绝对值三角不等式 课件
合集下载
绝对值三角不等式 课件

证明:∵m 等于|a|,|b|和 1 中最大的一个,|x|>m,
|| > ≥ ||
|| > ||,
||
||
>
≥
||
∴
⇒
∴ + 2 ≤
+ 2 = +
2
||
|| > |b|.
|| > ≥ 1
||
2
|| ||
<
+ 2 =2.故原不等式成立.
2
||
||
∴-4≤y≤4.
∴yma x=4,y min =-4.
迁移与应用
如果关于 x 的不等式|x-3|+|x-4|<a 的解集为空集,求参数 a
的取值范围.
解:只要 a 不大于|x-3|+|x-4|的最小值,则|x-3|+|x-4|<a 的解集
为空集,而|x-3|+|x-4|=|x-3|+|4-x|≥|x-3+4-x|=1,
=|(x-a)(x+a-1)|
=|x-a||x+a-1|
<|x+a-1|
=|Байду номын сангаас-a+2a-1|
≤|x-a|+|2a-1|
<1+|2a|+1
=2(|a|+1),
∴|f(x)-f(a)|<2(|a|+1).
迁移与应用
已知 f(x)=x2 -2x+7,且|x-m|<3,求证:|f(x)-f(m)|<6|m|+15.
绝对值三角不等式 课件

2.绝对值三角不等式 定理 1:如果 a,b 是实数,则|a+b|≤|a|+|b|,当且仅当 ___a_b_≥__0___时,等号成立. 推论 1:如果 a,b 是实数,那么|a|-|b|≤|a-b|≤|a|+|b|. 推论 2:如果 a,b 是实数,那么|a|-|b|≤|a+b|≤|a|+|b|. 定理 2:如果 a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当 且仅当___(a_-__b_)_(_b_-__c_)≥__0____时,等号成立.
利用绝对值三角不等式证明不等式 已知 f(x)=x2-2x+7,且|x-m|<3,求证:|f(x)-f(m)| <6|m|+15.
【证明】 |f(x)-f(m)|=|(x-m)(x+m-2)| =|x-m|·|x+m-2|<3|x+m-2| ≤3(|x|+|m|+2). 又|x-m|<3, 所以-3+m<x<3+m. 所以 3(|x|+|m|+2)<3(3+|m|+|m|+2) =6|m|+15. 所以|f(x)-f(m)|<6|m|+15.
利用绝对值三角不等式求函数的最值 (1)求函数 f(x)=|x-1|+|x+1|的最小值; (2)求函数 f(x)=|x-1|-|x+1|的值域. 【解】 (1)因为|x-1|+|x+1|=|1-x|+|x+1|≥|1-x+x+1| =2,当且仅当(1-x)(1+x)≥0, 即-1≤x≤1 时取等号, 所以当-1≤x≤1 时,函数 f(x)=|x-1|+|x+1|取得最小值 2.
(2)当 a=0 时,f(x)=x; 当-1≤x≤1 时,f(x)的最大值为 f(1)=1, 不满足题设条件,所以 a≠0. 又 f(1)=a+1-a=1,f(-1)=a-1-a=-1, 故 f(±1)均不是最大值. 所以 f(x)的最大值187应在其对称轴上顶点位置取得, 所以 a<0.
2.1绝对值三角不等式课件

(3)如果ab=0,则a=0或b=0 易得: |a+b|=|a|+|b|
综上所述,可得:
定理1: 如果a,b是实数, 则 |a+b||a|+|b|, 当且仅当ab0时,等号成立.
如果把定理1中的实数a,b分别换为向量 a, b,能得
出什么结果?
定理1的几何意义
在不等式|a+b||a|+|b|中, 绝对值三角不等式
当且仅当(a-b)(b-c)0时,等号成立.
定理2的几何意义
在数轴上,a,b,c所对应的点分别为A,B,C,
AB C x a• b• c•
A
CB x
• •a
•c
•
b
B
AC x
b• •
a• •c
(1)当点B在点A,C之时, |a-c|=|a-b|+|b-c|
(2)当点B在点A,C之外时, |a-c|<|a-b|+|b-c|
思考题:
S(x)=2(|x-10|+|x-20|),xk 1,k 10
若函数s(x)能取到最小值20,求k的范围。
作业
P20: 1,2,3,4,
谢谢聆听
THANK YOU FOR YOUR
用向量 a、b 分别替换实数a,b,
y
当向量 a b 不共线时,则由向量加法的 a b
三角形法则,
b
向量 a、b、a+b 构成三角形,
ax
O
故可得向量形式的不等式:
|a+b|<|a|+|b|
当向量a b 共线呢?
故该定理的几何意义为:
三角形的两边之和大于第三边.
定理1: 如果a,b是实数, 则 |a+b||a|+|b|, 当且仅当ab0时,等号成立.
绝对值三角不等式 课件

分析:将2x+3y-2a-3b写成2(x-a)+3(y-b)的 形式后利用定理1和不等式性质证明.
证明:|2x+3y-2a-3b|=|2(x-a)+3(y-b)| ≤|2(x-a)|+|3(y-b)| =2|x-a|+3|y-b|
<2×4ε+3×6ε=ε.
某段铁路线上依次有A、B、C三站,AB=5 km,BC=3 km.在列车运行时刻表上,规定列车8时整从A 站出发,8时07分到达B站并停车1分钟,8时12分到达C 站.在实际运行中,假设列车从A站正点发车在B站停留1分 钟,并在行驶时以同一速度v km/h正点发车,在B站停留1 分钟,并在行驶时以同一速度v km/h匀速行驶.列车从A站 到达某站的时间与时刻表上相应时间之差的绝对值称为列 车在该站的运行误差.
绝对值三角不等式
1.解在绝对值符号内含有未知数的不等式(也称绝对 值不等式),关键在于去掉绝对值符号,化成普通的不等 式.主要的依据是绝对值的意义.
在数轴上,一个点到原点的距离称为这个点所表示的 数的绝对值.
x,如果x>0 即|x|=0,如果x=0 .
-x,如果x<0
练习1:求下列各数的绝对值:
(1)3 (2)-8 (3)0
①当 0<v≤3700时,(*)式变形为30v0-7+48v0-11≤2, 解得 39≤v≤3700; ②当3700<v≤41810时,(*)式变形为
300 480
解得 39≤v≤3700; ②当3700<v≤41810时,(*)式变形为 7-3v00+4v80-11≤2, 解得3700<v≤41810; ③当 v>41810时,(*)式变形为 7-3v00+11-4v80≤2, 解得41810<v≤1495.
若|a-b|>c,|b-c|<a,求证:c<a. 证明:由|a-b|>c,及|b-c|<a得 c-a<|a-b|-|b-c|≤|(a-b)+(b-c)| =|a-c|=|c-a|. 由c-a<|c-a|知c-a<0,故c<a.
证明:|2x+3y-2a-3b|=|2(x-a)+3(y-b)| ≤|2(x-a)|+|3(y-b)| =2|x-a|+3|y-b|
<2×4ε+3×6ε=ε.
某段铁路线上依次有A、B、C三站,AB=5 km,BC=3 km.在列车运行时刻表上,规定列车8时整从A 站出发,8时07分到达B站并停车1分钟,8时12分到达C 站.在实际运行中,假设列车从A站正点发车在B站停留1分 钟,并在行驶时以同一速度v km/h正点发车,在B站停留1 分钟,并在行驶时以同一速度v km/h匀速行驶.列车从A站 到达某站的时间与时刻表上相应时间之差的绝对值称为列 车在该站的运行误差.
绝对值三角不等式
1.解在绝对值符号内含有未知数的不等式(也称绝对 值不等式),关键在于去掉绝对值符号,化成普通的不等 式.主要的依据是绝对值的意义.
在数轴上,一个点到原点的距离称为这个点所表示的 数的绝对值.
x,如果x>0 即|x|=0,如果x=0 .
-x,如果x<0
练习1:求下列各数的绝对值:
(1)3 (2)-8 (3)0
①当 0<v≤3700时,(*)式变形为30v0-7+48v0-11≤2, 解得 39≤v≤3700; ②当3700<v≤41810时,(*)式变形为
300 480
解得 39≤v≤3700; ②当3700<v≤41810时,(*)式变形为 7-3v00+4v80-11≤2, 解得3700<v≤41810; ③当 v>41810时,(*)式变形为 7-3v00+11-4v80≤2, 解得41810<v≤1495.
若|a-b|>c,|b-c|<a,求证:c<a. 证明:由|a-b|>c,及|b-c|<a得 c-a<|a-b|-|b-c|≤|(a-b)+(b-c)| =|a-c|=|c-a|. 由c-a<|c-a|知c-a<0,故c<a.
绝对值三角不等式ppt课件

1、绝对值三角不等式
复习回顾:
实数 a 的绝对值的意义:
a (a 0) ⑴ a 0 (a 0) ;(定义)
,a (a 0)
注:绝对值的几何意义:
a
⑴ a 表示实数 a 在数轴上对应的点与原点的距离;
O
A
(2) a b 表示数轴上的实数 源自 对应的点 A 与实数 b 对应的点 B 之间的距离.如图:
应用一: 证明不等式成立
定理2 如果a、b、c是实数,
-
-------那么|a-c|≤|a-b|+|b-c|
-------当且仅当(a-b)(b-c) ≥0时,等号成立.
证明:由绝对值三角不 等式
a b b c (a b) (b c) a c
ab bc ac
当且仅当(a b)(b c) 0时等号成立
ab a b (当且仅当ab 0时等号成立 )
② a b与a b之间有什么关系?
oa b
ba o
b
oa
ao
b
当a 0,b 0时,a b a b
当a 0,b 0时,a b a b 当a 0,b 0时,a b a b 当a 0,b 0时,a b a b
当a b 0时,a b a b
a b ab (当且仅当ab 0时等号成立) ab a b (当且仅当ab 0时等号成立 )
绝对值三角不等式:
a b ab a b
绝对值三角不等式: 若 a, b 是实数,则 a b a b a b
如果把 a, b 换为向量 a, b ,根据向量加法的三 角形法则,易知 a b ≤ a b .(同向时取等号)
解:由绝对值三角不等 式
x 3 x 9 (x 3) (x 9) 6 求 当且仅当(x 3)(x 9) 0
复习回顾:
实数 a 的绝对值的意义:
a (a 0) ⑴ a 0 (a 0) ;(定义)
,a (a 0)
注:绝对值的几何意义:
a
⑴ a 表示实数 a 在数轴上对应的点与原点的距离;
O
A
(2) a b 表示数轴上的实数 源自 对应的点 A 与实数 b 对应的点 B 之间的距离.如图:
应用一: 证明不等式成立
定理2 如果a、b、c是实数,
-
-------那么|a-c|≤|a-b|+|b-c|
-------当且仅当(a-b)(b-c) ≥0时,等号成立.
证明:由绝对值三角不 等式
a b b c (a b) (b c) a c
ab bc ac
当且仅当(a b)(b c) 0时等号成立
ab a b (当且仅当ab 0时等号成立 )
② a b与a b之间有什么关系?
oa b
ba o
b
oa
ao
b
当a 0,b 0时,a b a b
当a 0,b 0时,a b a b 当a 0,b 0时,a b a b 当a 0,b 0时,a b a b
当a b 0时,a b a b
a b ab (当且仅当ab 0时等号成立) ab a b (当且仅当ab 0时等号成立 )
绝对值三角不等式:
a b ab a b
绝对值三角不等式: 若 a, b 是实数,则 a b a b a b
如果把 a, b 换为向量 a, b ,根据向量加法的三 角形法则,易知 a b ≤ a b .(同向时取等号)
解:由绝对值三角不等 式
x 3 x 9 (x 3) (x 9) 6 求 当且仅当(x 3)(x 9) 0
绝对值三角不等式课件

【防范措施】 正确求参数的取值范围 应用绝对值三角不等式求参数的取值范围是重点考查题型 ,解 答本题的关键是,正确应用绝对值三角不等式求出最值,再根 据题意,求出参数的取值范围,如本例关键是对条件关于x的不 等式|x-3|+|x-4|>a的解集不是R的正确理解.
【类题试解】若不等式|x-1|+|x+3|≥a恒成立,则a的取值范 围是______. 【解析】因为a≤|x-1|+|x+3|恒成立,故a小于等于 |x-1|+|x+3|中的最小值, 又|x-1|+|x+3|=|1-x|+|x+3|≥|1-x+x+3|=4, 故a≤4,即a的取值范围是(-≦,4]. 答案:(-≦,4]
2.函数y=|x-1|+|x-5|的最小值为______,此时x的取值范围 是_____. 【解析】|x-1|+|x-5|=|x-1|+|5-x| ≥|x-1+5-x|=4, 当且仅当(x-1)(5-x)≥0, 即1≤x≤5时等号成立. 答案:4 [1,5]
类型 三
含绝对值不等式的证明
【典型例题】
(x-4)(x- 3) 0, 当且仅当 3|, | x-4 || x-
即x≤3时, f(x)取最大值1.
【变式训练】1.若不等式|x-a|+|x-2|≥1对任意的实数x均成立, 则实数a的取值范围是_____.
2.函数y=|x-1|+|x-5|的最小值为______,此时x的取值范围是_____.
【变式训练】若不等式|x-a|+|x-2|≥1对任意的实数x均 成立,则实数a的取值范围是_____. 【解析】|x-a|+|x-2|≥1恒成立, 绝对值不等式的几何意义:数轴上 x到a与x到2的距离之和的 最小值为1. 当a=1或a=3时,对任意的x距离和的最小值为1,所以当a≤1 或a≥3时该不等式恒成立, a∈(-≦,1]∪[3,+≦). 答案:(-≦,1]∪[3,+≦)
5.2绝对值三角不等式A 课件(人教A版选修4-5)

70
60
s x = 2 x-10 + x-20
50
40
30
20
10
-60
-40
-20
10
20
40
60
80
100
-10
-20
-30
x
向量形式的不等式
a b a b
当且仅当
a
与
b 同向 时,等号成立。
由于定理1与三角形之间的这种联系,我们称其中的不等 式为绝对值三角不等式。
知识推广
如果将定理1中的实数a , b改为复数 不等式仍成立吗?
z1, z2
,
z1 z2 z1 z2
练习
1、如果a, b, c是实数,证明
例2
两个施工队分别被安排在公路沿线的两个地点施工, 这两个地点分别位于公路路牌的第10km和第20km 处。现要在公路沿线建两个施工队的共同临时生活区, 每个施工队每天在生活区和施工地点之间往返一次。 要使两个施工队每天往返的路程之和最小,生活区应 该建于何处?
分析:如果生活区建于公路路牌的第xkm处,两个施工队每天往返的路程
a, b ,
能得出什么结果?你能解释它的几何意义吗?
迁移类比
当向量
a b a b
当向量
a, b
不共线时,
y
ab
O
同向:a b a b 反向: a b a b
a, b
共线时,
a
b
(定理1的变形)
4、推论:
a c a b bc
a , b, c R
a b a b a b a b c a b c (定理1的推广)
绝对值三角不等式 课件

1.将文字语言“m等于|a|,|b|,1中最大的一个”转化为 符号语言“m≥|a|,m≥|b|,m≥1”是证明本题的关键.
2.运用绝对值不等式的性质证明不等式时,要注意放 缩的方向和“尺度”,切忌放缩过度.
1.本题求解的关键在于|a|-|b|≤|a-b|与|a|+|b|≥|a+b| 的理解和应用.
2.解决此类问题应从两个方向看推出关系来进行求 解.
条件不变,试求: (1)||a|a|- -b|b|||<1成立的充要条件; (2)|a|a|+ +b|b||>1成立的充要条件. 【解】 (1)因为ab<0⇔||a|-|b||<|a-b|⇔|a|a|- -b|b||<1,
含绝对值不等式的证明
设m等于|a|,|b|和1中最大的一个,当|x|>m时, 求证:|ax+xb2|<2.
【思路探究】 不管|a|,|b|,1的大小,总有m≥|a|, m≥|b|,m≥1,然后利用绝对值不等式的性质证明.
【自主解答】 依题意m≥|a|,m≥|b|,m≥1, 又|x|>m, ∴|x|>|a|,|x|>|b|,|x|>1,从而|x|2>|b|. 因此|ax+xb2|≤|ax|+|xb2| =||ax||+||xb2||<||xx||+||xx|22|=2, 即|ax+xb2|<2.
2.你能给出定理2的几何解释吗?
【提示】 在数轴上,a,b,c的对应的点分别为A, B,C.当点B在点A,C之间时,|a-c|=|a-b|+|b-c|;当点B 不在点A,C之间时,|a-c|<|a-b|+|b-c|.
绝对值不等式的理解与应用
已知a,b∈R,则有 (1)|a|a|- -b|b||≤1成立的充要条件是________; (2)|a|a|+ +b|b||≥1成立的充要条件是________. 【思路探究】 利用绝对值三角不等式定理分别求解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 2 设 ε>0,|x-a|<ε4 ,|y-b|<ε6 .
求证:|2x+3y-2a-3b|<ε. 分析:将 2x+3y-2a-3b 写成 2(x-a)+3(y-b)的形式后利用
定理 1 和不等式性质证明.
证明:|2x+3y-2a-3b|=|2(x-a)+3(y-b)|≤ |2(x-a)|+|3(y-b)|=2|x-a|+3|y-b|< 2×ε4 +3×ε6 =ε.
证明:|xy-ab|=|xy-bx+bx-ab| =|x(y-b)+b(x-a)|≤|x(y-b)|+|b(x-a)| ≤|x||y-b|+|b||x-a| <A·2ε+A·2ε=Aε. 所以有|xy-ab|<Aε.
2.已知函数f(x)=x2-x+13,|x-a|<1,求证: |f(x)-f(a)|<2(|a|+1).
例 3 设 m 等于|a|、|b|和 1 中最大的一个.当|x|>m a b
时,求证:x+x2<2.
分析:本题的关键是对题设条件的理解和运用,|a|、 |b|和 1 这三个数中哪一个最大.如果两两比较大小,将 十分复杂,我们可得到一个重要的信息:m≥|a|,m≥|b|, m≥1.
证明:∵m 等于|a|,|b|和 1 中最大的一个,|x|>m,
总之,恒有|a|+|b|≤16. 而a=8,b=-8时, 满足|a+b+1|=1,|a+2b+4|=4,且|a|+|b|=16. 因此|a|+|b|的最大值为16.
3.求函数y=|x-3|-|x+1|的最大值和最小值.
分析:若把x-3,x+1看作两个实数,则所给的代数 式符合两个数绝对值的差的形式,因而可以联想到两个数 和(差)的绝对值与两个数绝对值的和(差)之间的关系,进而 可转化求解,另一思维是:含有这种绝对值函数式表示的 是分段函数,所以也可以视为是分段函数求最值.
解析:方法一 ∵||x-3|-|x+1||≤|(x-3)-(x+1)|= 4,
∴-4≤|x-3|-|x+1|≤4.
∴ymax=4,ymin=-4.
方法二 把函数看作分段函数.1
4,x<-1, y=|x-3|-|x+1|=2-2x,-1≤x≤3,
-4,x>3.
∴-4≤y≤4,∴ymax=4,ymin=-4. 点评:对于含有两个以上绝对值的代数式,通常利用分 段讨论的方法转化为分段函数,进而利用分段函数的性质解 决相应问题.利用含绝对值不等式的性质定理进行“放缩”, 有时也能产生比较好的效果,但这需要准确地处理“数”的 差或和,以达到所0.
3
8
0
2.证明一个含有绝对值的不等式成立,除了要应用一般不等式
的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:
(1)|a|+|b|≥|a+b|;
(2)|a|-|b|≤|a+b|;
(3)|a|·|b|=|a·b|;
(4)||ab||=ab(b≠0).
思考2 说出下列不等式等号成立的条件:
(1)|a|+|b|≥|a+b|; (2)|a|-|b|≤|a+b|; (3)|a-c|≤|a-b|+|b-c|.
(1)等号成立的条件是:ab≥0; (2)等号成立的条件是:ab≤0且a≥b. (3)等号成立的条件是:(a-b)(b-c)≥0
3.含有绝对值的不等式的证明中,常常利用|a|≥a, |a|≥-a及绝对值的和的性质.
绝对值三角不等式
1.研究在绝对值符号内含有未知数的不等式(也 称绝对值不等式),关键在于去掉绝对值符号,化成普 通的不等式.主要的依据是绝对值的意义.
在数轴上,一个点到原点的距离称为这个点所表 示的数的绝对值.
即|x|= x0,,xx>=00,, -x,x<0.
思考1 求下列各数的绝对值:
(1)3;
∴||xx||>>mm≥ ≥||ba||, , |x|>m≥1
|x|>|a|, ⇒ |x|2>|b|.
a b a b |a| |b| |x| |x|2 ∴x+x2≤x+x2=|x|+|x|2<|x|+|x|2=2,
故原不等式成立.
1.设 A、ε>0,|x-a|<ε2 ,|y-b|<ε2 ,|b|≤A,|x|≤A,求 证:|xy-ab|<Aε.
证明:|f(x)-f(a)|=|x2-x+13-(a2-a+13)| =|x2-a2-x+a|=|(x-a)(x+a-1)| =|x-a||x+a-1|<|x+a-1| =|x-a+2a-1|≤|x-a|+|2a-1| <1+|2a|+1=2(|a|+1). ∴|f(x)-f(a)|<2(|a|+1).
题型二 利用绝对值三角不等式求最值
例2 设a,b∈R且|a+b+1|≤1,|a+2b+4|≤4, 求|a|+|b|的最大值.
解析:|a+b|=|(a+b+1)-1|≤|a+b+1|+|-1|≤1
+1=2,
|a-b|=|3(a+b+1)-2(a+2b+4)+5|≤3|a+b+1|+ 2|a+2b+4|+5≤3×1+2×4+5=16. ①当ab≥0时,|a|+|b|=|a+b|≤2; ②当ab<0时,则a(-b)>0, |a|+|b|=|a|+|-b|=|a+(-b)|≤16.
思考3 当|a|>a时,a∈(_-___∞_,_0_)_;当|a|>-a时, a∈(0,+∞).
题型一 利用绝对值三角不等式证明不等式
例1 若|a-b|>c,|b-c|<a,求证:c<a. 证明:由|a-b|>c及|b-c|<a得 c-a<|a-b|-|b-c|≤|(a-b)+(b-c)|= |a-c|=|c-a|. 由c-a<|c-a|知c-a<0,故c<a.