纪50年代,至今已经经历了多个发展阶段。
本文将逐步探讨人工智能的发展过程。
一、探索早期早在1956年,达特茅斯会议上,人工智能的概念首次被提出。
在此之后,数学家、工程师和计算机科学家们开始着手研究如何将人类智能转化为机器智能。
随着计算机技术的发展,人工智能逐渐开始获得更多的关注和研究投入。
在这一时期,人工智能的发展主要集中在推理、问题解决和知识表示等方面。
二、知识导向的人工智能进入1960年代,知识导向的人工智能成为了发展的主要方向。
研究者们试图将大量的专门领域知识编程到计算机系统中,使其能够进行问题解决和推理。
然而,这种过度依赖领域专家知识的方法并不完美,计算机在遇到实际问题时表现困难重重,因为现实世界的复杂性无法被完全囊括在预先输入的规则中。
三、连接主义的崛起为了克服知识导向人工智能的局限性,20世纪80年代,连接主义开始崛起。
连接主义强调通过构建神经网络来实现智能。
神经网络是由多个神经元相互连接而成的计算系统,通过学习和自适应来模拟人脑的运作过程。
这一新的方法在语音和图像处理等领域取得了突破性的进展,推动了人工智能研究的深入发展。
四、大数据驱动的人工智能随着互联网的普及,大数据成为了推动人工智能发展的重要驱动力。
借助大数据技术,计算机可以处理和分析海量的数据,从中提取有价值的信息。
通过机器学习和深度学习算法,人工智能系统可以不断改进和优化自身的性能。
这使得人工智能可以在图像识别、语音识别、自然语言处理等领域取得令人瞩目的成果。
五、综合应用与未来展望随着人工智能技术的不断进步,其应用领域也得到了广泛扩展。
人工智能已经应用于医疗、交通、金融等各个行业,并取得了显著的效益。
未来,随着技术的进一步发展,人工智能有望在自动驾驶、智能机器人、智能助理等方面取得更大突破。
同时,人们也开始思考人工智能对社会和人类的影响,如就业问题、伦理问题等。
简述人工智能的发展史

简述人工智能的发展史人工智能,是计算机科学中研究如何使机器能够像人一样学习、思考和行动的一门学科。
自从 20 世纪 50 年代开始,人工智能已经经历了多个阶段的发展。
本文将从以下几个方面简述其发展史。
一、符号主义时期(1956-1974)1956 年,世界上第一次人工智能会议的召开正式标志着人工智能学科的产生。
早期的人工智能系统的核心思想是“符号主义”,即利用符号来描述问题和解决问题。
早期的人工智能主要应用于数学和逻辑问题,包括推理、证明和代数计算。
但由于符号主义无法处理实际问题中的复杂性和模糊性,因此在 70 年代末人工智能陷入低谷。
二、联结主义时期(1986-2006)20 世纪 80 年代,人工智能又迎来了新的发展阶段——联结主义时期。
联结主义模型从生物神经元的结构和行为中受到启发,它的基本思想是将一些简单的单元(即“神经元”)连接起来组成复杂的神经网络,通过学习来发现网络中规律性的东西。
这种方法是非常有前途地,主要应用于图像和语音识别、自然语言处理和机器翻译等方面。
但联结主义的方法很难造成一个明确和可解释的结论,这也限制了其发展。
三、统计学习时期(2006-至今)21 世纪初,统计学习开始成为主导。
统计学习是利用现有的数据和大量的统计分析方法来实现机器自学习的过程。
这种方法利用机器学习算法从数据中提取信息,并自适应地改变其行为。
利用大量的数据来训练机器学习算法是最大的优势。
这种方法主要应用于计算机视觉、自然语言处理、语音识别等领域,使得人工智能技术真正走向了实际应用。
总体来说,人工智能的发展历程充满曲折和挑战,但是观察其发展轨迹,可以看到这一领域正在持续成长和发展。
人工智能的技术也正在不断拓宽应用范围,其中一些领域已经成为商业上的成功案例,如机器翻译和智能客服。
未来,人工智能有望成为更加人性化和高效的工具,能够在更多领域取得令人难以置信的成就,使人类社会拥有更美好的未来。
人工智能的发展历程

人工智能的发展历程人工智能(Artificial Intelligence,简称AI)是指通过将机器赋予类似于人类智能的能力,使之能够感知、理解、学习、推理、决策和交流的科学与技术领域。
自20世纪50年代以来,人工智能领域经历了多次起伏,不断实现突破和进步。
下面将从几个关键节点分析人工智能的发展历程。
一、1956年达特茅斯会议1956年,达特茅斯会议是人工智能历程中的重要节点,该会议被公认为是人工智能诞生的开始。
会议上,乔治·伯克与约翰·麦卡锡等学者提出了“人工智能(Artificial Intelligence)”这个术语,并推崇使用机器来模拟人类智能的概念。
达特茅斯会议为人工智能领域的学术研究奠定了基础。
二、神经网络的发展20世纪50年代至60年代,随着神经学的进展,人们开始利用神经网络来模拟人类神经系统的工作原理。
神经网络是模仿生物大脑的结构和功能构建的一种计算模型,通过训练和学习,可以实现识别、分类、预测等任务。
神经网络的发展推动了人工智能技术的进步,并在机器视觉、语音识别等领域取得重大突破。
三、专家系统的兴起20世纪70年代末到80年代,专家系统在人工智能领域取得了重要进展。
专家系统是一种基于专家知识和推理规则的计算机程序,其中包含了专家级别的知识和经验。
通过利用专家系统,计算机可以模拟人类专家的决策过程,解决特定领域的专业问题。
专家系统的兴起使人工智能应用于各个实际领域的可能性变得更广泛。
四、机器学习的突破20世纪90年代以来,机器学习技术成为人工智能领域的热点。
机器学习是一种基于数据的自动学习方法,通过大量数据的训练和算法的优化,使得计算机能够从中学习到规律和模式,并用于预测、分类、聚类等任务。
随着大数据时代的到来,机器学习的应用逐渐渗透到各个领域,如图像识别、自然语言处理等。
五、深度学习的崛起近年来,深度学习作为机器学习的一个分支迅速崛起,并引领了人工智能的新浪潮。
AI发展历程

AI发展历程人工智能(Artificial Intelligence,AI)发展历程人工智能(Artificial Intelligence,AI)是指机器在模仿人类智能方面所表现出的能力。
从上世纪50年代开始,人工智能领域迅速发展,取得了显著的进展。
本文将梳理人工智能的发展历程,并探讨其对社会和科技的影响。
一、初创时期(1950-1970年代)人工智能领域的先驱者是达特茅斯会议上的一群科学家。
在会议上,他们共同提出了人工智能的概念,并寻求通过机器模拟人类智能的方法。
这一时期的主要任务是开发机器能够进行逻辑推理和问题解决的能力,试图打造出类似于人脑的智能系统。
尽管人工智能在早期取得了一些进展,比如奠定了逻辑推理和问题解决的基础,但由于当时计算资源的限制以及对智能的理解不够深入,人工智能的发展进一步受到了挑战。
随着时间的推移,人工智能研究的热潮逐渐减退,被认为是一场“冬天”。
二、知识驱动时代(1980-1990年代)在1980年代,人工智能经历了一次复苏。
人们开始关注如何将知识编码到机器中,以便机器能够根据这些知识进行推理和决策。
专家系统成为当时人工智能的主流研究方向,专家系统是借助于专家知识库进行问题解决和决策的计算机程序。
然而,尽管专家系统在某些特定领域取得了一些成功,但由于它们往往依赖于专家知识的编码和维护,限制了其在更复杂问题上的应用。
此外,专家系统无法处理模糊信息和不确定性问题,这也成为了其发展的瓶颈。
三、统计学习时代(2000年代至今)随着1990年代末期统计学习方法的兴起,人工智能进入了一个新的发展阶段。
统计学习是一种通过分析大量数据并从中提取规律,来训练模型和进行预测的方法。
机器学习和深度学习等技术在这一时期得到广泛应用。
大数据的时代给人工智能的发展提供了巨大的助力。
机器学习算法的不断发展和优化,使得机器能够处理更复杂的任务,比如图像识别、语音识别、自然语言处理等。
深度学习的引入更是让机器能够实现类似于人脑的学习和决策过程。
人工智能的发展历程

05
安全性:人工智能系统应具备安全性,避免被恶意利用或造成危害
06
社会责任感:人工智能系统应具备社会责任感,关注社会问题,推程
/目录
目录
02
人工智能的技术突破
01
人工智能的起源
03
人工智能的应用领域
05
人工智能的未来趋势
04
人工智能的伦理问题
01
人工智能的起源
概念的提出
添加标题
添加标题
添加标题
添加标题
约翰·麦卡锡提出“人工智能”一词,并定义为“制造智能机器的科学和工程”
1956年,达特茅斯会议首次提出“人工智能”概念
艾伦·图灵提出“图灵测试”,作为衡量人工智能的标准
马文·明斯基提出“感知机”,开启了神经网络的研究
早期研究
1
2
4
5
3
1957年,艾伦·图灵发表论文《计算机器与智能》,提出“图灵测试”
1956年,达特茅斯会议首次提出“人工智能”概念
1960年代,专家系统开始出现,用于解决特定领域的问题
1970年代,自然语言处理技术取得突破,机器翻译成为可能
人工智能与大数据的融合:提高数据分析和处理能力
人工智能与云计算的融合:提供强大的计算资源和存储能力
人工智能与5G技术的融合:实现高速、低延迟的通信和网络连接
产业升级
智能化生产:利用AI技术提高生产效率,降低成本
智能服务:AI技术在金融、医疗、教育等领域的应用,提高服务质量
01
02
智能生活:智能家居、智能穿戴设备等,提高生活品质
1980年代,机器学习技术开始发展,为后来的深度学习奠定了基础
理论基础
01
符号主义:基于逻辑和符号表示的推理和问题求解
人工智能的发展历程

人工智能的发展历程人工智能(Artificial Intelligence,简称AI)是一门致力于使计算机能够模拟人类智能的科学与技术。
自20世纪50年代出现以来,人工智能领域经历了数十年的发展和演进,取得了巨大的进展。
本文将从早期的探索开始,梳理人工智能的发展历程。
一、人工智能的起步阶段(1950年代-1960年代)人工智能的历史可以追溯到20世纪50年代,那时科学家们开始将计算机与智能相关的概念联系在一起。
1956年,一次在达特茅斯学院召开的会议上,人工智能这一术语正式被提出,并正式成为一门学科。
在这个起步阶段,人工智能主要关注于符号推理和问题解决。
代表性的成果包括逻辑推理和专家系统的开发。
二、人工智能的知识推理时代(1970年代-1980年代)进入1970年代,人工智能领域逐渐开始关注知识表示与推理。
研究者们意识到,要使计算机具备智能,需要使其能够模拟人类的知识结构和推理过程。
因此,知识表示和与之相关的推理成为人工智能研究的重要方向。
人工智能的一大里程碑是1986年,当时IBM的深蓝超级计算机打败了国际象棋世界冠军卡斯帕罗夫,展示了计算机在复杂领域中的推理和决策能力。
三、人工智能的机器学习时代(1990年代-2000年代)进入1990年代,随着计算能力的快速提升和数据的大量积累,人工智能的发展迎来了新的机遇。
机器学习成为人工智能的核心技术。
机器学习是一种通过对大量数据进行学习和训练,使计算机能够自动提取规律、做出预测和决策的方法。
支持向量机、神经网络和决策树等机器学习算法相继提出,并在图像识别、语音识别等领域取得了重要突破。
四、人工智能的深度学习时代(2010年代至今)进入21世纪,随着大数据和云计算的快速发展,人工智能进入了深度学习时代。
深度学习是机器学习的一种,它利用人工神经网络模拟人脑的神经结构和工作方式,并通过大规模数据训练模型。
深度学习在图像识别、自然语言处理、语音识别等领域取得了巨大的成功,例如谷歌的AlphaGo在围棋领域击败了世界冠军。
简述人工智能发展历程

简述人工智能发展历程人工智能(Artificial Intelligence,简称AI)是近年来备受关注的热门话题,它以其广泛应用的潜力和未来发展的前景所吸引。
本文将简要概述人工智能的发展历程,介绍突出的里程碑事件和重要技术进展,以及对人工智能发展的展望。
一、人工智能的起源与初期发展人工智能的起源可以追溯到上世纪50年代。
当时,科学家们开始对计算机的能力做出了更高的期望,相信计算机可以模拟人类的智能行为。
在探索人工智能的道路上,提出了一些重要的概念和方法,如逻辑推理、专家系统和机器学习等。
二、人工智能的高峰与低谷在上世纪80年代和90年代,人工智能经历了一次“冬天”。
当时,人们对人工智能的技术和能力产生了怀疑,许多项目被取消或暂停。
然而,在2000年代初,一系列技术和理论的突破重启了人工智能的发展。
三、机器学习和深度学习的崛起机器学习是人工智能领域的重要技术,它允许计算机通过数据和经验自主学习和改进。
深度学习是机器学习的一种方法,模拟人脑神经网络的工作原理,通过构建多层次的神经网络实现复杂任务的处理和分析。
这些技术的出现和发展,极大地推动了人工智能的应用领域,如图像识别、语音识别、自然语言处理等。
四、人工智能应用的广泛拓展随着人工智能技术的不断突破和普及,其应用场景也日益扩大。
在医疗领域,人工智能被应用于疾病预测、诊断和治疗方面;在金融领域,人工智能可以帮助进行风险评估和投资决策;在智能交通中,人工智能可以优化路况,提高交通效率等。
这些应用的实践表明,人工智能已经深刻改变了人们的生活和工作方式。
五、人工智能的未来展望未来,人工智能的发展前景依然一片光明。
随着计算能力的提升、数据的增长以及算法的不断创新,人工智能将在更多领域产生深远影响。
例如,无人驾驶汽车、智能机器人、智能家居等将会成为人工智能技术的重要应用场景。
同时,社会对人工智能的伦理和法律问题也需加以关注和处理。
六、总结人工智能的发展历程可以说是一路充满曲折的探索和突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论人工智能的发展历程
王鑫涛16151228
摘要:人工智能的发展、人工智能的应用、人工智能的未来
关键字:人工智能、阿尔法围棋、AI
正文:近几年,人工智能这个话题变得越来越热门,尤其是在今年三月份的一场举世瞩目的人机围棋大赛后,人工智能这个话题在人们之间也是越来越普遍地被谈论。
2016年3月,阿尔法围棋(AlphaGo)与围棋世界冠军、职业九段选手李世石进行人机大战,并以4:1的总比分获胜,不少职业围棋手认为,阿尔法围棋的棋力已经达到甚至超过围棋职业九段水平,在世界职业围棋排名中,其等级分曾经超过排名人类第一的棋手柯洁。
那么,阿尔法围棋是什么呢,为什么这么厉害?阿尔法围棋(AlphaGo)是一款围棋人工智能程序,由谷歌(Google)旗下DeepMind公司的戴密斯·哈萨比斯、大卫·席尔瓦、黄士杰和与他们的团队开发,其主要工作原理是“深度学习”。
“深度学习”是指多层的人工神经网络和训练它的方法。
一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。
这就像生物神经大脑的工作机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理,就像人们识别物体标注图片一样。
通过上述所所,可见现在的人工智能已发展到一个相当高相当先进的程度了,那么,人工智能又是怎么一步步发展到今天的呢,它的未来又会是如何?我在这里就说一下自己对人工智能浅薄的见解。
一、什么是人工智能
人工智能(Artificial Intelligence),英文缩写为AI,也称机器智能。
“人工智能”一词最初是在1956年的Dartmouth学会上提出的。
它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。
从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。
人工智能的发展史是和计算机科学与技术的发展史联系在一起的,目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能在21世纪必将为发展国民经济和改善人类生活做出更大的贡献。
人类的科学演变已从单一的“数值计算”发展到系统的“逻辑计算”。
人类正在将信息工程学逐步提入到计算机系统中,从而出现了“信息管理”“和“信息交换”等科学的迫切需求。
而加速扩大“信息处理”层面来说,现有的计算机的处理数据能力是匹配不了的,缺少领域专业“智能”。
这样的“计算机科学”已无法适应信息科学的发展需求。
全球的信息科学正在逐步形成,Al作为现代信息科学发展的核心。
从古至今人们对提及智能相关的问题就很感兴趣,只不过在计算机没有发明之前,没有任何高科技辅助工具能解开智能的奥秘。
二、人工智能的发展过程
事物的发展都是曲折的,人工智能的发展也是如此。
人工智能的发展历程大致可以划分为以下五个阶段:
第一阶段:20世纪50年代,人工智能的兴起和冷落。
人工智能概念在1956年首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。
但是由于消解法推理能力有限以及机器翻译等的失败,使人工智能走入了低谷。
这一阶段的特点是重视问题求解的方法,而忽视了知识的重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。
DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。
并且,1969年成立了国际人工智能联合会议(International Joint Conferences onArtificial Intelligence 即IJCAI)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了飞速的发展。
日本在1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。
虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展,。
1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。
此后,各国在
神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮。
由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。
不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。
另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。
三、人工智能的应用
1、人工智能在管理系统中的应用
人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。
把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。
也就是说,将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子,这些正体现了人工智能在企业管理中的巨大价值。
2、人工智能在工程领域中的应用
人工智能在地质勘探、石油化工等工程领域也发挥着非常重要的作用。
早在1978年,美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工程领域的首个人工智能专家系统,其发现了一个
钼矿沉积,价值超过1亿美元,是工程领域依靠人工智能的一个典型案例。
3、人工智能在技术研究中的应用
人工智能在电子技术领域的应用可谓由来已久。
随着网络的迅速发展,网络技术的安全已经成了人们关心的重点,因此必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级的AI通用与专用语言和应用环境以及开发专用机器,而人工智能技术则为其提供了一定的可能。
四、人工智能的未来
人工智能的近期研究目标在于建造智能计算机,用以代替人类去从事各种复杂的脑力劳动。
正是根据这一近期研究目标,人们才把人工智能理解为计算机科学的一个分支。
当然,人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。
这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。
如今,人工智能已经进入了21世纪,其必将为发展国民经济和改善人类生活做出更大的贡献。
计算机的发展将趋向超高速、超小型、并行处理和智能化。
自从1946年世界上第一台电子计算机诞生以来,计算机技术迅猛发展,现有计算机的性能受到挑战,开始从基本原理上寻找计算机发展的领域,新型计算机的研发应运而生。
未来量子、光子和分子计算机将具
有感知、思考、判断、学习以及一定的语言表达能力,使计算机走进人工智能时代。
现如今科学技术每天都在飞速发展,人工智能的发展空间领域越来越大。
但从目前的一些尖端的科学领域的研究可以看出,人工智能未来的发展可能会向更高层次的科学领域深入人工智能的发展作为一种高辅技术实现与人类智能对接是现代社会发展的高效催化剂,人工智能科学整体性的研究探索可以说才刚刚起步,但是它的迷人魅力会促使科学家们前仆后继的投入到研究探索的工作当中去。
相信人工智能领域研究开发会离我们的期望目的越来越近。
结语:计算机的发展现在已经处于第五代的研发当中,其中最核心技术便是人工智能,可以说,人工智能的研究一旦取得突破,那么第五代计算机就有可能研发成功,同时在世界范围内的数据信息科学领域产生重大的意义,乃至对人类文明的发展产生重大影响。
由人脑科学、认知能力科学、人工智能等共同研究智能的潜在本质,形成模拟智能科学。
而对于人工智能学科整体层面而言,要有所突破前进,必需要有多个学科合作协同,在众多学科研究中实现主动创新。
由于人工智能与计算机技术的飞速进展,对人类社会、人类认知智能等科学的深入研究,形成了研究人脑及思维等学科。
电脑与人脑、人工智能与人类智能,特别是智能计算机高度模拟人脑的研究,全面推动了人类社会认知世界的发展,人工智能的深入研究使计算机更加智能聪慧。
计算机发展的未来值得注意的是,人类使计算机更加接近自己,人工智能科学领域带动了计算机的飞速发展,计算机的聪明才
智更接近人类,智能的计算机大大滴提高了人类认知世界改造世界的能力,人类发明使用智能的计算机推动全人类社会文明的飞跃发展。
参考文献:人工智能——一种现代方法(第二版)、神经网络与深度学习。