数据科学与大数据技术专业培养方案

合集下载

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当今信息时代最热门的专业方向之一,随着信息技术的快速发展,对于数据科学与大数据技术专业人材的需求也越来越大。

因此,如何科学合理地培养数据科学与大数据技术专业人材成为了学校和企业面临的重要问题。

本文将从课程设置、实践教学、教师团队、实习实训和综合能力培养五个方面探讨数据科学与大数据技术专业的培养方案。

一、课程设置1.1 确保基础课程的全面性和深度:包括数据结构、数据库原理、统计学基础等课程,为学生打下坚实的理论基础。

1.2 引入前沿技术课程:如机器学习、深度学习、自然语言处理等,培养学生对最新技术的理解和应用能力。

1.3 设置实践课程:如数据挖掘实践、大数据处理实践等,让学生通过实际操作掌握技能。

二、实践教学2.1 实验室建设:配备先进的大数据处理设备和软件工具,提供学生实践操作的平台。

2.2 项目实践:组织学生参预实际项目,锻炼他们的团队合作和问题解决能力。

2.3 创新实践:鼓励学生参加数据科学竞赛、科研项目等,培养他们的创新思维和实践能力。

三、教师团队3.1 学术背景:教师应具有扎实的数据科学与大数据技术理论基础和丰富的实践经验。

3.2 行业背景:教师中应有从业经验丰富的专家,能够为学生提供最新的行业动态和实践经验。

3.3 团队合作:建立跨学科的教师团队,促进不同专业背景的教师之间的合作,为学生提供全面的教学资源。

四、实习实训4.1 与企业合作:建立与企业的实习基地,为学生提供实习机会,让他们在实践中学习和成长。

4.2 实习指导:为学生提供专业的实习指导老师,指导学生在实习中解决问题,提升实践能力。

4.3 实习评估:建立科学的实习评估机制,对学生的实习表现进行评估,为学生提供改进建议。

五、综合能力培养5.1 综合实践项目:组织学生参预综合实践项目,让他们在实践中综合运用所学知识。

5.2 跨学科交叉:鼓励学生参加跨学科的课程和项目,培养他们的综合能力和跨学科思维。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当前社会发展中非常重要的领域,对于培养优秀的数据科学与大数据技术专业人才具有重要意义。

本文将从五个大点出发,详细阐述数据科学与大数据技术专业的培养方案。

正文内容:1. 理论基础培养1.1 理论知识体系构建:数据科学与大数据技术专业培养方案应重点建立起完整的理论知识体系,包括数学、统计学、计算机科学等基础学科,为学生提供坚实的理论基础。

1.2 专业核心课程设置:培养方案应包含专业核心课程,如数据挖掘、机器学习、大数据分析等,帮助学生系统学习相关领域的核心知识和技能。

2. 实践能力培养2.1 实验室实践:培养方案应安排学生参与实验室实践,通过实际操作和实验项目,锻炼学生的实践能力和解决问题的能力。

2.2 实习实训:为了提高学生的实际应用能力,培养方案可以安排学生进行实习实训,让他们在真实的工作环境中应用所学知识,培养解决实际问题的能力。

3. 项目驱动培养3.1 项目学习:培养方案可以引入项目学习,让学生通过参与真实项目,了解项目管理和团队合作等实践技能。

3.2 项目实践:通过组织学生参与实际项目的开发和实施,培养学生的项目实践能力,提高其在实际工作中的竞争力。

4. 综合素质培养4.1 语言表达能力:培养方案应注重培养学生的语言表达能力,包括口头表达和书面表达,使其能够清晰、准确地表达自己的观点和想法。

4.2 团队合作能力:数据科学与大数据技术通常需要多人合作完成,培养方案应注重培养学生的团队合作能力,包括沟通、协作和领导等方面的能力。

5. 学科交叉培养5.1 跨学科课程设置:培养方案可以设置一些跨学科的课程,如数据可视化、人工智能等,帮助学生拓宽视野,提高综合能力。

5.2 学科交流与合作:为了促进学科交叉与合作,培养方案可以组织学生参加学术交流会议、合作研究项目等,增强学生的学科交流与合作能力。

总结:通过以上五个大点的详细阐述,我们可以看出,数据科学与大数据技术专业的培养方案应该注重理论基础培养、实践能力培养、项目驱动培养、综合素质培养和学科交叉培养。

数据科学与大数据技术专业培养方案(满足工程教育要求)

数据科学与大数据技术专业培养方案(满足工程教育要求)

一、培养目标本专业旨在培养思想品德好、专业素质高、实践能力强,掌握数据科学专业方向所需的基础理论和方法,具有经济、金融等相关行业知识背景,具备较强的数据收集、数据处理和数据分析的技术和能力的国际化应用型数据科学人才。

学生毕业后,能在国家机关和企事业单位从事经济、金融、贸易、商务等行业的大数据分析,能利用数据科学方法开展商务流通大数据应用、金融大数据应用,能开发基于大数据的新产品和新业务,推动大数据在相关行业的应用创新。

二、培养规格及标准⒈知识结构本专业学生应具备以下几方面的知识:(1)通识教育知识:思想政治理论课、英语、大学语文、体育、哲学与社会、历史与文化、文学与艺术、科学与创新、数学思维与经济分析等;(2)基础知识:数据科学导论、数学分析、线性代数A、概率论A、数理统计、Python程序设计、计算机系统基础、C++程序设计、数据结构、数据库原理与设计等;(3)专业知识:大数据探索性分析、最优化方法、数据挖掘与机器学习、计算统计、应用回归分析、应用时间序列分析、应用多元统计分析、分布式计算、人工智能、自然语言处理、深度学习、文本挖掘等;(4)相关专业知识:微观经济学、宏观经济学、计量经济学、国际金融、国际贸易、商务大数据案例分析、金融数据风险建模、运筹学、管理学、博弈论等;(5)有关当代知识:数据科学的理论和应用前沿。

具体课程设置详见本专业指导性教学计划。

⒉能力通过培养,学生应具备以下几方面的能力:(1)具有扎实的数据分析的理论基础和大数据技术,培养比较系统的大数据分析思维;(2)掌握数据科学的基本理论、基本方法和基本技术,具有大数据采集和数据挖掘的技术,具备解决涉及大数据问题的能力;(3)掌握系统的经济、金融等方面的行业知识,具有运用数据科学的理论、方法和技术分析相关领域实际问题的能力;(4)掌握英语,听、说、读、写、译能力均达到较高水平。

具有较强的英语口语和书面交流能力,熟练运用专业英语能力。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

2.数据科学与大数据技术专业培养方案一、专业简介〔一〕历史沿革数据科学与大数据技术专业由学校“数据科学与大数据技术〞教学工作小组负责,依托计算机学院、理学院、经济管理学院、信息管理学院和通信学院共同建设,师资从全校范围内选拔组建,该专业2021年通过教育部审核批准,我校是全国第二批设立该全日制本科专业的高校。

〔二〕学生招生本专业2021年方案招生1个班,约30名学生。

该专业招生采用入校后二次选拔方式,面向所有被录取到我校的全日制本科生,综合高考成绩、英语分级考试成绩、数学分级考试成绩、专业面试成绩择优录取。

二、培养目标本专业根据“厚根底、宽专业、重能力、高素质〞的人才培养要求,培养具有良好的科学与人文素养、扎实的专业知识与技能、较强的工程实践与创新能力,具备计算机、数学、统计学等多学科知识和技能,具有分析问题、解决问题、自主学习以及国际视野的高素质应用型人才。

本专业毕业生应熟悉计算机专业根本知识、方法和技能,掌握大数据系统与平台技术〔数据采集、清洗、存储、计算等大数据系统与平台相关技术〕、大数据分析与可视化技术〔数据分析、人工智能、数据挖掘等大数据分析相关技术和数据可视化技术〕、特定场景下大数据开发与应用等方面的根本工程能力,具备工程师所必需的学习与创新、沟通与表达、合作与交流等根本能力与素养,具有良好的职业开展力和适应力的工程师与专业管理人才。

毕业生适合在信息技术企业和企事业单位信息技术或管理部门,以大数据采集与预处理、存储与管理、高性能计算、智能分析与挖掘、展现与应用等生命周期相关技术或应用为主要内容,从事现场或一线的平台规划、设计、部署、管理、运维,或系统开发、测试、支撑、效劳与管理等工作,并在五年内成长为能够独立胜任相关岗位工作的技术或管理工程师,或进入相关领域研究生阶段继续深造。

三、毕业要求:工程知识:能够将数学、自然科学、工程根底和专业知识用于解决复杂大数据技术和大数据应用的复杂工程问题。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当今信息时代最热门的专业方向之一,随着大数据时代的到来,数据科学家和大数据工程师的需求不断增加。

为了满足市场需求,各大高校纷纷开设了数据科学与大数据技术专业,并制定了相应的培养方案,以培养出高素质的数据科学家和大数据工程师。

一、课程设置1.1 数据科学基础课程数据科学专业的基础课程包括统计学、数据结构、数据库原理等,通过这些课程的学习,学生可以建立起对数据科学的基本理论和方法的认识。

1.2 大数据技术课程大数据技术专业的课程包括分布式计算、数据挖掘、机器学习等,学生通过这些课程的学习可以掌握大数据处理和分析的技术。

1.3 实践课程除了理论课程外,学校还会安排实践课程,如数据分析实训、大数据项目实践等,让学生在实际操作中掌握数据科学和大数据技术的应用。

二、实习实训2.1 企业实习为了让学生更好地了解行业需求,学校会安排企业实习,让学生有机会在真实的工作环境中实践所学知识。

2.2 实训项目学校还会组织实训项目,如大数据分析竞赛、数据科学项目实践等,让学生在实践中提升自己的能力。

2.3 导师指导学校会为学生配备导师,帮助学生解决实习实训中遇到的问题,指导他们在实践中不断成长。

三、科研项目3.1 科研基金学校会鼓励学生参与科研项目,申请科研基金,培养学生的科研能力和创新意识。

3.2 学术论文学生可以选择参加学术会议、发表学术论文,提升自己的学术水平和影响力。

3.3 科研团队学校会组建科研团队,邀请学生参与科研项目,培养学生的团队合作能力和创新精神。

四、实用技能4.1 编程能力数据科学与大数据技术专业需要具备扎实的编程能力,学校会安排相关编程课程,培养学生的编程技能。

4.2 数据处理能力学生需要掌握数据处理和分析的技术,学校会安排相关实践课程,让学生熟练运用数据处理工具。

4.3 解决问题能力学校还会培养学生的解决问题能力,通过案例分析、项目实践等方式,让学生学会独立思考和解决实际问题。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、背景介绍数据科学与大数据技术是当前信息时代的热门领域之一,它涉及数据的采集、存储、处理和分析等多个方面。

为了培养具备数据科学与大数据技术专业背景的人材,我们制定了以下的培养方案。

二、培养目标1. 培养具备扎实的数学、统计学和计算机基础知识的学生;2. 培养具备数据科学与大数据技术的理论和实践能力的学生;3. 培养具备数据分析、数据挖掘和机器学习等技能的学生;4. 培养具备解决实际问题和应用数据科学与大数据技术的能力的学生。

三、课程设置1. 基础课程- 数学分析- 线性代数- 概率论与数理统计- 计算机基础- 数据结构与算法- 数据库原理与应用2. 专业课程- 数据科学导论- 数据挖掘与机器学习- 大数据技术与应用- 数据可视化与交互设计- 数据仓库与商业智能- 分布式计算与云计算- 自然语言处理与文本挖掘- 数据安全与隐私保护3. 实践课程- 数据科学与大数据技术实验- 数据科学与大数据技术项目实践- 数据科学与大数据技术实习四、实践环节1. 实验课程学生将通过实验课程掌握数据科学与大数据技术的基本操作和应用,包括数据采集、数据清洗、数据分析和数据可视化等方面的实践技能。

2. 项目实践学生将通过项目实践课程参预实际的数据科学与大数据技术项目,锻炼解决实际问题的能力,并学习与团队合作和项目管理相关的技能。

3. 实习学生将在相关企业或者机构进行为期一定时间的实习,通过实践来加深对数据科学与大数据技术的理解和应用,同时积累实际工作经验。

五、评估与考核1. 课程考核每门课程将通过考试和实验报告等方式进行评估,以确保学生掌握了相应的知识和技能。

2. 项目评估项目实践课程将通过项目报告和答辩等方式进行评估,以评价学生在实际项目中的表现和能力。

3. 实习评估实习期结束后,学生将提交实习报告,并由导师或者企业进行评估,以评价学生在实习过程中的表现和能力。

六、就业方向数据科学与大数据技术专业毕业生可以在以下领域就业:- 互联网企业:如阿里巴巴、腾讯等;- 金融行业:如银行、保险、证券等;- 医疗健康领域:如医院、医疗器械企业等;- 零售与电商行业:如京东、苏宁等;- 媒体与广告行业:如新闻机构、广告公司等;- 政府与公共事业部门:如统计局、环保局等。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、专业背景及目标数据科学与大数据技术是一门涉及数据分析、数据挖掘、机器学习和大数据处理等领域的学科。

随着信息技术的飞速发展,数据科学与大数据技术在各行各业中的应用日益广泛。

本专业旨在培养具备扎实的数学、统计学和计算机科学基础,熟悉数据科学与大数据技术的理论和方法,具备数据分析、数据挖掘和大数据处理能力的专业人才。

二、培养目标1.掌握数学、统计学和计算机科学的基本理论和方法,具备扎实的数学和计算机科学基础;2.熟悉数据科学与大数据技术的理论和方法,了解数据挖掘、机器学习、人工智能等相关领域的最新进展;3.具备数据分析、数据挖掘和大数据处理的能力,能够运用相关工具和技术解决实际问题;4.具备团队合作和沟通能力,能够在跨学科和跨领域的团队中开展科研和工程项目;5.具备终身学习和创新精神,能够适应信息技术快速发展的需求。

三、课程设置1.数学基础课程线性代数、概率论与数理统计、离散数学等。

2.计算机科学基础课程计算机程序设计、数据结构与算法、计算机网络等。

3.数据科学与大数据技术核心课程数据挖掘、机器学习、数据可视化、大数据处理技术等。

4.专业选修课程数据分析、自然语言处理、深度学习、云计算等。

5.实践教学环节包括实验课程、项目实训、实习等,旨在培养学生的实际操作能力和解决实际问题的能力。

四、实践教学环节1.实验课程通过开展数据科学与大数据技术相关的实验,培养学生的实际操作能力和数据处理能力。

例如,设计一个数据挖掘算法,应用于某个实际数据集,分析并解释挖掘结果。

2.项目实训组织学生参与大数据项目实训,让学生在实际项目中应用所学知识,培养解决实际问题的能力和团队合作能力。

例如,参与一个金融领域的大数据分析项目,分析用户的消费行为和信用评级。

3.实习安排学生到企事业单位或科研机构进行实习,让学生接触真实的工作环境,了解行业需求和实际工作流程。

例如,到一家电商公司实习,参与大数据平台的建设和数据分析工作。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、引言数据科学与大数据技术是当前信息时代的重要领域之一,其在各行各业中的应用日益广泛。

为了培养具有扎实的数据科学与大数据技术背景的专业人材,本专业培养方案旨在为学生提供全面的理论知识和实践技能,使他们能够在数据科学与大数据技术领域中具备竞争力。

二、培养目标本专业培养方案旨在培养具备以下能力和素质的高级专业人材:1. 掌握数据科学与大数据技术的基本理论和方法,具备深入理解和解决实际问题的能力;2. 具备大数据处理与分析的技术能力,能够运用各种工具和算法进行数据挖掘、机器学习和人工智能等相关任务;3. 具备数据科学与大数据技术的实践能力,能够独立完成数据科学项目的设计、实施和评估;4. 具备团队合作和沟通能力,能够在跨学科和跨领域的团队中有效地协作;5. 具备良好的职业道德和社会责任感,能够适应信息时代的快速变化和不断更新的技术需求。

三、课程设置1. 基础课程- 数据结构与算法分析- 数据库原理与应用- 统计学基础- 数学建模与优化- 计算机网络- 离散数学2. 专业核心课程- 大数据技术与应用- 数据挖掘与机器学习- 自然语言处理与信息检索- 数据可视化与交互- 云计算与分布式系统- 高性能计算与并行程序设计3. 选修课程学生可以根据自身兴趣和发展方向选择以下课程中的若干门进行学习:- 深度学习与神经网络- 社交网络分析- 数据隐私与安全- 人工智能与智能系统- 金融数据分析- 医疗大数据分析四、实践环节为了培养学生的实践能力,本专业培养方案设置了以下实践环节:1. 实验课程:通过开设相关的实验课程,让学生学以致用,掌握数据科学与大数据技术的实际操作和应用。

2. 实习实训:学生将参预相关企业或者科研机构的实习实训,通过实践项目的参预,提升自己的实际能力和解决问题的能力。

3. 毕业设计:学生将完成一项数据科学与大数据技术相关的毕业设计项目,通过独立完成项目,展示自己的综合能力和创新能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据科学与大数据技术专业培养方案
一、培养目标
本专业旨在培养思想品德好、专业素质高、实践能力强,掌握数据科学专业方向所需的基础理论和方法,具有经济、金融等相关行业知识背景,具备较强的数据收集、数据处理和数据分析的技术和能力的国际化应用型数据科学人才。

学生毕业后,能在国家机关和企事业单位从事经济、金融、贸易、商务等行业的大数据分析,能利用数据科学方法开展商务流通大数据应用、金融大数据应用,能开发基于大数据的新产品和新业务,推动大数据在相关行业的应用创新。

二、培养规格及标准
⒈知识结构
本专业学生应具备以下几方面的知识:
(1)通识教育知识:思想政治理论课、大学英语、大学语文、体育、哲学与社会、文学与艺术、科学与创新、数学思维与经济分析、文化历史与国际视野等;
(2)基础知识:数据科学导论、数学分析、线性代数A、概率论A、数理统计、Python程序设计、计算机系统基础、C++程序设计、数据结构、数据库原理与设计等;
(3)专业知识:大数据探索性分析、最优化方法、数据挖掘与机器学习、计算统计、应用回归分析、应用时间序列分析、应用多元统计分析、分布式计算、人工智能、自然语言处理、深度学习、文本挖掘、算法导论等;
(4)相关专业知识:微观经济学、宏观经济学、计量经济学、国际金融、国际贸易、商务大数据案例分析、金融数据风险建模、运筹学、管理学、博弈论等;
具体课程设置详见本专业指导性教学计划。

⒉能力
通过培养,学生应具备以下几方面的能力:
(1)具有扎实的数据分析的理论基础和大数据技术,培养比较系统的大数据分析思维;
(2)掌握数据科学的基本理论、基本方法和基本技术,具有大数据采集和数据挖掘的技术,具备解决涉及大数据问题的能力;
(3)掌握系统的经济、金融等方面的行业知识,具有运用数据科学的理论、方法和技术分析相关领域实际问题的能力;
(4)掌握英语,听、说、读、写、译能力均达到较高水平。

具有较强的英语口语和书面交流能力,熟练运用专业英语能力。

能阅读数据科学和大数据方面的专业外文文献,掌握中外文资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有较强的自学能力和初步科研能力;
(5)具有较好的团队合作精神、人际交往能力和组织管理能力;
(6)具有终身学习的意识,了解本学科的理论前沿及发展动态,具有获取新知识的能力。

⒊素质
通过培养,学生应具备以下几方面的基本素质:
(1)具有强烈的社会责任感,热爱祖国、热爱人民;
(2)具有创新意识、创业意识和团队合作意识;
(3)具有较高的职业道德和敬业精神;
(4)具有强烈的事业心和进取心,具有良好的专业素养,较高的专业能力;
(5)具有健康的体魄和良好的心理素质。

⒋实践及创新能力
通过培养,学生应具备从事大数据处理、数据分析和数据挖掘等工作所需的创新精神与创新能力。

三、培养方式
根据国内外数据科学与大数据技术专业的发展动态,并结合我校财经特色采取科学合理的培养方式,具体包括:
⒈形式多样的课堂教学:理论讲授、模拟实验、案例分析、课堂讨论、小组报告等;
⒉课外讲座:专业学术报告、政府官员讲座、相关企业或行业的讲座等;
⒊课外实践:通过学科竞赛、社会实践和毕业实习等形式提高学生的专业素质,加强学生的解决问题能力,并有计划地让学生进入社会企业实习;
⒋产、学、研有机结合:重视数据科学与大数据技术专业的基础知识和专业知识的教学;强调大数据分析方法在经济、金融、贸易、商务等相关行业的中的运用,结合实际问题的背景进行有针对性的教学和实践;
⒌部分教材和课程设置与国际接轨,采用英文原版教材并通过双语或全英文形式授课。

四、成绩考核
课程考核合格,给予相应的成绩、绩点和学分。

成绩考核严格按照《上海对外经贸大学本科学分制教学培养方案总则》《上海对外经贸大学全日制本科生学分制学籍管理规定》和《上海对外经贸大学本科课程考核管理办法》的有关规定执行。

五、教学质量保证
本专业教学质量保证工作严格按照学校有关规定执行。

六、学制
本科学制为四年,详见《上海对外经贸大学全日制本科生学分制学籍管理规定》。

八、毕业与学位
⒈学生在规定的时间内完成培养方案规定的全部课程和学习任务,获得相应的学分,并符合各项要求者,准予毕业并发给毕业证书。

⒉毕业生符合《中华人民共和国学位条例》《中华人民共和国学位条例暂行实施办法》和学校《学士学位授予工作实施细则》,经学校学位委员会审查通过,授予理学学士学位。

九、专业指导性教学计划
本专业指导性教学计划见附表。

相关文档
最新文档