1.21绝对值三角不等式的解法

合集下载

绝对值不等式

绝对值不等式

绝对值不等式知识总结:1.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:不等式 a >0 a =0 a <0 |x |<a (-a ,a ) ∅∅ |x |>a(-∞,-a )∪(a ,+∞)(-∞,0)∪(0,+∞)R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .题型一:绝对值不等式的解法例1:不等式1≤|2x -1|<2的解集为( )A.⎝ ⎛⎭⎪⎫-12,0∪⎣⎢⎡⎭⎪⎫1,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎝ ⎛⎦⎥⎤-12,0∪⎣⎢⎡⎭⎪⎫1,32 D .(-∞,0]∪[1,+∞)例2:若关于x 的不等式|x -1|-|x -3|>a 2-3a 的解集为非空数集,则实数a 的取值范围是( )A .1<a <2 B.3-172<a <3+172C .a <1或a >2D .a ≤1或a ≥2举一反三:变式1:设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,则a =________.变式2:不等式|x -2|+|x +2|≥5的解集为______________.题型二:利用绝对值不等式求最值例1:对于任意实数a 和b (b ≠0),不等式|a +b |+|a -b |≥|b |(|x -1|+|x -2|)恒成立,则实数x 的取值范围是________.例2:记max{p ,q }=⎩⎨⎧p ,p ≥q ,q ,p <q ,设M (x ,y )=max{|x 2+y +1|,|y 2-x +1|},其中x ,y ∈R ,则M (x ,y )的最小值是________.举一反三:变式1:若关于x 的不等式|x +t 2-2|+|x +t 2+2t -1|<3t 无解,则实数t 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-15,1 B .(-∞,0] C .(-∞,1]D .(-∞,5]变式2:(2020·浙江第二次联盟联考)定义min{x ,y }=⎩⎨⎧x ,x ≤y ,y ,x >y ,已知x 是不为2或8的实数,若S =min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2|x -2|,1|x -8|,则S 的最大值为________.题型三:绝对值不等式的综合应用例1:已知a ,b 为实数,不等式|x 2+ax +b |≤|x 2-7x +12|对一切实数x 都成立,则a +b =________.例2:已知函数f (x )=x |x -a |-1.①当a =1时,解不等式f (x )<x -1;②当x ∈(0,1]时,f (x )≤12x 2恒成立,求实数a 的取值范围.举一反三:变式1:已知函数f (x )=|x -2|,g (x )=-|x +3|+m .(1)解关于x 的不等式f (x )+a -1>0(a ∈R );(2)若函数f (x )的图象恒在函数g (x )图象的上方,求m 的取值范围.课后练习:1.不等式|2x -1|<3的解集是( ) A .(1,2) B .(-1,2)C .(-2,-1)D .(-∞,-2)∪(2,+∞)2.不等式|2x -1|-|x -2|<0的解集是( ) A .{x |-1<x <1} B .{x |x <-1} C .{x |x >1}D .{x |x <-1或x >1}3.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( ) A .5 B .4 C .8 D .74.已知数列{a n }为等差数列,且a 8=1,则2|a 9|+|a 10|的最小值为( ) A .3 B .2 C .1 D .05.设函数f (x )=|2x -1|,若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,则x 的取值范围是( )A .(-∞,-1]∪[3,+∞)B .(-∞,-1]∪[2,+∞)C .(-∞,-3]∪[1,+∞)D .(-∞,-2]∪[1,+∞)6.若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4D .-4或87.设函数f (x )=⎩⎪⎨⎪⎧2cos π2x ,|x |≤1,x 2-1,|x |>1.若|f (x )+f (x +l )-2|+|f (x )-f (x +l )|>2(l >0)对任意的实数x都成立,则正数l 的取值范围为( ) A .(0,23) B .(23,+∞) C .(0,23]D .[23,+∞)8.若a ,b ,c ∈R ,且|a |≤1,|b |≤1,|c |≤1,则下列说法正确的是( ) A.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a 2 B.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b 2 C.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b -c 2 D .以上都不正确9.若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数a =________,b =________.10.已知f (x )=⎪⎪⎪⎪⎪⎪x +1x -a +⎪⎪⎪⎪⎪⎪x -1x -a +2x -2a (x >0)的最小值为32,则实数a =________.11.当1≤x ≤3时,|3a +2b |-|a -2b |≤|a |⎝ ⎛⎭⎪⎫x +m x +1对任意的实数a ,b 都成立,则实数m 的取值范围是________.12.对任意的x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为________;若正实数x ,y ,z 满足x 2+2y 2+z 2=1,则t =433xy +2yz +xz 的最大值是________.13.已知函数f (x )=x -1,若|f (x )-1|+1|f (x -1)|-a >0对任意的x ∈R 且x ≠2恒成立,则实数a的取值范围为________;不等式|f (2x )|≤5-|f (2x -1)|的解集为__________.14.已知a >0,若集合A ={x ∈Z ||2x 2-x -a -2|+|2x 2-x +a -2|-2a =0}中的元素有且仅有2个,则实数a 的取值范围为______.15.已知a ,b ∈R ,f (x )=|2x +ax +b |,若对于任意的x ∈[0,4],f (x )≤12恒成立,则a +2b =________.。

1.21绝对值三角不等式的解法

1.21绝对值三角不等式的解法

与绝对值不等式相关的判断 【技法点拨】
与绝对值不等式相关的判断方法与技巧 (1)判断一个不等式成立与否,往往是对影响不等号的因素进行 分析,如一个数的正、负、零等,数(或式子)的积、平方、取 倒数等都对不等号产生影响,注意考查这些因素在不等式中的 作用,一个不等式的成立与否也就比较好判断了.
(2)如果对不等式不能直接判断,往往需要对不等式化简整理或 变形后再利用绝对值不等式进行判断.
a |b |
【解析】1.∵0< n <1,∴lg <n0,
n 1
n 1
由x<5,并不能确定|x|与5的关系.
所以①②③均不成立.
又∵|x|lg ≤n 0,5|lg |>0n ,
n 1
n 1
故④成立.
答案:④
2.①当|a|>|b|时,有|a|-|b|>0,
∴|a+b|≥||a|-|b||=|a|-|b|.
∴必有 a ≥b 1,即|a|>|b|是
a |b |
≥1a 成 b立的充分条件.
a |b |
②当 a ≥b 1时,由|a+b|>0,
a |b |
必有|a|-|b|>0,即|a|>|b|,故|a|>|b|是
a ≥ 1b 成立的必要条件.
a |b |
∴不等式成立的充要条件为|a|>|b|.
2.不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件 不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是 ab≥0,左侧“=”成立的条件是ab≤0,且|a|≥|b|;不等式 |a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左 侧“=”成立的条件是ab≥0且|a|≥|b|.

(复习指导)选修4—5 第1课时 绝对值不等式含解析

(复习指导)选修4—5 第1课时 绝对值不等式含解析

选修4—5不等式选讲必备知识预案自诊知识梳理1.绝对值三角不等式(1)定理1:若a,b是实数,则|a+b|≤,当且仅当时,等号成立;(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;(3)定理2:若a,b,c是实数,则|a-c|≤,当且仅当时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a(a>0)的解法:①|x|<a⇔-a<x<a;②|x|>a⇔x>a或x<-a.(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔;②|ax+b|≥c⇔.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程及数形结合的思想.3.基本不等式定理1:设a,b∈R,则a2+b2≥,当且仅当a=b时,等号成立.定理2:若a,b为正数,则a+b2≥√ab,当且仅当a=b时,等号成立.定理3:若a,b,c为正数,则a+b+c3≥√abc3,当且仅当a=b=c时,等号成立.定理4:若a1,a2,…,a n为n个正数,则a1+a2+…+a nn ≥√a1a2…a nn,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a12+a22+…+a n2)(b12+b22+…+b n2)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量或存在实数k,使α=kβ时,等号成立.5.不等式证明的方法证明不等式常用的方法有比较法、综合法、分析法、放缩法以及利用绝对值三角不等式、柯西不等式法等.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)对|a-b|≤|a|+|b|,当且仅当ab≤0时,等号成立.()(2)|a+b|+|a-b|≥|2a|.()(3)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.()(4)用反证法证明命题“a,b,c全为0”时假设为“a,b,c全不为0”.()(5)若m=a+2b,n=a+b2+1,则n≥m.() 2.若|a-c|<|b|,则下列不等式正确的是()A.a<b+cB.a>c-bC.|a|>|b|-|c|D.|a|<|b|+|c|3.若不等式|x+1x|>|a-2|+1对于一切非零实数x均成立,则实数a的取值范围是() A.(2,3) B.(1,2)C.(1,3)D.(1,4)4.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则√m2+n2的最小值为.5.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是.第1课时绝对值不等式关键能力学案突破考点绝对值不等式的解法【例1】(2020全国1,理23)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.解题心得解含有两个以上绝对值符号的不等式的方法解法1:利用绝对值不等式的几何意义求解,体现了数形结合的思想;解法2:利用“零点分段法”求解,即令各个绝对值式子等于0,求出各自零点,把零点在数轴上从小到大排列,然后按零点分数轴形成的各区间去绝对值,进而将绝对值不等式转化为常规不等式,体现了分类讨论的思想;解法3:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.对点训练1(2019全国2,理23)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.考点求参数范围(多考向探究)考向1分离参数法求参数范围【例2】(2017全国3,理23)已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.解题心得在不等式有解或成立的情况下,求参数的取值范围,可以采取分离参数,通过求对应函数最值的方法获得.对点训练2已知f(x)=|x+1|,g(x)=2|x|+a,(1)当a=-1时,求不等式f(x)≥g(x)的解集;(2)若存在x0∈R使得f(x0)≥g(x0)成立,求a的取值范围.考向2利用函数最值求参数范围【例3】(2020辽宁大连一中6月模拟,23)已知函数f(x)=x|x-a|,a∈R.(1)当f(1)+f(-1)>1时,求a的取值范围;+|y-a|恒成立,求a的取值范围.(2)若a>0,对任意x,y∈(-∞,a],都有不等式f(x)≤y+54解题心得1.对于求参数范围问题,可将已知条件进行等价转化,得到含有参数的不等式恒成立,此时通过求函数的最值得到关于参数的不等式,解不等式得参数范围.2.解答此类问题应熟记以下转化:f(x)>a恒成立⇔f(x)min>a;f(x)<a恒成立⇔f(x)max<a;f(x)>a有解⇔f(x)max>a;f(x)<a有解⇔f(x)min<a;f(x)>a无解⇔f(x)max≤a;f(x)<a无解⇔f(x)min≥a.对点训练3(2020山西太原三模,23)已知函数f(x)=|x+1|+|x-2a|,a∈R.(1)若a=1,解不等式f(x)<4;(2)对任意的实数m,若总存在实数x,使得m2-2m+4=f(x),求实数a的取值范围.考向3恒等转化法求参数范围【例4】(2020全国2,理23)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.解题心得在不等式成立的前提下求参数范围,通常对不等式进行等价变形,求出不等式的解,然后根据已知条件确定参数范围.对点训练4(2018全国1,理23)已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.考点求函数或代数式的最值(多考向探究)考向1利用基本不等式求最值【例5】(2020河北石家庄二模,文23)函数f(x)=|2x-1|+|x+2|.(1)求函数f(x)的最小值;(2)若f(x)的最小值为M,a+2b=2M(a>0,b>0),求证:1a+1+12b+1≥47.解题心得在求某一代数式的最值时,根据已知条件利用基本不等式a 2+b 2≥2ab ,a+b2≥√ab (a ,b 为正数),a+b+c3≥√abc 3(a ,b ,c 为正数)对代数式进行适当的放缩,从而得出其最值.对点训练5(2020河南开封三模)关于x 的不等式|x-2|<m (m ∈N +)的解集为A ,且32∈A ,12∉A. (1)求m 的值;(2)设a ,b ,c 为正实数,且a+b+c=3m ,求√a +√b +√c 的最大值.考向2 利用绝对值三角不等式求最值【例6】已知函数f (x )=2|x+a|+|x -1a|(a ≠0).(1)当a=1时,解不等式f (x )<4;(2)求函数g (x )=f (x )+f (-x )的最小值.解题心得利用绝对值三角不等式求函数或代数式的最值时,往往需要对函数或代数式中的几个绝对值里面的代数式等价变形,使相加或相减后对消变量,得到常数.对点训练6已知函数f (x )=|2x+1|-|x-1|. (1)求f (x )+|x-1|+|2x-3|的最小值;(2)若不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,求实数m 的取值范围.考向3利用放缩法求最值【例7】(2019全国3,理23)设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1.解题心得利用放缩法求代数式的最值,一般利用基本不等式,绝对值三角不等式及数学结论进行放缩,在放缩的过程中,结合已知条件消去变量得到常量,从而得到代数式的最值.对点训练7已知实数m,n满足2m-n=3.(1)若|m|+|n+3|≥9,求实数m的取值范围;(2)求|53m-13n|+|13m-23n|的最小值.1.绝对值不等式主要利用“零点分段法”求解,有时也利用函数图像通过观察得出不等式的解集.2.含绝对值不等式的恒成立问题的求解方法(1)分离参数法:运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立中的参数范围问题.(2)数形结合法:在研究不等式f(x)≤g(x)恒成立问题时,若能作出两个函数的图像,通过图像的位置关系可直观解决问题.3.求函数或代数式的最值主要应用基本不等式、绝对值三角不等式以及通过放缩求解.在解决有关绝对值不等式的问题时,充分利用绝对值不等式的几何意义解决问题能有效避免分类讨论不全面的问题.若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.选修4—5 不等式选讲必备知识·预案自诊知识梳理1.(1)|a|+|b| ab ≥0 (3)|a-b|+|b-c| (a-b )(b-c )≥02.(2)①-c ≤ax+b ≤c ②ax+b ≥c 或ax+b ≤-c3.2ab考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.D |a|-|c|≤|a-c|<|b|,即|a|<|b|+|c|,故选D .3.C 因为|x +1x |=|x|+|1x |≥2,要使对于一切非零实数x ,|x +1x|>|a-2|+1恒成立,则|a-2|+1<2,即1<a<3.4.√5 由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma+nb )2,即5(m 2+n 2)≥25,当且仅当an=bm 时,等号成立,所以√m 2+n 2≥√5.5.[-2,4] ∵|x-a|+|x-1|≥|(x-a )-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a ≤4.第1课时 绝对值不等式 关键能力·学案突破 例1解(1)由题设知f (x )={-x -3,x ≤-13,5x -1,-13<x ≤1,x +3,x >1.y=f (x )的图像如图所示.(2)函数y=f (x )的图像向左平移1个单位长度后得到函数y=f (x+1)的图像.y=f (x )的图像与y=f (x+1)的图像的交点坐标为-76,-116.由图像可知当且仅当x<-76时,y=f (x )的图像在y=f (x+1)的图像上方. 故不等式f (x )>f (x+1)的解集为(-∞,-76). 对点训练1解(1)当a=1时,f (x )=|x-1|x+|x-2|·(x-1).当x<1时,f (x )=-2(x-1)2<0; 当x ≥1时,f (x )≥0.所以,不等式f (x )<0的解集为(-∞,1). (2)因为f (a )=0,所以a ≥1. 当a ≥1,x ∈(-∞,1)时,f (x )=(a-x )x+(2-x )(x-a )=2(a-x )(x-1)<0. 所以,a 的取值范围是[1,+∞). 例2解(1)f (x )={-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x<-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1得,2x-1≥1,解得1≤x ≤2; 当x>2时,由f (x )≥1解得x>2. 所以f (x )≥1的解集为{x|x ≥1}.(2)由f (x )≥x 2-x+m 得m ≤|x+1|-|x-2|-x 2+x. 而|x+1|-|x-2|-x 2+x ≤|x|+1+|x|-2-x 2+|x|=-(|x |-32)2+54≤54,且当x=32时,|x+1|-|x-2|-x 2+x=54. 故m 的取值范围为(-∞,54].对点训练2解(1)当a=-1时原不等式可化为|x+1|-2|x|≥-1,设φ(x )=|x+1|-2|x|={x -1,x ≤-1,3x +1,-1<x <0,-x +1,x ≥0,则{x ≤-1,x -1≥-1,或{-1<x <0,3x +1≥-1,或{x ≥0,-x +1≥-1. 即-23≤x ≤2.所以原不等式的解集为-23,2.(2)若存在x 0∈R 使得f (x 0)≥g (x 0)成立,等价于|x+1|≥2|x|+a 有解, 由(1)即φ(x )≥a 有解,即a ≤φ(x )max ,由(1)可知,φ(x )在(-∞,0)单调递增,在[0,+∞)单调递减, 所以φ(x )max =φ(0)=1,所以a ≤1.故a 的取值范围为(-∞,1].例3解(1)f (1)+f (-1)=|1-a|-|1+a|>1,若a ≤-1,则1-a+1+a>1,得2>1,即当a ≤-1时,不等式恒成立;若-1<a<1,则1-a-(1+a )>1,得a<-12,即-1<a<-12; 若a ≥1,则-(1-a )-(1+a )>1,得-2>1,此时不等式无解. 综上所述,a 的取值范围是-∞,-12.(2)由题意知,要使不等式恒成立,只需f (x )max ≤y+54+|y-a|min .当x ∈(-∞,a ]时,f (x )=-x 2+ax ,f (x )max =f a 2=a 24. 因为y+54+|y-a|≥a+54, 所以当y ∈-54,a 时,y+54+|y-a|min =a+54=a+54.于是a 24≤a+54,解得-1≤a ≤5.结合a>0,所以a 的取值范围是(0,5].对点训练3解(1)当a=1时,f (x )<4,即|x+1|+|x-2|<4,化为{x <-1,2x >-3或{-1≤x ≤2,3<4或{x >2,2x -1<4,解得-32<x<-1或-1≤x ≤2或2<x<52,综上,-32<x<52,即不等式f (x )<4的解集为-32,52.(2)根据题意,得m 2-2m+4的取值范围是f (x )值域的子集.m 2-2m+4=(m-1)2+3≥3,又f (x )=|x+1|+|x-2a|≥|2a+1|, 所以f (x )的值域为[|2a+1|,+∞).故|2a+1|≤3,解得-2≤a ≤1,即实数a 的取值范围为[-2,1].例4解(1)当a=2时,f (x )={7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为{x |x ≤32或x ≥112}. (2)因为f (x )=|x-a 2|+|x-2a+1|≥|a 2-2a+1|=(a-1)2,故当(a-1)2≥4,即|a-1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a<3时,f (a 2)=|a 2-2a+1|=(a-1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞).对点训练4解(1)当a=1时,f (x )=|x+1|-|x-1|,即f (x )={-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为{x |x >12}.(2)当x ∈(0,1)时|x+1|-|ax-1|>x 成立等价于当x ∈(0,1)时|ax-1|<1成立. 若a ≤0,则当x ∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<2a ,所以2a ≥1,故0<a ≤2. 综上,a 的取值范围为(0,2]. 例5(1)解f (x )=|2x-1|+|x+2|={-3x -1,x ≤-2,-x +3,-2<x <12,3x +1,x ≥12,当x ≤-2时,f (x )≥5;当-2<x<12时,52<f (x )<5; 当x ≥12时,f (x )≥52. 所以f (x )的最小值为52. (2)证明由(1)知M=52,即a+2b=5.又因为a>0,b>0,所以1a+1+12b+1=17[(a+1)+(2b+1)]1a+1+12b+1=172+2b+1a+1+a+12b+1 ≥172+2√2b+1a+1·a+12b+1 =47,当且仅当a=2b ,即a=52,b=54时,等号成立.所以1a+1+12b+1≥47. 对点训练5解(1)由已知得{|32-2|<m ,|12-2|≥m ,解得12<m ≤32.因为m ∈N *,所以m=1.(2)因为a+b+c=3,所以√a +√b +√c =√1·a +√1·b +√1·c ≤1+a 2+1+b 2+1+c2=3+a+b+c2=3, 当且仅当a=b=c=1时,等号成立.所以√a +√b +√c 的最大值为3.例6解(1)∵a=1,∴原不等式为2|x+1|+|x-1|<4,∴{x <-1,-2x -2-x +1<4,或 {-1≤x ≤1,2x +2-x +1<4,或{x >1,2x +2+x -1<4,∴-53<x<-1或-1≤x<1或∅. ∴原不等式的解集为(-53,1).(2)由题意得g (x )=f (x )+f (-x )=2(|x+a|+|x-a|)+(|x +1a |+|x -1a |)≥2|2a|+2|a |≥4√2.当且仅当2|a|=1|a |,即a=±√22,且-√22≤x ≤√22时,g (x )取最小值4√2. 对点训练6解(1)f (x )+|x-1|+|2x-3|=|2x+1|-|x-1|+|x-1|+|2x-3|=|2x+1|+|2x-3|≥|2x+1-(2x-3)|=4,当-12≤x ≤32时等号成立,所以f (x )+|x-1|+|2x-3|的最小值为4.(2)不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,∴|m-1|≥[f (x )+|x-1|+|2x-3|]min .∴|m-1|≥4,∴m-1≤-4或m-1≥4,即m ≤-3或m ≥5,∴实数m 的取值范围是(-∞,-3]∪[5,+∞).例7(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知得(x-1)2+(y+1)2+(z+1)2≥43,当且仅当x=53,y=-13,z=-13时等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为43.(2)证明由于[(x-2)+(y-1)+(z-a )]2=(x-2)2+(y-1)2+(z-a )2+2[(x-2)(y-1)+(y-1)(z-a )+(z-a )(x-2)]≤3[(x-2)2+(y-1)2+(z-a )2],故由已知得(x-2)2+(y-1)2+(z-a )2≥(2+a )23,当且仅当x=4-a 3,y=1-a 3,z=2a -23时等号成立. 因此(x-2)2+(y-1)2+(z-a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.对点训练7解因为2m-n=3,所以2m=n+3.(1)|m|+|n+3|=|m|+|2m|=3|m|≥9,所以|m|≥3,所以m ≤-3或m ≥3.故m 的取值范围为(-∞,-3]∪[3,+∞).(2)53m-13n +13m-23n =53m-13(2m-3)+13m-23(2m-3)=|m+1|+|m-2|≥3,当且仅当-1≤m ≤2(或-5≤n ≤1)时等号成立, 所以53m-13n +13m-23n 的最小值是3.。

01绝对值不等式(含经典例题+答案)

01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。

1.2.1 绝对值三角不等式 课件(人教A选修4-5)

1.2.1 绝对值三角不等式 课件(人教A选修4-5)

1.设a、b是满足ab<0的实数,则下列不等式中正确的是
( A.|a+b|>|a-b| C.|a-b|<||a|-|b|| B.|a+b|<|a-b| D.|a-b|<|a|+|b| )
解析:∵ab<0且|a-b|2=a2+b2-2ab, ∴(a+b)2=a2+b2+2ab<|a-b|2. ∴(|a|+|b|)2=a2+b2+2|ab|=|a-b|2.
法二:把函数看作分段函数. 4,x<-1, y=|x-3|-|x+1|=2-2x,-1≤x≤3, -4,x>3. ∴-4≤y≤4. ∴ymax=4,ymin=-4.
(2)|x|≤1,|a|≤1, ∴|f(x)|=|a(x2-1)+x|≤|a(x2-1)|+|x| =|a||x2-1|+|x|≤|x2-1|+|x| =1-|x2|+|x|=-|x|2+|x|+1 12 5 5 =-(|x|- ) + ≤ . 2 4 4 1 5 ∴|x|= 时,|f(x)|取得最大值 . 2 4
②点B不在A,C上时,|a-c| < |a-b|+|b-c|.
应用:利用该定理可以确定绝对值函数的值域和最值.
[例 1]
s s s 已知|A-a|< ,|B-b|< ,|C-c|< . 3 3 3
பைடு நூலகம்
求证:|(A+B+C)-(a+b+c)|<s.
[思路点拨] ―→ 得出结论
变形 重新 定理 转化为|A-a|+ 原式 ――→ ――→ 分组 |B-b|+|C-c|
∴a<[|x+1|-|x-2|]min.
∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3, ∴-3≤|x+1|-|x-2|≤3. ∴[|x+1|-|x-2|]min=-3. ∴a<-3.即a的取值范围为(-∞,-3).

【高中数学】绝对值不等式

【高中数学】绝对值不等式

【高中数学】绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法不等式a>0a=0a<0|x|<a{x|-a<x<a}∅∅|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一绝对值不等式的解法[典例](2016·全国卷Ⅰ)已知函数f(x)=|x+1|-|2x-3|.(1)画出y =f (x )的图象;(2)求不等式|f (x )|>1的解集.[解](1)由题意得f (x )-4,x ≤-1,x -2,-1<x ≤32,x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1|x <13或x>5所以|f (x )|>1|x <13或1<x <3或x>5[题组训练]1.解不等式|x +1|+|x -1|≤2.解:当x <-1时,原不等式可化为-x -1+1-x ≤2,解得x ≥-1,又因为x <-1,故无解;当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立;当x >1时,原不等式可化为x +1+x -1≤2,解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1].2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R .(1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集;(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0,当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解;当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|,两边平方,化简整理得x 2+2x ≤0,解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0≥a ,x -a ≤0<a ,x +a ≤0,≥a ,≤a 4<a ,≤-a 2.当a >0|x ≤-a 2由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0|x ≤a 4由a4=-1,得a =-4.综上,a =2或a =-4.考点二绝对值不等式性质的应用[典例](2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R .(1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解](1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,≥12,x -1<x +1x <12,-2x <x +1≤0,-2x <-x +1,得12≤x <2或0<x <12或无解.故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法]绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2019|-|x -2018|的最大值.解:因为f (x )=|x +2019|-|x -2018|≤|x +2019-x +2018|=4037,所以函数f (x )=|x +2019|-|x -2018|的最大值为4037.2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三绝对值不等式的综合应用[典例](2018·合肥质检)已知函数f (x )=|2x -1|.(1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围.[解](1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,≥12,x -1-2x -1≤1-12<x <12,-2x -2x -1≤1≤-12,-2x +2x +1≤1,解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为-14(2)由条件知,不等式|2x -1|+|2x +1|<m 有解,则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞).[解题技法]两招解不等式问题中的含参问题(1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||;③利用零点分区间法.[题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|.(1)当a =1时,求不等式f (x )≥0的解集;(2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )x +4,x <-1,,-1≤x ≤2,2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1,当-1≤x ≤2时,显然满足题意,当x >2时,由-2x +6≥0,解得2<x ≤3,故f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且34,2⊆A ,求实数m 的取值范围.解:∵34,2⊆A ,∴当x ∈34,2时,不等式f (x )≤|2x +1|恒成立,即|x +m |+|2x -1|≤|2x +1|在x ∈34,2上恒成立,∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈34,2上恒成立,∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈34,2上恒成立,∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是-114,0.[课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:<-12,-2x -2x -1≤6-12≤x ≤12,-2x +2x +1≤6>12,x -1+2x +1≤6.解得-32≤x ≤32,|-32≤x ≤322.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a .(1)求实数a 的值;(2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a ,从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|2x +6,x ≤2,,2<x ≤4,x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立;当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5|12≤x ≤1123.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.解:(1)当a =1时,f (x )=|x +1|-|x -1|,即f (x )2,x ≤-1,x ,-1<x <1,,x ≥1.故不等式f (x )>1|x >12(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立.若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1|0<x <2a 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2].4.设函数f (x )=|3x -1|+ax +3.(1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围.解:(1)当a =1时,f (x )=|3x -1|+x +3≤4,即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f(x)≤4的解集为0,12.(2)因为f(x)3+a)x+2,x≥13,a-3)x+4,x<13,所以f(x)+3≥0,-3≤0,解得-3≤a≤3,即实数a的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f(x)=|x-2|-|x+1|.(1)解不等式f(x)>-x;(2)若关于x的不等式f(x)≤a2-2a的解集为R,求实数a的取值范围.解:(1)原不等式等价于f(x)+x>0,不等式f(x)+x>0可化为|x-2|+x>|x+1|,当x<-1时,-(x-2)+x>-(x+1),解得x>-3,即-3<x<-1;当-1≤x≤2时,-(x-2)+x>x+1,解得x<1,即-1≤x<1;当x>2时,x-2+x>x+1,解得x>3,即x>3,综上所述,不等式f(x)+x>0的解集为{x|-3<x<1或x>3}.(2)由不等式f(x)≤a2-2a可得|x-2|-|x+1|≤a2-2a,∵|x-2|-|x+1|≤|x-2-x-1|=3,当且仅当x∈(-∞,-1]时等号成立,∴a2-2a≥3,即a2-2a-3≥0,解得a≤-1或a≥3.∴实数a的取值范围为(-∞,-1]∪[3,+∞).6.已知函数f(x)=|x-a|+|x+1|.(1)若a=2,求不等式f(x)>x+2的解集;(2)如果关于x的不等式f(x)<2的解集不是空集,求实数a的取值范围.解:(1)当a=2时,f(x)2x+1,x<-1,,-1≤x<2,x-1,x≥2,不等式f(x)>x+2<-1,2x+1>x+21≤x<2,>x+2≥2,x-1>x+2,解得x<1或x>3,故原不等式的解集为{x|x<1或x>3}.(2)∵f(x)=|x-a|+|x+1|≥|(x-a)-(x+1)|=|a+1|,当(x-a)(x+1)≤0时取等号.∴若关于x的不等式f(x)<2的解集不是空集,只需|a+1|<2,解得-3<a<1,即实数a的取值范围是(-3,1).7.已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.解:(1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6,得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3,即|x -a 2|+|12-x |≥3-a2.又x -a 2|+|12-x=|12-a 2|,所以|12-a2|≥3-a2,解得a ≥2.所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R .(1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3<1,-2x ≤3≤x ≤2,≤3或>2,x -3≤3,解得0≤x <1或1≤x ≤2或2<x ≤3,所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3].(2)M ,所以当x f (x )≤f (x +1)-|x -a |恒成立,而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|,因为x |x -a |≤1,即x -1≤a ≤x +1,由题意,知x -1≤a ≤x +1对于任意的x 所以12≤a ≤2,故实数a 的取值范围为12,2.。

绝对值三角不等式的解法绝对值三角不等式取等条件

绝对值三角不等式的解法绝对值三角不等式取等条件

三角不等式等号成立的条件绝对值三角不等式|a||b||≤|a+b|≤|a|+|b|当a、b同号时,|a+b|=|a|+|b|成立;当a、b异号时,绝对值三角不等式||a||b||=|a±b|成立。

||a||b||≤|ab|≤|a|+|b|相反。

|a||b||≤|a+b|≤|a|+|b|的不等式当a、b同方向时(如果是实数,就是正负号相同)|a+b|=|a|+|b|成立;当a、b异向(如果是实数,就是ab正负号不同)时,||a||b||=|a±b|成立。

||a||b||≤|ab|≤|a|+|b|的不等式,当a、b异向(如果是实数,就是ab正负号不同)时,|ab|=|a|+|b|成立.当a、b同方向时(如果是实数,就是正负号相同)时,||a||b||=|ab|成立。

绝对值三角不等式公式||a||b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。

绝对值三角不等式定理绝对值三角不等式定理:|a||b|≤|a±b|≤|a|+|b|。

三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子。

三角不等式定理绝对值三角不等式公式||a||b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。

一个是||a||b||≤|a+b|≤|a|+|b|,这个不等式当a、b同方向时(如果是实数,就是正负符合相同)|a+b|=|a|+|b|成立。

当a、b异向(如果是实数,就是ab正负符合不同)时,||a||b||=|a±b|成立。

另一个是||a||b||≤|ab|≤|a|+|b|,这个等号成立的条件刚好和前面相反,当a、b异向(如果是实数,就是ab正负符合不同)时,|ab|=|a|+|b|成立。

当a、b同方向时(如果是实数,就是正负符合相同)时,||a||b||=|ab|成立。

绝对值三角不等式:1、基本形式如果a,b都是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立;2、变式如果a,b都是实数,则。

如何巧用绝对值三角不等式解题

如何巧用绝对值三角不等式解题

绝对值三角不等式:||a |-|b ||≤|a ±b |≤|a |+|b |.显然,当且仅当ab ≥0时等号成立.由该不等式可推出定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时等号成立;定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时等号成立.绝对值三角不等式在解答含有绝对值的不等式、函数问题中应用广泛,下面结合实例,来谈一谈如何巧妙运用绝对值三角不等式解题.一、求解绝对值不等式问题绝对值不等式问题有很多种,如解绝对值不等式、证明绝对值不等式、求绝对值不等式中参数的取值范围.解答此类问题,通常需先将不等式进行合理的变形,然后根据绝对值三角不等式将不等式进行放缩,以便使不等式左右两边的式子成为同构式,再利用函数的单调性来解不等式,或将问题转化为函数最值问题,利用函数的性质、图象来解题.例1.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是_____.解:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|,要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4.解答本题,主要利用了绝对值三角不等式.将问题转化为解绝对值不等式,通过解不等式,便可求得参数的取值范围.例2.已知二次函数f ()x =ax 2+bx +c 满足||f ()-1≤1,||f ()0≤2,||f ()1≤1,试证明:当||x ≤1时,不等式||f ()x ≤178成立.证明:由||f ()-1≤1,||f ()0≤2,||f ()1≤1,得ìíîïïf ()-1=a -b +c,f ()0=c,f ()1=a +b +c,即ìíîïïïïa =12f ()1-f ()0+12f ()-1,b =12f ()1-12f ()-1,c =f ()0,因此||f ()x =||ax 2+bx +c =|||éëùû12f ()1-f ()0+12f ()-1x 2|||+éëùû12f ()1-12f ()-1x +f ()0=|||12f ()1()x 2+x +f ()0()1-x 2|||+12f ()-1()x 2-x ≤12||f ()1|x 2+x +||f ()0|1-x 2+12·||f ()-1|x 2-x ≤12||x ||x +1+2||1-x 2+12||x ||x -1=12||x ·()x +1+2()1-x 2+12||x ()1-x =||x +2()1-x 2,当||x ≤1时,||x +2()1-x 2=||x +2()1-||x 2=-2·æèöø||x -142+178,其最大值为178,因此||f ()x ≤178.我们需先通过整体代换,用f ()-1、f ()1、f ()0来表示f ()x ,而||f ()x 中含有多个绝对值,为了证明不等式||f ()x ≤178,需巧妙利用绝对值三角不等式,将目标式进行放缩,从而去掉部分绝对值符号,将问题转化为求||x +2()1-||x 2的最值.二、解答含有绝对值的函数最值问题求解含有绝对值的函数最值问题,可巧用绝对值三角不等式,将含有绝对值的式子进行适当的放缩,使其简化,然后根据绝对值三角不等式取“=”的条件来寻找目标式取得最值时自变量的值.运用绝对值三角不等式,能使含有绝对值的函数最值问题变得简单,可省去许多对绝对值进行分类讨论的过程.例3.求函数y =||x +1+||x +2+…+||x +99的最小值.解:由绝对值三角不等式可得:||x +1+||x +99≥||()x +1-()x +99=98,当且仅当()x +1()x +99≤0时成立,即当-99≤x ≤-1时,“=”成立,因此,当-99≤x ≤-1时,()||x +1+||x +99min=98,当-98≤x ≤-2时,()||x +2+||x +98min =96,当-97≤x ≤-3时,()||x +3+||x +97min =94,⋯,当-51≤x ≤-49时,()||x +49+||x +51min =2,可得当x =-50时,y =||x +1+||x +2+…+||x +99=98+96+…+2+0=2450,即y =||x +1+||x +2+…+||x +99的最小值为2450.运用绝对值不等式求解含有绝对值的函数最值问题,需充分关注绝对值三角不等式:||a |-|b ||≤|a ±b |≤|a |+|b |取“=”时的情况.总之,在解答含有绝对值的不等式、函数问题时,同学们要注意将问题与绝对值三角不等式关联起来,灵活运用绝对值三角不等式,将含有绝对值的式子进行放缩,使其简化,再根据绝对值不等式、函数的性质来解题.(作者单位:江苏省南通市海门证大中学)思路探寻45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与绝对值不等式相关的判断 【技法点拨】
与绝对值不等式相关的判断方法与技巧 (1)判断一个不等式成立与否,往往是对影响不等号的因素进行 分析,如一个数的正、负、零等,数(或式子)的积、平方、取 倒数等都对不等号产生影响,注意考查这些因素在不等式中的 作用,一个不等式的成立与否也就比较好判断了.
(2)如果对不等式不能直接判断,往往需要对不等式化简整理或 变形后再利用绝对值不等式进行判断.
(A)|x-y|<2h
(B)|x-y|<2k
(C)|x-y|<h+k
(D)|x-y|<|h-k|
【解析】选C.|x-y|=|(x-a)+(a-y)|≤|x-a|+|a-y|
<h+k.
2.设ab>0,下面四个不等式中,
正确的是( )
①|a+b|>|a|;②|a+b|<|b|;
③|a+b|<|a-b|;④|a+b|>|a|-|b|.
1
f
(
1 2a
1 1, 2a
) … 1…7 ,…………………9分
8
a 0,


a


1, 2
a 28a 1 0,

a


1, 2
…………………………………………11分
a

2或a


1, 8
∴a=-2. ………………………………………………………12分
24
g(a)min=g(1)=x2+x-1=(x1 +
2
)25-
4
,…………………………4分
∴|f(x)|=|g(a)|≤|g(a)max|
=|(x 1)|2≤ 5, ……5…………………………………5分
24 4
∴|f(x)|的最大值为 …5……………………………………6分
4
(2)当a=0时②,f(x)=x;
4
4
22
[a( x 1)2 b( x 1) c][a( x 1)2 b( x 1) c]
2
2
2
2
f ( x 1) f ( x 1). …………………………………………6分
2
2
当-1≤x≤1时,0≤ ∴|f( x )1|≤1,|f(
2
x ≤11,-1≤ x≤10.
【解题设问】(1)本题解题的突破条件是什么? 当-1≤x≤1时,|f(x)|≤1. (2)证明|g(x)|≤2需要讨论a的取值范围吗?需要.
【规范答题】(1)当-1≤x≤1时,|f(x)|≤1,取x=0时,有 |c|=|f(0)|≤1,即|c|≤1…………………………………2分 (2)方法一:当a>0时,g(x)=ax+b在[-1,1]上是增函数. ∴g(-1)≤g(x)≤g(1). ∵|f(x)|≤1(-1≤x≤1),|c|≤1, ∴g(1)=a+b=f(1)-c≤|f(1)|+|c|≤2, g(-1)=-a+b=-f(-1)+c ≥-(|f(-1)|+|c|)≥-2. 由此得|g(x)|≤2……………………………………………5分
2.不等式 a b ≥1成立的充要条件是_____.
a |b|
【解析】1.∵0< n<1,∴lg <n0,
n 1
n 1
由x<5,并不能确定|x|与5的关系.
所以①②③均不成立.
又∵|x|lg ≤n 0,5|lg
n 1
故④成立.
|>0n,
n 1
答案:④
2.①当|a|>|b|时,有|a|-|b|>0,
如果a,b,c是实数,那么|a-b|≤|a定理2 b|+|b-c|,当且仅当(a-b)(b-c)≥0时,
等号成立.
1.|a+b|与|a|-|b|,|a-b|与|a|-|b|及|a|+|b|分别具有什么关 系? 提示:|a|-|b|≤|a+b|,|a|-|b|≤|a-b|≤|a|+|b|. 2.三个实数的绝对值不等式的几何意义是怎样的? 提示:数轴上任意一点到两点的距离之和,不小于这两点的距 离.
2.证明绝对值不等式的基本步骤 (1)对原式“拆项”“重组”,以期利用条件; (2)利用定理1或定理2进行转化; (3)化简、证明结论.
【典例训练】 1.已知ε>0,|x-a|<ε,|y-b|<ε, 求证:|(x+y)-(a+b)|<2ε. 2.设f(x)=x2-x+13,实数a满足|x-a|<1, 求证:|f(x)-f(a)|<2(|a|+1).
(A)①和②
(B)①和③
(C)①和④
(D)②和④
【解析】选C.∵ab>0,∴a,b同号,
∴|a+b|=|a|+|b|,∴①④正确.
3.不等式 a b <1成立的充要条件是( )
答案:|a|>|b|
【想一想】你知道如何证明|a|-|b|≤|a-b|≤|a|+ |b|吗? 提示:整体代换法:利用|a|-|b|≤|a+b|≤|a|+ |b|得|a|-|-b|≤|a+(-b)|≤|a|+|-b|, 即|a|-|b|≤|a-b|≤|a|+|b|.
求范围或最值 【技法点拨】
利用绝对值三角不等式求最值 绝对值三角不等式反映了绝对值之间的关系,有些对于y=|xa|+|x-b|或y=|x+a|-|x-b|型的函数最值求法,利用该 不等式或其几何意义更简捷、方便.
【典例训练】1.若x<5,n∈N+,则下列不等式:
① xlg n 5 lg n ;
n 1
n 1
② x lg n 5lg n ;
n 1 n 1
③ xlg n 5 lg n ;
n 1
n 1
④ x lg n 5 lg n .
n 1
n 1
其中,能够成立的有________.
【典例训练】1.若不等式|x-a|+|x-2|≥1对任意的实数x 均成立,则实数a的取值范围是______. 2.求函数f(x)=|x-3|+|x-1|的最小值,并求出取最小值时 x的范围.
【解析】1.解题流程:
审题
x a x 2 1 恒成立
转化
绝对值不等式的几何意义:数 轴上x到a与x到2的距离之和
【想一想】 本例2除了用定理2解答,你还有哪些方法? 提示:可利用绝对值不等式的几何意义,利用数轴求得最小值 为2.
含绝对值不等式的证明 【技法点拨】
1.含绝对值不等式的证明技巧 含绝对值不等式的证明题主要分两类: 一类是比较简单的不等式,往往可通过平方法、换元法去掉绝 对值转化为常见的不等式证明,或利用绝对值三角不等式性质 定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证 明;另一类是综合性较强的函数型含绝对值的不等式,往往可 考虑利用一般情况成立,则特殊情况也成立的思想,或利用一 元二次方程的根的分布等方法来证明.
当a=0时,g(x)=b,f(x)=bx+c.
∵-1≤x≤1,
∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2. …………………10分
综上所述,|g(x)|≤2.……………………………………12分
方法二:由 x x 12 x 12 ,
4
得g(x)=ax+b
a[x 12 x 12 ] b( x 1 x 1)
∴|a+b|≥||a|-|b||=|a|-|b|.
∴必有 a ≥b1,即|a|>|b|是
a |b|②当 a ≥b1时,由|a+b|>0,
a |b|
必有|a|-|b|>0,即|a|>|b|,故|a|>|b|是
a≥1b成立的必要条件.
a |b|
∴不等式成立的充要条件为|a|>|b|.
1.绝对值三角不等式
点击进入相应模块
1.理解绝对值的几何意义. 2.掌握绝对值三角不等式及其几何意义. 3.掌握三个实数的绝对值不等式及应用.
1.本课重点是绝对值不等式定理的几何意义及应用. 2.本课难点是用绝对值三角不等式的两个定理证明含绝对值的 不等式问题.
几何 意义
绝对值 不等式
绝对值 三角不 等式
2.不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件 不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是 ab≥0,左侧“=”成立的条件是ab≤0,且|a|≥|b|;不等式 |a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左 侧“=”成立的条件是ab≥0且|a|≥|b|.
【阅卷人点拨】通过阅卷后分析,对解答本题的失分警示和解 题启示总结如下:(注:此处的①②见规范解答过程)
【规范训练】(12分)已知a,b,c为实数,函数f(x)= ax2+bx+c,g(x)=ax+b,当-1≤x≤1时,|f(x)|≤1. 求证:(1)|c|≤1; (2)当-1≤x≤1时,|g(x)|≤2.
含参数的绝对值不等式的应用
【典例】(12分)设a∈R,函数f(x)=ax2+x-a(-1≤x≤1).
(1)若|a|≤1,求|f(x)|的最大值. (2)求a的值,使函数f(x)有最大值 17 .
8
【规范解答】
【规范解答】(1)设g(a)=f(x)=ax2+x-a =(x2-1)a+x……………………………………………………1分 ∵-1≤x≤1, 当x=±1时,|f(x)|=|g(a)|=1; 当x≠±1时,x2-1<0,g(a)=(x2-1)a+x是单调递减函数…2分 ∵|a|≤1,∴-1≤a≤1,① ∴g(a)max=g(-1)=-x2+x+1 (x 1),…2 …5 …………………………………………3分
相关文档
最新文档