中学三角函数不等式
三角函数不等式练习题及解答

三角函数不等式练习题及解答一、简介三角函数是数学中的一类特殊函数,包括正弦函数、余弦函数和正切函数等。
在解三角函数不等式时,我们需要运用这些函数的性质和相关的数学知识。
本文将为大家提供一些三角函数不等式的练习题及解答,帮助大家更好地掌握这一内容。
二、练习题与解答1. 解不等式sin(x) > 0的解集。
解析:根据正弦函数的性质可知,当角度x在区间(0, π)和(2π, 3π)等以π为周期的区间时,sin(x) > 0。
因此,该不等式的解集为S = {x | x∈ (0, π) ∪ (2π, 3π)}。
2. 解不等式cos(2x) ≥ 0的解集。
解析:将不等式转化为等价形式,cos(2x) = 0。
则有2x = π/2 + kπ (k 为整数) 或2x = 3π/2 + kπ (k为整数)。
化简得x = π/4 + kπ/2 或x = 3π/4+ kπ/2。
因此,该不等式的解集为S = {x | x ∈ [π/4 + kπ/2, 3π/4 + kπ/2],k为整数}。
3. 解不等式tan(x) < 2的解集。
解析:tan(x) < 2可转化为tan(x) - 2 < 0。
根据正切函数的性质可知,tan(x) - 2 < 0的解集为角度x在区间(-π/4, arctan(2))和(arctan(2) + kπ, π/4+ kπ),其中k为整数。
因此,该不等式的解集为S = {x | x ∈ (-π/4, arctan(2)) ∪ (arctan(2) + kπ, π/4 + kπ),k为整数}。
4. 解不等式sin(3x) ≤ cos(2x)的解集。
解析:将不等式转化为等价形式得sin(3x) - cos(2x) ≤ 0。
对于这种类型的不等式,我们可以使用图像法和代数法来求解。
图像法解析:将sin(3x)和cos(2x)的图像绘制在同一坐标系中,找到它们的交点,即满足sin(3x) - cos(2x) ≤ 0的解集。
数学中的三角恒等式与三角不等式

数学中的三角恒等式与三角不等式三角恒等式是指在三角函数中成立的等式关系,而三角不等式则是指在三角函数中成立的不等式关系。
这两个概念在数学中具有重要的意义,不仅在解题过程中有着广泛的应用,而且在理论推导和证明中也起到了关键的作用。
本文将从三角恒等式和三角不等式的定义、性质以及应用等方面进行论述。
一、三角恒等式1. 定义三角恒等式是指在三角函数中成立的等式关系。
常见的三角恒等式包括正弦函数、余弦函数和正切函数的恒等式。
例如,正弦函数的恒等式sin^2θ + cos^2θ = 1是最为著名的三角恒等式之一。
2. 性质三角恒等式具有以下几个重要的性质:(1)对于任意实数θ,三角恒等式都成立;(2)三角恒等式在数学推导和证明中起到了重要的作用;(3)三角恒等式可以用来简化复杂的三角函数表达式;(4)三角恒等式的证明可以通过几何方法、代数方法以及三角函数的性质等多种途径。
3. 应用三角恒等式在数学中有着广泛的应用,特别是在解三角方程、求极限、求导数等方面。
通过运用三角恒等式,可以简化问题的解题过程,提高解题的效率。
此外,三角恒等式在物理学、工程学等实际应用中也有着重要的作用。
二、三角不等式1. 定义三角不等式是指在三角函数中成立的不等式关系。
常见的三角不等式包括正弦函数、余弦函数和正切函数的不等式。
例如,正弦函数的不等式sinθ < 1是最为常见的三角不等式之一。
2. 性质三角不等式具有以下几个重要的性质:(1)对于任意实数θ,三角不等式都成立;(2)三角不等式可以用来判断三角函数的取值范围;(3)三角不等式在数学推导和证明中起到了重要的作用;(4)三角不等式的证明可以通过几何方法、代数方法以及三角函数的性质等多种途径。
3. 应用三角不等式在数学中也有着广泛的应用。
它可以用来证明三角函数的性质,判断三角函数的增减性,以及解决与三角函数相关的不等式问题。
此外,三角不等式在几何学、物理学等领域中也有着重要的应用。
高中三角函数三角函数的不等式与最值问题

高中三角函数三角函数的不等式与最值问题在高中数学学习中,三角函数是一个重要的章节。
除了学习三角函数的定义、性质和图像等基本知识外,我们还需要掌握三角函数的不等式和最值问题的解决方法。
本文将为大家详细介绍高中三角函数的不等式与最值问题,并提供相应的解决思路和方法。
一、三角函数的不等式1. 正弦函数的不等式正弦函数的定义域为实数集,而正弦函数的值的范围在[-1, 1]之间。
因此,当我们解决正弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的正弦函数转化为关于θ的等价不等式;(3)根据正弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式sinθ > 0,我们可以按照上述步骤进行求解:(1)由于正弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式sinθ > 0转化为等价不等式:0 < sinθ < 1;(3)根据正弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (2kπ, 2kπ + π/2),其中k ∈ Z。
2. 余弦函数的不等式余弦函数的定义域为实数集,而余弦函数的值的范围在[-1, 1]之间。
因此,当我们解决余弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的余弦函数转化为关于θ的等价不等式;(3)根据余弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式cosθ ≥ 0,我们可以按照上述步骤进行求解:(1)由于余弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式cosθ ≥ 0转化为等价不等式:cosθ > -1 或cosθ < 1;(3)根据余弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (-2kπ, -2kπ + π/2) U (2kπ, 2kπ + π),其中k ∈ Z。
初中数学知识点三角函数的方程与不等式

初中数学知识点三角函数的方程与不等式初中数学知识点:三角函数的方程与不等式三角函数在初中数学中是一个重要的知识点,它不仅应用广泛,而且在解方程和不等式中起到了关键作用。
本文将介绍三角函数方程和不等式的基本概念、解法和一些常见的例题。
一、三角函数的基本概念1. 正弦函数和余弦函数在解析几何中,正弦函数和余弦函数描述了一个单位圆上一点的坐标。
对于角度θ,正弦函数sin(θ)等于y坐标,余弦函数cos(θ)等于x坐标。
它们的定义域是实数集,值域是[-1, 1]。
2. 正切函数和余切函数正切函数tan(θ)等于正弦函数除以余弦函数,余切函数cot(θ)等于余弦函数除以正弦函数。
它们的定义域是实数集,但在θ为90°的倍数时,正切函数和余切函数的值不存在。
3. 反三角函数为了解决三角函数方程和不等式,我们需要借助反三角函数。
反正弦函数arcsin(x)、反余弦函数arccos(x)和反正切函数arctan(x)分别表示对应三角函数的角度值。
它们的定义域是[-1, 1],值域是[-π/2, π/2]。
二、三角函数方程的解法1. 根据定义法解方程当三角函数方程中出现特定角度值时,可以直接利用三角函数的定义求解。
例如,对于sin(θ) = 0,解为θ = 0°,180°,360°,...2. 利用三角函数的周期性解方程由于三角函数具有周期性,对于形如sin(θ) = sin(α)或cos(θ) = cos(α)的方程,可利用周期性求解。
例如,对于sin(θ) = sin(α),解为θ = α +2kπ或θ = π - α + 2kπ,其中k为整数。
3. 利用反三角函数解方程当三角函数方程中出现反三角函数时,可以利用反三角函数解方程。
例如,对于sin(θ) = a,解为θ = arcsin(a) + 2kπ或θ = π - arcsin(a) + 2kπ,其中k为整数。
三、三角函数不等式的解法1. 利用图像法解不等式通过绘制三角函数的图像,并根据其递增递减性质,可以解决一些简单的三角函数不等式。
三角函数型不等式恒成立问题的7种策略

三角函数型不等式恒成立问题的7种策略
三角函数型不等式是一系列十分重要的数学问题,它往往会让学生困惑,因此,学习它的有效策略,是不可缺少的。
下面介绍一些解决三角函数型不等式问题的策略:
一、掌握三角函数加强基础:搞清三角函数的定义,学会把几何图形映射到三
角函数的概念;掌握三角函数的性质,对不等式的解及解题思路做正确的认识;学会三角函数的各种运算,以及它们的图像和几何意义。
二、学会分类解题:将三角函数型不等式分成几类来解决,如按不等式中函数
的奇偶性,及不等式转移性来解题,有一定的规律,也更方便理解它的每一个解;
三、熟记基本定理:学习和理解像柯西不等式、分式不等式、有理函数不等式
等基本定理,以及它们的证明过程,尤其是分歧不等式定理等,可以加深对三角函数型不等式的理解;
四、合理分解:将复杂的三角函数的不等式分解成几个解决起来比较容易的不
等式,然后将其逐个解答,把一个很长的不等式变成几个比较小的不等式,以便于解决;
五、学会使用图论:分图法,是三角函数型不等式问题最常用的解决方法,它
要求我们在象限上画出性质函数的图形,由于几何图像可以使不等式变得更清晰;
六、探究三角函数的关系:学习和理解相关的公式,学会把一些经典例题及它
们之间的联系记住;
七、练习精解三角函数:背诵常用的公式和定理:通过多练习,使自己能更敏
锐地发现问题的特点,从而更准确、快速地解答不等式。
以上是解决三角函数型不等式问题的7种策略,希望可以为学生提供一定的帮助,让他们更加明白三角函数型不等式,学会如何有效解决这类问题,为研究长进打下坚实的基础。
高考数学 三角函数和不等式

三角函数一.三角函数的图象和性质sin cos x x ≤≤11,yxO-π2 π2πy t g x =对称点为,,k k Z π20⎛⎝ ⎫⎭⎪∈ ()y x k k k Z =-+⎡⎣⎢⎤⎦⎥∈s i n 的增区间为,2222ππππ ()减区间为,22232k k k Z ππππ++⎡⎣⎢⎤⎦⎥∈ ()()图象的对称点为,,对称轴为k x k k Z πππ02=+∈ []()y x k k k Z =+∈c o s的增区间为,22πππ []()减区间为,222k k k Z ππππ++∈()图象的对称点为,,对称轴为k x k k Z πππ+⎛⎝⎫⎭⎪=∈2y x k k k Z =-+⎛⎝⎫⎭⎪∈t a n 的增区间为,ππππ22 二.()()[]ϕωϕω+=x A y cos +x Asin =y .或的图象和性质要熟记。
正弦型函数 ()振幅,周期12||||A T =πω ()若,则为对称轴。
f x A x x 00=±=()()若,则,为对称点,反之也对。
f x x 0000= ()五点作图:令依次为,,,,,求出与,依点202322ωϕππππx x y + (x ,y )作图象。
()根据图象求解析式。
(求、、值)3A ωϕ如图列出ωϕωϕπ()()x x 1202+=+=⎧⎨⎪⎩⎪解条件组求、值ωϕ()∆正切型函数,y A x T =+=tan ||ωϕπω 三.三角函数的图象和性质的应用. 1。
在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
如:,,,求值。
cos x x x +⎛⎝⎫⎭⎪=-∈⎡⎣⎢⎤⎦⎥πππ62232 (∵,∴,∴,∴)ππππππππ<<<+<+==x x x x 327665365413122. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗? 如:函数的值域是y x x =+sin sin||[][](时,,,时,,∴,)x ≥=∈-<=∈-02220022y x x y y sin 3. 熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换)平移公式:()点(,),平移至(,),则1P x y a h k P x y x x h y y k →=−→−−−−−=+=+⎧⎨⎩()''''' ()曲线,沿向量,平移后的方程为,200f x y a h k f x h y k ()()()==--=→如:函数的图象经过怎样的变换才能得到的y x y x =-⎛⎝⎫⎭⎪-=2241sin sin π图象? (横坐标伸长到原来的倍y x y x =-⎛⎝⎫⎭⎪-−→−−−−−−−−−=⎛⎝ ⎫⎭⎪-⎡⎣⎢⎤⎦⎥-22412212412sin sin ππ =-⎛⎝ ⎫⎭⎪-−→−−−−−−=-−→−−−−−−=24142121sin sin sin x y x y x ππ左平移个单位上平移个单位纵坐标缩短到原来的倍)12−→−−−−−−−−−=y x sin 四.公式的联系1..熟练掌握同角三角函数关系和诱导公式如:··142222=+=-===sin cos sec tan tan cot cos sec tanααααααααπ ===sincos π20……称为的代换。
高考数学中的三角函数方程与不等式求解技巧

高考数学中的三角函数方程与不等式求解技巧高考数学中,三角函数方程和不等式的求解是一个重要的考点。
掌握了相关的求解技巧,不仅可以提升数学成绩,还能在解决实际问题时起到关键作用。
本文将介绍一些常见的三角函数方程和不等式求解技巧,希望能对广大考生有所帮助。
一、三角函数方程的求解技巧1. 化简与等价变形在解三角函数方程时,首先要将复杂的方程化简为简单的形式。
通过等价变形,将方程转化为更易求解的形式,例如利用倒数公式、和差化积公式、和差化简等。
2. 观察周期性大多数三角函数具有周期性。
因此,在求解三角函数方程时,要充分利用函数图像的周期性质。
可以通过观察函数值的变化规律,找到方程在一个周期内的解,并推广到整个定义域。
3. 递推思想当遇到复杂的三角函数方程时,可以通过递推思想来解决。
即将方程中的变量逐步代入,化简为只含有一个未知数的方程,并逐步求解得到最终结果。
4. 回代与验证在得到方程的解后,要进行回代与验证。
将解代入原方程,验证等式是否成立。
如果成立,则解是方程的解;如果不成立,则需要重新检查求解过程。
二、三角函数不等式的求解技巧1. 图像法在解三角函数不等式时,可以绘制函数的图像来直观地找到不等式的解集。
通过观察图像的上升和下降趋势,确定不等式的取值范围。
2. 移项与化简与方程求解类似,不等式的求解也要通过移项和化简来将复杂的不等式转化为简单的形式。
通过等价变形,将不等式转化为更易求解的形式。
3. 考虑周期性与对称性三角函数的周期性和对称性是解三角函数不等式的重要技巧。
利用函数图像的周期性和对称性,可以将不等式的解集缩小到一个周期内,然后推广到整个定义域。
4. 关系式的转化有时候,将不等式转化为等价的关系式,可以更方便地求解。
例如,将不等式化为方程,然后根据方程的解集求解不等式的解集。
总结:高考数学中的三角函数方程与不等式求解技巧可以通过化简与等价变形、观察周期性、递推思想、图像法、移项与化简、考虑周期性与对称性、关系式的转化等方法来解决。
第24讲_三角不等式

第四讲 三角不等式含有未知数的三角函数的不等式叫做三角不等式.三角不等式首先是不等式,因此,处理不等式的常用方法如配方法、比较法、放缩法、基本不等式法、反证法、数学归纳法等也是解决三角不等式的常用方法.其次,三角不等式又有自己的特点——含有三角式,因而三角函数的单调性、有界性以及图像特征、三角公式及三角恒等变形的方法等都是处理三角不等式的常用工具.A 类例题例1 已知α、β为锐角,且()02x παβ+->,求证对一切0x ≠,有(cos )(sin )x x αβ<分析 要证的不等式两边均为指数式,且指数相同,可考虑利用函数()f x x α=的单调性,因此首先应比较cos α与sin β的大小,而函数()f x x α=的单调性与α的符号有关,可分情况讨论.证明 (1)若x >0,则2παβ+>,则022ππβα>>->,由正弦函数的单调性,得0sin()sin 12παβ<-<<,即0cos sin 1αβ<<<,又x >0,故有(cos )(sin )x x αβ<.(2)若x <0,则2παβ+<,则022ππβα<<-<,由正弦函数的单调性,得0s i n s i n ()12πβα<<-<,即0s i n c o s 1βα<<<,又x <0,故有(cos )(sin )x x αβ<.说明 比较不同角的正弦与余弦的大小,可先化同名,再利用正余弦函数的单调性比较,而一组2πα±的诱导公式是实现正、余弦转化的有力工具.例2 已知0απ<<,试比较2sin2α和cot 2α的大小.分析 两个式子分别含有2α与2α的三角函数,故可考虑都化为α的三角函数,注意到两式均为正,可考虑作商来比较.解法一2sin 21cos 4sin cos tan4sin cos 2sin cot2ααααααααα-== =2214cos 4cos 4(cos )12ααα-=--+,∵0απ<<,所以当1cos 2α=,即3πα=时,上式有最大值1,当0απ<<且3πα≠时,上式总小于1.因此,当3πα=时,2sin2α=cot2α;当0απ<<且3πα≠时,2sin2α<cot2α.解法二 设tan2t α=,由0απ<<得022απ<<,故tan 02t α=>,则1cot 2tα=,2224(1)22sin 24sin cos (1)t t t ααα-⋅==+,于是有 cot 2α-2sin2α=2422222222214(1)2961(31)0(1)(1)(1)t t t t t t t t t t t -⋅-+--==≥+++ 因此,当3πα=时,2sin2α=cot 2α;当0απ<<且3πα≠时,2sin2α<cot2α.例3 已知[0,]x π∈,求证:cos(sin x )>sin(cos x )分析一 从比较两数大小的角度来看,可考虑找一个中间量,比cos(sin x )小,同时比sin(cos x )大,即可证明原不等式.证法一 (1)当0,,2x ππ=时,显然cos(sin x )>sin(cos x )成立.(2)当2x ππ<<时,0s i n 12x π<<<,cos 02x π-<<,则cos(sin x )>0>sin(cos x ). (3)当02x π<<时,有0<sin x <x <2π,而函数y =cos x 在(0,)2π上为减函数,从而有cos(sin x )>cos x ;而0c o s 2x π<<,则sin(cos x )<cos x ,因此cos(sin x ) >cos x >sin(cos x ),从而cos(sin x )>sin(cos x ).分析二 cos(sin x )可看作一个角sin x 的余弦,而sin(cos x )可看作一个角cos x 的正弦,因此可考虑先用诱导公式化为同名三角函数,再利用三角函数的单调性来证明.证法二 当02x π<<时,有0<sin x <1,0<cos x <1,且sin x +cos x )4x π+2π≤,即0<sin x <2π-cos x <2π,而函数y =cos x在(0,)2π上为减函数,所以cos(sin x )>cos(2π-cos x )=sin(cos x ),即cos(sin x )>sin(cos x ).x 在其他区域时,证明同证法1.说明 (1)本题的证明运用到结论:(0,)2x π∈时,sin tan x x x <<,这是实现角与三角函数值不等关系转化的重要工具,该结论可利用三角函数线知识来证明.(2)证法一通过中间量cos x 来比较,证法二利用有界性得sin x +cos x 2π<,再利用单调性证明,这是比较大小常用的两种方法;(3)本题结论可推广至x R ∈.情景再现1.在锐角△ABC 中,求证: sin sin sin cos cos cos A B C A B C ++>++.2.已知,(0,)2x y π∈,tan 3tan x y =,求证:6x y π-≤.3.当[0,]2x π∈时,求证:coscos sinsin x x >.B 类例题例4 在ABC ∆中,证明: sin sin sin A B C ++≤分析一 本题中有三个变量A 、B 、C ,且满足A +B +C =180°,先固定其中一个如角C ,由于A +B =180°- C ,故对不等式的左边进行和差化积,将其转化为与A -B 有关的三角函数进行研究.证法一 我们先假定C 是常量,于是A +B =π-C 也是常量.sin sin sin 2sincos sin 22A B A B A B C C +-++=+2cos cos sin 22c A BC -=+,显然,对于同一个C 值,当A =B 时,上式达到最大值.同样,对同一个A 或B ,有类似结论;因此,只要A 、B 、C 中任意两个不等,表达式sin sin sin A B C ++就没有达到最大值,因而,当A =B =C =3π时,sin sin sin A B C ++,∴原不等式得证. 说明 不等式中含有多个变量时,我们往往固定其中部分变量,求其他变量变化时,相应表达式的最值,这种方法称为逐步调整法.分析二 即证sin sin sin 3A B C ++观察左边的形式,从而考虑用琴生不等式进行证明.证法二 函数sin y x =是区间(0,π)上的上凸函数,从而对任意的三个自变量123,,(0,)x x x π∈,总有123123sin sin sin sin()33x x x x x x ++++≥,等号当123x x x ==时成立.因此有sin sin sin sin()33A B C A B C++++≥,从而有sin sin sin 180sin 33A B C ++︒≤=,因此原不等式成立. 说明 本方法是利用凸函数性质解题,三角函数在一定区间内均为凸x )为上凸函数,不等号反向.例5 已知,,x y z R ∈,02x y z π<<<<.求证:2sin cos 2sin cos sin 2sin 2sin 22x y y z x y zπ++>++(90年国家集训队测试题)分析 将二倍角均化为单角的正余弦,联想单位圆中的三角函数线,两两正余弦的乘积联想到图形的面积.证明 即证sin cos sin cos sin cos sin cos sin cos 4x y y z x x y y z z π++>++即证明sin (cos cos )sin (cos cos )sin cos 4x x y y y z z z π>-+-+注意到上式右边是如图所示单位圆中三个阴影矩形的面积之和,而4π为此单位圆在第一象限的面积,所以上式成立,综上所述,原不等式成立.例6 63)cos()2sin 24sin cos a πθθθθ+-+-+36a <+对于[0,]2πθ∈恒成立.求a 的取值范围.(2004年首届东南地区数学奥赛试题)分析 所给不等式中有两个变量,给出其中一个的范围,求另一个的范围,常采用分离变量的方法.注意到与角θ有关的几个三角函数式,cos()cos )4πθθθ-=+,sin22sin cos θθθ=,因此考虑令sin cos x θθ+=进行变量代换,以化简所给不等式,再寻求解题思路.解 设sin cos x θθ+=,则2cos(),sin 2142x x πθθ-==-,当[0,]2πθ∈时,x ⎡∈⎣.从而原不等式可化为:26(23)2(1)36a x x a x ++--<+,即26223340x ax x a x ---++>,222()3()0x x a x a x x +--+->,()2(23)0(1)x x a x x ⎛⎫⎡-+->∈ ⎪⎣⎝⎭∴原不等式等价于不等式(1),1,,230x x ⎡∈∴-<⎣(1)不等式恒成立等价于()20x a x x⎡+-<∈⎣恒成立.从而只要m a x 2()()a x x x ⎡>+∈⎣.又2()f x x x =+在⎡⎣上递减,m a x 2()3()x x x⎡∴+=∈⎣,所以3a >. 例7 三个数a ,b ,c ∈(0,)2π,且满足cos a a =,sincos b b =,cossin c c =,按从小到大的顺序排列这三个数.(第16届全苏竞赛题)分析 比较a ,b ,c 三数的大小,cos a a =,sincos cos b b b =<,cossin cos c c c =>,等式的两边变量均不相同,直接比较不易进行,故考虑分类讨论,先比较a 与b ,由cos sin cos a ab b==,对等号两边分别比较,即先假定一边的不等号方向,再验证另一侧的不等号方向是否一致.解 (1)若a b =,则cos si n cos a a =,但由c o s a (0,)2π∈,故有cos si n cos a a >矛盾,即a ≠b .(2)若a b <,则由单调性可知cos cos a b >,又由a b <及题意可得cos sincos a b <,而sincos cos b b <,因此又可得cos cos a b <,从而产生矛盾.综上,a b >.类似地,若c a =,则由题意可得cos cossin a a =,从而可得sin a a =与sin a a >矛盾;若c a <,则s i n s i n c a a <<,即s i n c a <,cossin cos c a ∴>,即c a >矛盾.综上可得:b a c <<.说明 本题的实质是用排除法从两个实数的三种可能的大小关系排除掉两种,从而得第三种,体现了“正难则反”的解题策略.情景再现4.在三角形ABC 中,求证:(1)3sinsin sin 2222A B C ++≤;(2)sin sin sin A B C . 5.设12x y z π≥≥≥,且2x y z π++=,求乘积cos sin cos x y z 的最值.(1997年全国高中数学联赛)6.求证:|sin cos tan cot sec csc |1x x x x x x +++++≥(2004年福建省数学竞赛题)C 类例题例8 已知当[0,1]x ∈时,不等式22cos (1)(1)sin 0x x x x θθ--+->恒成立,试求θ的取值范围.(1999年全国高中数学联赛题)分析一 不等式左边按一、三两项配方,求出左边式子的最小值,根据最小值应当为正求出θ的取值范围.解法一 设22()cos (1)(1)sin f x x x x x θθ=--+-, 则由[0,1]x ∈时()0f x >恒成立,有(0)sin 0f θ=>,(1)cos 0f θ=>,22()([(12(12(1f x x x x x x ∴=+----(1)x x --21[(12(1)(02x x x =--->,当x =(10x -=,令0x =,则001x <<,0001()2(1)02f x x x =->12>,即1sin 22θ>,且sin 0,cos 0θθ>>,所求范围是:522,1212k k k Z ππθππ+<<+∈,反之,当522,1212k k k Z ππθππ+<<+∈时,有1sin 22θ>,且s i n 0,c o s 0θθ>>,于是只要[0,1]x ∈必有()0f x >恒成立.分析二 不等式左边视为关于x 的二次函数,求出此二次函数的最小值,令其大于0,从而求出θ的取值范围.解法二 由条件知,cos 0,sin 0θθ>>,若对一切[0,1]x ∈时,恒有()f x =22cos (1)(1)sin 0x x x x θθ--+->,即2()(cos 1sin )(12sin )sin 0f x x x θθθθ=++-++>对[0,1]x ∈时恒成立,则必有cos (1)0,sin (0)0f f θθ=>=>,另一方面对称轴为12sin 2(cos sin 1)x θθθ+=++[0,1]∈,故必有24(cos sin 1)sin (12sin )04(cos sin 1)θθθθθθ++-+>++,即4cos sin 10θθ->,1sin 22θ>,又由于cos 0,sin 0θθ>>故522,1212k k k Z πππθπ+<<+∈. 分析三 原不等式看作关于x 与1-x 的二次齐次式,两边同除x (1-x ). 解法三 原不等式化为:x 2cos θ+(1-x )2sin θ>x (1-x ),①x =0得sin θ>0,x =1得cos θ>0;②当x ≠0且x ≠1时,上式可化为:1x x -cos θ+1x x-sin θ>1对x ∈(0,1)恒成立,由基本不等式得1x x -cos θ+1xx-sin θ≥,∴1x x -cos θ+1xx-sin θ的最小值为,等号当1x x -cos θ=1x x -sin θ即x =时取到,因此.∴1sin 22θ>,又由于cos 0,sin 0θθ>>故522,1212k k k Z πππθπ+<<+∈. 例9已知,,,a b A B 都是实数,若对于一切实数x ,都有()1cos sin cos2sin 20f x a x b x A x B x =----≥,求证:222a b +≤,221A B +≤.(1977第十九届IMO ) 分析 根据函数式的特征及所要证明的式子易知,应首先将不等式化成()1))0f x x x θϕ=++≥,其中x 为任意实数,注意到所要证的结论中不含未知数x ,故考虑用特殊值方法.证明 若220a b +=,220A B +=,则结论显然成立; 故下设220a b +≠,220A B +≠: 令sin θθϕϕ===()1))f x x x θϕ=++,即对于一切实数x ,都有()1))0f x x x θϕ=++≥(1)()1))02f x x x πθϕ+=++≥ (2)(1)+(2)得:2)cos()]0x x θθ+++≥,即sin()cos()x x θθ+++≤对于一切实数x ≥因此222a b +≤.()1))0f x x x πθϕ+=++≥ (3)(1)+(3)得:2)0x ϕ-+≥,即sin(2)x ϕ+1≥,∴ 221A B +≤.例10 设αβγπ++=,求证:对任意满足0x y z ++=的实数,,x y z 有222sin sin sin 0yz zx xy αβγ++≤分析 由0x y z ++=消去一个未知数z ,再整理成关于y 的二次不等式,对x 恒成立,即可得证.证明 由题意,则将()z x y =-+代入不等式左边得, 不等式左边=2222222[sin sin (sin sin sin )]y x xy αβαβγ-+++- (1)当sin 0α=,易证不等式左边0≤成立.;(2)当sin 0α≠,整理成y 的二次方程,证△≤0. 左边2222(sin sin sin )[sin ]2sin x y αβγαα+-=-+22222222[(sin sin sin )4sin sin ]4sin x αβγαβα+--+, 由222222(sin sin sin )4sin sin αβγαβ+--222222(sin sin sin 2sin sin )(sin sin sin 2sin sin )αβγαβαβγαβ=+-++--2sin sin [1cos()]2sin sin [1cos()]αβαβαβαβ=-+⋅--+2224sin sin [1cos ()]0αβαβ=--+≤,∴22222222[(sin sin sin )4sin sin ]4sin x αβγαβα+--0≤,∴不等式左边0≤成立.情景再现7.证明:对于任意△ABC ,不等式a cos A +b cos B +c cos C ≤p 成立,其中a 、b 、c 为三角形的三边,A 、B 、C 分别为它们的对角,p 为半周长.(第十六届全俄数学竞赛题)8.设,,αβγ是一个锐角三角形的三个内角,求证:sin sin sin tan tan tan 2αβγαβγπ+++++>习题1.求证:对所有实数,x y ,均有22cos cos cos 3x y xy +-<. 2.在锐角三角形ABC 中,求证: tan tan tan 1A B C > 3.在锐角三角形ABC 中.求证: sin sin sin 2A B C ++>4.求证:222sin (cos(sin )sin(cos )2sin (44x x ππ≤-≤5.已知,(0,)2παβ∈,能否以sin ,sin ,sin()αβαβ+的值为边长,构成一个三角形?6.已知,αβ为锐角,求证:2222119cos sin sin cos ααββ+≥ 7.已知A +B +C =π,求证:222tan tan tan 1222A B C ++≥ 8.在三角形ABC 中,角A 、B 、C 的对边为a 、b 、c ,求证:3π≥++++c b a cC bB aA .9.设A 、B 、C 为锐角三角形之内角,n 为自然数,求证:12tan tan tan 3nnnnA B C +++≥.(93年第三届澳门数学奥林匹克赛题)10.已知02πθ<<,,0a b >,求证:223332()sin cos a b a b θθ+≥+11.设P 是三角形ABC 内任一点,求证:∠P AB ,∠PBC ,∠PCA 中至少有一个小于或等于30°.12.解方程coscoscoscos sinsinsinsin x x =(1995年全俄竞赛题)本节“情景再现”解答:1.证明:锐角三角形可知A+B 2π<,从而A 2π<-B ,从而sin cos A B >,同理sin cos ,sin cos B C C A >>,三式相加得证.2.证明:由已知得tan 3tan tan x y y =>及,(0,)2x y π∈知,x y >,从而(0,)2x y π-∈,要证6x y π-≤,只须证明tan()tan 6x y π-≤=,由于2tan tan 2tan tan()1tan tan 13tan x y yx y x y y--==++,于是问题归结为证22tan 13tan y y ≤+,即21)0y -≥,而上式显然成立,因此原不等式成立.3.证法一:当x ∈(0,2π)时,∵0<sin x <x <2π,∴sinsin x <sin x ,再比较sin x 与coscos x 的大小,由sin x =cos (2π-x ),即比较(2π-x )与cos x ,而cos x =sin (2π-x ),因此(2π-x )>cos x ,从而cos (2π-x )<coscos x ,即sin x <coscos x ,从而得证.证法二: sin x +cos x 2π≤,即0<cos x <2π-sin x <2π, 所以cos(cos x )>cos(2π-sin x )=sin(sin x ). 4.证明:(1)由琴生不等式即得.(2sin sin sin sin 33A B C A B C ++++≤,从而得证. 5.解:由条件知,312x y z ππ≥≥≥≥,()222123x y z ππππ=-+≤-⨯=,sin()0y z -≥,于是cos sin cos x y z =1cos [sin()sin()]2x y z y z ++-1cos sin()2x y z ≥+22111cos cos 2238x π=≥=,当,312x y z ππ===时取等号,故最小值为18(y 与z 相等,且x 达到最大时,乘积有最小值).又cos sin cos x y z =1cos [sin()sin()]2z x y x y +--211cos sin()cos 22z x y z ≤+=21cos 212π≤,且当5,1224z x y ππ===时等号成立,故cos sin cos x y z6.证明:设()|s i n c o s t a n c o t f x x x x x x x=+++++,sin cos t x x=+,则有21sin cos 2t x x -=,2222()||11t f x t t t =++--22|||11|11t t t t =+=-++-- 当1t >时,2()1111f x t t =-++≥-; 当1t <时,2()(1)111f x t t =--+-≥-因此|sin cos tan cot sec csc |1x x x x x x +++++≥.7.证明:因为cos x (x ∈(0,π))递减,所以a -b 与cos A -cos B 异号,从而(a -b )(cos A -cos B )≤0.即a cos A +b cos B ≤a cos B +b cos A =C (l )当且仅当a =b 时等号成立.同理a cos A +c cos C ≤b (2) b cos B +c cos C ≤a (3),1[(1)(2)(3)]2⨯++即得所要证的不等式. 8.证明:2242tan2tan4tan222sin tan 4tan 21tan 1tan 1tan 222ααααααααα+=+=>+--, 0,tan,sin tan 4tan22222πααααααα<<∴>∴+>>,同理得另两个,命题得证.“习题”解答:1.证明:22cos cos cos 3x y xy +-≤显然成立,下面证明等号不能成立.用反证法.若等号成立,则22cos 1,cos 1,cos 1x y xy ===-,则222,2,,*x k y n k n N ππ==∈,则2224,,*x y nk k n N π=∈,则,,*xy k n N =∈,cos 1xy ≠-,因此等号不成立.2.证明:锐角三角形可知A+B 2π<,从而A 2π<-B ,从而sin cos A B >,同理sin cos ,sin cos B C C A >>,三式相乘得sin sin sin cos cos cos A B C A B C >.从而可得tan tan tan 1A B C >.3.解:22sin sin ,sin sin A A B B >>,sin sin()sin cos cos sin C A B A B A B =+=+22cos cos cos cos cos cos B B A A B A >+=+,三式相加得证.4.证明:cos(sin )sin(cos )cos(sin )cos(cos )2x x x x π-=--cos sin cos sin 2sin()sin()4242x x x xππ+-=--又cos sin 2x x ±≤ cos sin 4424x x πππ±≤-≤,又04π>,4π2π<,由正弦函数在[0,]2π上的单调性可知,原不等式成立.5.证法一:sin sin 2sincos2sincossin()2222αβαβαβαβαβαβ+-+++=>=+ |sin sin |2cos|sin|2cossinsin()2222αβαβαβαβαβαβ+-++-=<=+,因此可以构成三角形.证法二:在直径为1的圆内作内接三角形ABC ,使,A B αβ∠=∠=,()C παβ∴∠=-+则sin ,sin ,sin()BC AC AB αβαβ===+,因此可构成三角形.6.解:左222222214145tan 4cot 9cos sin sin 2cos sin ααααβαα=+≥+=++≥. 7.证:左tantan tan tan tan tan 222222A B B C C A ≥++ tan tan tan (tan tan )22222A B C B A=++ tantan cot tan (1tan tan )1222222A B A B A B A B ++≥+-=8.分析:注意到π可写成A +B +C ,故即证:3(aA +bB +cC )≥(a +b +c )π,即证3(aA +bB +cC )≥(a +b +c )(A +B +C ),即证(a -b )(A -B )+(b -c )(B -C )+(c -a )(C -A )≥0,由大边对大角得上式成立.9.证明:设tan ,tan ,tan x A y B z C ===,则,,0x y z >,x y z xyz ++=,而x y z ++≥,代入得323xyz ≥,故123n n n nx y z +++≥≥.10.证明:要证原不等式,即证222333()()sin cos a b a b θθ+≥+,即2222222sin cos sin cos a b aba b θθθθ++≥++上式中将θ看作变量,,a b 看作常数,考虑从左边向右边转化即证222222sin cos cot tan 2sin cos a b abθθθθθθ+++≥即2222cot tan 2tan 2cot a b ab ab θθθθ+++≥因为22222c o t 2t a n c o t t a n t a a a b a a b a b b θθθθθ+=++,同理可得22tan 2cot b ab θθ+≥11.证明:如图,P A sin 1θ=PB sin θ5,PB sin θ2=PC sin θ6,PC sin θ3=P A sin θ4,三式相乘得sin 1θsin θ2 sin θ3= sin θ4 sin θ5 sin θ6,因此有(sin 1θsin θ2 sin θ3)2= sin 1θsin θ2 sin θ3 sin θ4 sin θ5 sin θ66123456sin sin sin sin sin sin 6θθθθθθ+++++⎛⎫≤ ⎪⎝⎭661234561sin ()62θθθθθθ+++++⎛⎫≤= ⎪⎝⎭,从而sin 1θsin θ2 sin θ331()2≤,因此sin 1θ、sin θ2 、sin θ3中至少有一个小于或等于12,不妨设sin 1θ12≤,则1θ≤30°或1θ≥150°,此时三个角中至少有一个角小于30°.12.解:考虑周期性,只要先解决[0,2)x π∈的解的情况,而当[,2)x ππ∈时,左边为正,右边非正,因此方程无解.由于[0,]2x π∈时有coscos sinsin x x >,将x 换成cos cos x 得(换成sinsin x也可以):coscoscoscos sinsincoscos x x >,又由于sin sin y x =在[0,]2x π∈时为增函数,因此有sinsincoscos sinsinsinsin x x >,综上可得:coscoscoscos sinsinsinsin x x >,因此原方程无解. 当(,)2x ππ∈时,令2y x π=-,则(0,)2y π∈,在coscos sinsin x x >,[0,]2x π∈中,将x 换成cossin y 得,coscos(cossin )sinsin(cossin )sinsin(sin cos )y y y >>,将2y x π=-代入得,coscoscoscos sinsinsinsin x x >,原方程也无解.综上所述,对x R ∈,恒有coscoscoscos sinsinsinsin x x >,原方程无解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学三角函数不等式
中学三角函数不等式是中学数学中重要的研究方向,也是不少考生头疼的难题。
三角函数不等式的推导与应用,对于更好地理解数学有着重要的意义。
本文将介绍三角函数不等式的推导过程及其应用实例。
首先,让我们从三角函数不等式的推导过程入手。
以正弦不等式为例,把正弦函数写成二倍角函数的形式:
sinθ = 2 sin () cos ()
左边可以写成:
sinθ≤2 sin ()
因此:
sin 2 sin() 2 x (1/2) cos ()
即有:
sinθ≤cos(θ)1)
类似的,余弦不等式也可以这样推导:
cos = 2cos () cos (θ)
左边可以写成:
cos 2 cos ()
因此:
cosθ 2 cos () 2 x (1/2) sin ()
即有:
cosθ sin(θ)2)
这样,我们就算推导出了正弦不等式和余弦不等式。
接下来,让我们看看三角函数不等式的应用实例。
比如,一个正多边形的内角和等于(n-2)π,可以用正弦不等式将其分解为:
sinθ<sin(π/n)3)
以此类推,我们可以用泰勒级数展开正弦函数,把三角函数不等式应用到数列、级数和调和级数等概念中。
此外,三角函数不等式还可以用于求解最优解。
例如,考虑一个最大化Z= 6x+5y的线性规划问题,约束条件有:
x+y≤304)
2x+3y≤605)
解这个问题,我们可以使用余弦不等式:
cosθ sin(θ)
将其写成矩阵表达式:
[1,1][x,y]≥0.5[30,60]
即有:
x + y 30 x 2 + 3 y 60
这样,我们就将原问题转化为最优解的求解问题。
以上就是三角函数不等式的推导过程及其应用的示例。
三角函数不等式的推导过程及其应用,有助于更好地理解数学,为帮助学生更好地掌握三角函数及它们的不等式,可以大量使用实例练习,加深学生对其解题技巧的理解。