简易数字存储示波器研究

合集下载

简易数字存储示波器实验报告

简易数字存储示波器实验报告

目录一.数字存储示波器简介及设计思路 (3)2.实验设计原理 (5)三、系统各模块的简单说明 (5)四.最终实现功能说明 (8)五.实验设计实现功能模块具体分析 (9)六、实验硬件分配及总体仿真波形 (15)一、数字存储示波器简介及设计思路数字存储示波器是20世纪70年代初发展起来的一种新型示波器。

这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。

而我们此次要设计的便是一种简易的数字存储示波器。

数字存储示波器可实现以下功能。

通过对来自信号源的信号进行采集(可分为实时取样和等效时间取样),将获得的值存储在内置RAM内,后期操作有对波形的显示、波形的测量(如测量频率、幅值、上升下降时延等)和波形处理(如双踪两波形的相加、相减、X-Y显示等等)。

其工作示意图如下所示:而我们设计的简易数字存储示波器实现的功能有对单一信道信号进行采样存储显示(分实时显示和存储后期调用显示)、对信号进行频率测量并显示数值、对波形进行上移、下移、扩展、收缩操作、示例波形演示(包括正弦波、锯齿波、方波)。

我们所用的硬件有实验箱上的高速的模数转换器TLC5510、FPGA芯片、单片机、LCD显示屏、FPGA内置RAM、外围扩展的RAM和键盘。

以下框图为实验箱硬件使用说明图:下移、扩展、收缩和测频的处理。

二、实验设计原理设计总体逻辑思路如下:系统开始工作时,通过按键选择是否开始检测波形,若是,则首先由频率检测器检测频率,然后根据测得的频率选择适当的采样频率。

信号源产生的信号通过A/D采样,采样结果保存在FPGA内置的存储器中。

待存储完一帧数据时进行输出到LCD上显示。

待显示100ms后暂停100ms以消除视觉暂留效应,然后准备下一帧数据的存储和显示。

如若需要存储波形,则在当前显示的同时,将采样得到的数据送往片外的SDRAM存储,直至存储结束或者存储容量达到上限。

数字存储示波器 实验报告

数字存储示波器 实验报告

数字存储示波器实验报告数字存储示波器实验报告引言:数字存储示波器是现代电子测量领域中常见的一种仪器。

它通过将模拟信号转换为数字信号,并进行存储和处理,能够更准确地显示和分析电路中的信号波形。

本实验旨在通过使用数字存储示波器,对不同信号的波形进行观测和分析,并探究其在电子实验中的应用。

一、实验原理:数字存储示波器的工作原理主要包括信号采样、信号转换和信号显示三个过程。

首先,示波器通过采样装置对模拟信号进行采样,将其转换为离散的数字信号。

然后,通过模数转换器将离散的信号转换为数字信号,并将其存储在示波器的存储器中。

最后,示波器通过显示器将存储的数字信号转换为波形图形进行显示。

二、实验步骤:1. 连接电路:将待测的电路与示波器进行连接,确保信号源与示波器的输入端正确连接。

2. 设置示波器参数:根据待测信号的特点,设置示波器的采样频率、触发方式和时间基准等参数。

3. 开始测量:打开示波器电源,观察显示屏上的波形图形,并对波形进行分析和测量。

4. 调整参数:根据需要,调整示波器的参数,如水平和垂直灵敏度、触发电平等,以获得更清晰和准确的波形图形。

5. 结束实验:关闭示波器电源,断开电路连接,整理实验器材。

三、实验结果:通过实验,我们得到了多个不同信号的波形图形,并进行了分析和测量。

以下是实验中得到的一些典型结果:1. 正弦波信号:我们首先对一个正弦波信号进行观测。

通过示波器的显示,我们可以清晰地看到波形的周期、幅度和相位等特征。

通过测量,我们还可以得到波形的频率和峰峰值等具体数值。

2. 方波信号:接下来,我们对一个方波信号进行观测。

方波信号具有明显的上升沿和下降沿,通过示波器的显示,我们可以观察到方波的占空比和频率等信息。

同时,我们还可以通过示波器的测量功能,得到方波的上升时间和下降时间等参数。

3. 脉冲信号:最后,我们对一个脉冲信号进行观测。

脉冲信号具有较短的脉宽和较高的幅度,通过示波器的显示,我们可以观察到脉冲信号的上升时间、下降时间和脉宽等特征。

简易数字存储示波器设计

简易数字存储示波器设计

简易数字存储示波器设计摘要本文介绍了一种简易的数字存储示波器的设计。

示波器是一种广泛使用的电子测试仪器,用于显示电压随时间变化的波形。

数字存储示波器通过将波形样本存储在内存中,然后再进行显示,具有更高的分辨率和更多的功能。

本设计基于嵌入式系统,并通过一块液晶显示屏显示波形。

引言示波器是电子工程师和电子爱好者常用的测试设备之一。

然而,传统的示波器通常比较昂贵,且功能复杂。

为了满足一些简单的测试需求,我们设计了一款简易的数字存储示波器。

数字存储示波器具有存储和显示波形的功能,并且可以通过嵌入式系统实现。

本设计的核心部分是使用嵌入式开发板、模数转换器和液晶显示屏构建的简易数字存储示波器。

设计方案硬件设计嵌入式开发板本设计使用一块嵌入式开发板作为主要的处理器和控制单元。

开发板上应具备足够的计算能力和接口,以支持模数转换器、存储器和显示屏的连接。

模数转换器模数转换器(ADC)负责将输入的模拟信号转换为数字信号。

常见的ADC芯片有多种型号可选,选择合适的芯片以满足高精度和合适的采样率要求。

存储器用于存储模拟信号的样本数据。

根据要求,可以选择适当的存储器类型,如SRAM或SD卡。

显示屏显示屏用于显示存储器中的波形样本。

一块液晶显示屏是一个常见的选择,因为它可以提供高清晰度的图像和良好的视觉效果。

软件设计数据采集软件的第一步是通过ADC采集模拟信号,并将其转换为数字信号。

通过选择适当的采样率和转换精度,可以确保捕捉到所需的信号信息。

数据存储采集到的模拟信号样本将存储在嵌入式开发板的存储器中。

可以根据需要选择适当的存储器类型,以满足手头的需求。

从存储器中读取波形样本,然后将其显示在液晶显示屏上。

通过适当的算法和图形库,可以实现波形的平滑显示和良好的视觉效果。

操作流程本设计的操作流程如下:1.将待测试的电路连接到示波器的输入端口。

2.启动示波器,并设置合适的采样率和采样时间。

3.通过液晶显示屏查看波形样本。

4.根据需要对波形进行测量或分析。

数字存储示波器实验报告

数字存储示波器实验报告

数字存储示波器实验报告实验目的:1. 学习数字存储示波器的基本原理和使用方法。

2. 掌握数字存储示波器测量和显示波形的方法。

3. 理解数字存储示波器与模拟示波器的区别。

实验原理:数字存储示波器可以将模拟信号转换为数字信号,并通过数字方式存储和显示波形。

数字存储示波器使用的是采样信号方式,即每隔一段时间采集一次波形信号,将其转换成数字信号后保存在存储器中。

用户可以通过控制数字存储示波器的触发条件,来实现对特定波形的捕获和显示。

数字存储示波器与模拟示波器相比,具有很多优点。

例如,数字存储示波器可以使用自动测量功能,快速测量各种参数(如频率、周期、峰值等),并提供精确的数值结果。

数字存储示波器还可以捕获稀疏信号和故障信号,以及存储和重放波形,方便分析和调试。

实验步骤:1.将数字存储示波器接通电源,并将信号源与示波器连接。

调整信号源输出电压,并选择示波器的输入通道和延时/触发模式。

2.触发示波器并捕获波形。

通过控制示波器的触发条件和触发电平,调整示波器的采样时间和位置,以捕获特定波形的全部信息。

在捕获到波形后,用户可以对其进行保存和重放,也可以对波形进行缩放和移动,以便于更好地观察和分析。

3.测量波形的主要参数。

示波器可以通过内置的自动测量功能,对波形的主要参数(如峰-峰值、频率、周期、占空比等)进行快速测量。

用户还可以手动测量波形的特定参数,获得更加准确和具体的结果。

实验结果:通过本次实验,我们学会了数字存储示波器的基本原理和使用方法,并掌握了数字存储示波器测量和显示波形的方法。

我们还理解了数字存储示波器与模拟示波器的区别,并比较了它们的优缺点。

同时,通过实验数据的处理和分析,我们得到了电路波形的主要参数,并可以据此对电路性能进行分析和优化。

这对我们日后的电路设计和调试都非常有帮助。

简易数字存储示波器电子综合实验项目设计

简易数字存储示波器电子综合实验项目设计

2 实验要求
设 计 并 制 作 一 台 具 有 实 时 采 样 方 式和 等 效 采样方式的数字示 波器_示意 图如图1 示。 1 1 , 所
3 实验原理
3. 采 样 原 理 1
实 时 采 样 是 在 信 号 存 在 期 间 对 其 采
要 求 被 测 周 期 信 号 的 频 率 范 围 为 1 Iz l M Hz, 器 输 入 阻 抗 为 1 0 , 示 O ~ 0 I 仪 M 显 屏 的 刻 度 为 8 V× l d V, 直 分 辨 率 为 di i 垂 0

e in,ic i p o u to sse d b g i g nd r jc a c pa c tc n lg e c Th e tr p oe t e eo me p oe s n l d n p o a e h oo y t . e n ie rj c d v lp nt r cs i cu i g rgrm d sg cr u t r d cin, yt m e u g n a p oe t ce tn e,
ห้องสมุดไป่ตู้
计, 电路 制 作 、 到 最 后 的 调 试 验 收 整 个 项 目开 发 过 程 。 养 学 生 应 用 已 学 的 专 业 基 础 知 识 , 行 项 目设 计 和 开 发 的 能 力 。 直 培 进 关 键 词 : 合 实验 数 字 存 储 示 波 器 FP 等 效采 样 综 GA 中 图 分 类 号 : 20 TN 6 文 献 标 识 码 : A
he p Devel l opi s udent c ng t s ompr ehens ve app i at or abi i i s. i l i l c Ite
K y W o d I t g a e e p r me t Di t l s o a e o c lo c p FP e r s: n e r t d x e t n ; gia t r g s il s o e; GA ; u va e t Eq i l n

简易数字存储示波器设计

简易数字存储示波器设计

简易数字存储示波器设计数字存储示波器是一款用于测量电信号的仪器,它可以将收集到的信号进行数字化处理,并将结果显示在屏幕上。

本文将介绍一个简易的数字存储示波器的设计。

1. 设计目标设计一个简易的数字存储示波器,使其能够接收并显示电信号的波形,并具备一定的存储功能。

该示波器需要具备以下功能:能够调节触发电平、可以调节扫描速度、能够通过按钮进行保存和回放存储的波形。

设计需要保证简易、易于操作、能够满足基本的测量需求。

2. 硬件设计(1)电路板设计:设计一个电路板用于信号的采集和存储。

该电路板包括模拟前端电路用于信号的采集,数字转换电路将模拟信号转换为数字信号,以及存储器用于存储采集到的数据。

(2)显示屏和按键:电路板上需要配备一个液晶显示屏,用于显示采集到的波形图像。

同时,设计按键用于调节触发电平、扫描速度以及保存和回放。

3. 软件设计(1)数据采集:通过模拟前端电路采集信号,并使用数字转换电路将模拟信号转换为数字信号。

采用适当的采样率,将数据进行采样,并存储到存储器中。

(2)数据显示:通过显示屏将存储器中的数据显示为波形图像。

根据采样率和扫描速度,将存储器中的数字信号转换为波形,并在屏幕上显示。

(3)触发控制:通过按键调节触发电平,设置触发条件,使得波形显示能够达到最佳效果。

设计合适的触发电路用于触发信号。

(4)数据存储和回放:设计按键和存储器用于保存和回放采集到的波形。

按下保存键后,将当前的波形数据保存到存储器中,按下回放键后,将存储器中的波形数据重新显示在屏幕上。

4. 使用方法使用该简易数字存储示波器,首先将信号源连接到示波器的输入端,然后通过按键进行触发电平的调节和扫描速度的设置。

在适当的触发条件下,示波器将开始采集并显示信号的波形。

当波形满足要求后,可以通过按键将波形数据保存到存储器中。

保存后的波形可以通过按键进行回放,重新显示在屏幕上。

5. 总结通过以上的设计和实现,可以得到一个简易的数字存储示波器。

简易数字存储示波器报告

简易数字存储示波器报告

号的的光迹要重叠。 3.4 控制器的设计
控制器的作用:控制、数据处理; 控制器的组成:控制器自身、人机接口。 1) 键盘 性质:矩阵扫描非编码键盘 组成:(8 个键)
对键盘的解释: (1)按下的键状态为“0”; (2)s/div 和 V/div 为+1 键 编码关系见表 6.1; (3)默认的仪器工作状态:0.2ms/div 、0.1V/div; (4)扩展移动键每按一次+5; (5)底层控制器(CPLD)扫描键盘,有键按下时向顶底层控制器 申请中断; (6)仪器的复位键(RESET)不属于键盘管理。
1
(2)总的不可调误差: ADC0808 为± 2 LSB,ADC 0809 为±1LSB。 (3)转换时间: 取决于芯片时钟频率,如 CLK=500kHz 时,TCONV=128 μs。 (4)单一电源: +5V。 (5)模拟输入电压范围: 单极性 0~5V;双极性±5V,±10V(需外 加一定电路)。 (6)具有可控三态输出缓存器。
INPUT3
R1
13k
+18v
C2
100pF
U1:A
8
R2
3
13k
1 2
4
C1
100pF
R4
50k
LF353
R3
50k
-18V
OUTPUT3
4)电平移位电路
为了适应 A/D 的要求,在进行模数转换之前必须将双极性信号 通过电平移位为单极性的,设计中将其移位为正极性信号。电路图及 仿真图如下:
-18V
3.1




作用:对被测信号进行调理、量化,并将量化结果写入存储器,
以备显示之用,它是核心部分。(初步构思)下图为前向通道的系统

数字存储示波器 实验报告

数字存储示波器 实验报告

数字存储示波器实验报告数字存储示波器实验报告引言:示波器是电子工程师和科学家们在实验室中经常使用的一种仪器,用于观察和测量电信号的波形。

传统的示波器采用模拟技术,但随着数字技术的发展,数字存储示波器逐渐取代了传统示波器的地位。

本实验报告将介绍数字存储示波器的原理、特点以及在实验中的应用。

一、数字存储示波器的原理数字存储示波器是通过将输入信号转换为数字信号进行处理和存储,然后再将数字信号转换为模拟信号输出,从而实现对波形的观察和测量。

其基本原理如下:1. 采样:数字存储示波器通过采样电路对输入信号进行采样,将连续的模拟信号转换为离散的数字信号。

采样频率越高,采样精度越高,可以更准确地还原原始信号的波形。

2. 数字化:采样后的信号经过模数转换器(ADC)转换为数字信号。

模数转换器将每个采样点的电压值转换为相应的数字代码,以便后续的数字处理和存储。

3. 存储:数字存储示波器使用内部存储器或外部存储介质(如硬盘、闪存等)对采样后的数字信号进行存储。

存储器的容量决定了示波器可以存储的波形长度。

4. 数字处理:存储的数字信号可以进行多种数字信号处理操作,例如平均、峰值检测、FFT变换等。

这些处理操作可以提取出信号的特征,帮助工程师进行更深入的分析和测量。

5. 数字到模拟转换:经过数字处理后,数字信号再通过数模转换器(DAC)转换为模拟信号,输出到示波器的显示屏上。

通过示波器的控制面板,用户可以观察和测量信号的波形、幅值、频率等参数。

二、数字存储示波器的特点与传统示波器相比,数字存储示波器具有以下特点:1. 高精度:数字存储示波器采用数字信号处理,可以实现更高的采样精度和分辨率,对细微的信号变化更敏感。

2. 大容量存储:数字存储示波器内置存储器容量较大,可以存储更长时间的波形数据。

这对于长时间的信号观察和分析非常有用。

3. 方便回放:数字存储示波器可以将存储的波形数据进行回放,以便工程师反复观察和分析。

这对于捕捉瞬态信号、故障诊断等应用非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易数字存储示波器研究
基于MCU8051和FPGA的控制平台,采用实时采样与等效采样两种方式实现了时频率为10Hz-10MHz的波形数据的实时采样,存储与回放。

做到垂直灵敏度含1v/div,0.1v/div和2my/div三档,扫描速度合20ms/div,2uv/div,100ns/div 三档。

系统的频率测量精度达0.001Hz,电压测量精度达0.05V。

自带100KHz 方波信号为系统测频时钟与电压基准源的进行自动校准,此外,还实现了对波形数据的单次触发存储与调出功能和AUTO显示功能。

标签:数字存储;示波器;等效采样;实时采样
1引言
数字存储示波器是20世纪70年代初发展起来的一种新型示波器。

这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。

数字存储示波器的出现使传统示波器的功能发生了重大变革。

2数字存储示波器基本工作原理
数字存储示波器在信号进入示波器后立刻通过高速A/D转换器将模拟信号快速采样、存储。

通过单片机对信号进行处理,得到信号的波形参数,存储并通过D/A转换器后可由示波器显示,从而实现模拟示波器的功能。

但相对于模拟示波器,数字示波器测量精度高,还可对信号进行存储。

本系统的原理方框图如图1所示:
3系统功能模块与硬件电路
基于数字示波器的基本原理,可以把整个系统分为频率测量、采样保持、触发方式选择、位置调节、显示控制几个主要的模块。

模拟信号通过信号调理模块(阻抗变换、程控放大、触发电路),将模拟信号的幅值大小调整到高速AD(AD9225)的输入范围0V-4V。

然后通过AD9225对信号进性采样。

我们采用外部有源晶振作为高速AD的采样时钟来控制恒定的采样率4MHz(晶振的固有振荡频率),在FPGA内部增加波形存储控制模块,当满足触发条件时FP-GA以下抽样的方式对AD转换得到的数据进行存储,抽样频率由可水平分辩率来控制(若为AUTO功能,则与信号的频率有关)。

将抽样的数据分别存储到双口RAM中,在送人行列扫描电路(2片DAC0800)前经过了波形显示控制模块,它的作用是对RAM的数据及读入起始地址的进行处理。

从而实现波形在模拟示波器上的左右平移。

同时在FPGA内部实现了512点的FFT计算,成功得分析了输入信号的频谱。

系统的连接框图如图2所示:
3.1频率测量部分
此系统对低频信号采用测周法,对中高频信号采用等精度测频法。

测周法,即以待测信号的周期为门限时间T,用计数器记录在此门限时间T内的高频标准时钟脉冲数,从而确定待测信号的频率。

当选定高频时钟脉冲而被测信号频率较低时可以获得很高的精度,而被测信号频率过高时由于测量时间不够会有精度不够的问题,适用于低频信号的测量。

等精度测频法,这种方法和测周期法很相似,不同的是测周期法测量时间T为被测信号的一个周期,而等精度测量法的测量时间T是由人为设定和被测信号共同决定的。

即在人为设定的时间内,闸门的开启和闭合由被测信号的上升沿来控制,计数器真正开始计数的时刻不是预置闸门的开始时刻,而是预置闸门打开后被测信号的第一个上升沿到来的时刻;同样闸门的关不时刻不是预置闸门的结束时刻,而是预置闸门关闭后被测信号的第一个上升沿到来的时刻,这种计数方法叫做相关计数法。

最后根据计数结果、标准时钟频率和被测信号上升沿个数就可以精确得到被测信号的频率。

3.2采样部分
采用等差距采样实现信号采集。

以信号的某相位点为触发,用一足够快的脉冲作为计数脉冲(该脉冲可由低频脉冲经过锁相环倍频得到),每次FPGA内部控制器被触发后,计数器清零,同时开始对高频脉冲进行计数,每次计到一定的脉冲数,开始采样。

而每一次计到的脉冲数为一等差数列,从而采到波形数据中的各相位点。

由于每次采样都由被测信号触发,该方案采样点的位置严格可控,难点在于要求对软件控制时序严格控制。

4系统指标测试
给仪器一个有效值为2V,不同频率的正弦波信号,测得系统的水平分辨率如表1。

给仪器一个频率为10K的正弦波信号,测量系统垂直分辨率如表2。

由测量数据可知频率精度完全达到要求。

5結语
采用上述方法设计的数字存储示波器,以51单片机为核心,充分发挥了FPGA的高速和稳定性。

通过软硬件的结合实现了数字存储示波器的设计,系统功能完善,稳定性高,方便控制,满足了工程需要。

相关文档
最新文档