阶段检测题一

合集下载

高中历史 阶段检测(一)(含解析)新人教版必修《中外历史纲要(上)》-新人教版高一必修历史试题

高中历史 阶段检测(一)(含解析)新人教版必修《中外历史纲要(上)》-新人教版高一必修历史试题

阶段检测(一)从中华文明起源到秦汉统一多民族封建国家的建立与巩固和三国两晋南北朝的民族交融与隋唐统一多民族封建国家的发展(第一、二单元)一、选择题(每小题5分,共60分)1.世界著名科技史学家李约瑟说,没有任何的西方人在青铜器铸造方面能超过古代中国人。

中国青铜器铸造的鼎盛时期是在( )A.原始社会末期 B.商周时期C.秦汉时期 D.隋唐时期解析:根据所学知识,夏代的青铜制造已有一定水平。

商周是青铜器的繁盛时代,青铜器的数量、种类之多都是空前绝后的,这是三代之所以称“青铜时代”的主要依据。

故选B 项。

答案:B2.清人全祖望说:“宗祠之礼,则所以维四世之服之穷,五世之姓之杀,六世之属之竭,昭穆虽远,犹不至视若路人者,宗祠之力也。

”这说明宗法制旨在( )A.强化专制集权 B.巩固宗族团结C.稳定统治秩序 D.维护社会和谐解析:根据材料信息,结合所学知识可知材料强调的是宗法制起到了巩固宗族团结的作用,所以选项B是符合题意的,正确;材料不涉及专制集权方面的信息,选项A不符合题意,排除;材料强调的是宗族团结而非稳定统治秩序,选项C不符合题意,排除;材料涉及宗族和谐而非社会和谐,选项D不符合题意,排除;故本题选B。

答案:B3.“君王自命‘天子’,君王驾崩,君统不辍,由其嫡长子自然承袭,如是者不绝。

父家长在家庭内是一把手,君王是国家的一把手,且各级地方政权的首脑亦被视为百姓的‘父母官’。

”这段材料所表达的主旨是( )A.君权神授,皇位世袭 B.君父同伦,家国同构C.强干弱枝,中央集权 D.男尊女卑,君父一体解析:本题考查学生比较、分析历史事物的能力,具体考查古代中国的皇帝制度和嫡长子继承制。

材料信息没有提及“君权神授”“强干弱枝,中央集权”“男尊女卑”,排除A、C、D三项;材料主旨能够体现“君父同伦,家国同构”,故本题正确答案选B项。

答案:B4.战国时期,荀子曾说过:“草木荣华滋硕之时则斧斤不入山林,不夭其生,不绝其长也;鼋鼍、鱼鳖、鳅鳝孕别之时,罔罟、毒药不入泽,不夭其生,不绝其长也。

阶段性过关检测卷(一)(含答案)

阶段性过关检测卷(一)(含答案)
A.0或B.0或3
C.1或D.1或3
3、已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件
A⊆C⊆B的集合C的个数为()
A.1B.2
C.3D.4
4、函数y=的定义域为 ( )
A.[-4,1] B.[-4,0)
C.(0,1] D.[-4,0)∪(0,1]
5、已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为()
A.a<2B.a>2
C.-2<a<2D.a>2或a<-2
二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)
13、函数f(x)=-的定义域为________________.
14、已知M={a||a|≥2},A={a|(a-2)(a2-3)=0,a∈M},则集合A的子集共有_个.
A.[1,+∞)B.[0,2]
C.[1,2]D.(-∞,2]
11、对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是()
A.(1,3)B.(-∞,1)∪(3,+∞)
C.(1,2)D.(3,+∞)
12、已知函数f(x)=若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是()
15、已知f(x)是奇函数,且x≥0时,f(x)=x(1-x),则x<0时,f(x)=________.
16、设函数f(x)=,那么f(2 013)=。
阶段性过关检测卷答题卡
(测试时间:120分钟 评价分值:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1
2
3
4
5

城都市郫都区2022级阶段性检测(一)理科数学试题

城都市郫都区2022级阶段性检测(一)理科数学试题

郫都区高2020级阶段性检测(一)数学(理)命题人:孙卉审题人:钟易生、陈俊龙本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.满分150分,考试时间120分钟.考生作答时,必须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束后,只将答题卡交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}03A xx =≤≤∣,{}0,1,3,4B =,则A B = ()A .{}0,1B .{}0,1,3C .{}0,1,4D .{}0,3,42.已知2i z =+,则(i)z z -=()A .2i -B .12i +C .62i -+D .62i-3.中国古代科举制度始于隋而成于唐,兴盛于明、清两朝。

明代会试分南卷、北卷、中卷,按11:7:2的比例录取,若某年会试录取人数为100,则中卷录取人数为()A .10B .35C .55D .754.函数()()1ln f x x x =-的图象可能是()A B CD 5.在ABC 中,60A =︒,1b =a 等于()A .4BC D6.执行如图所示的程序框图,则输出i 的值为()A .3B .4C .5D .67.函数()sin()f x A x ωϕ=+的部分图象如图所示,则()f x =()A .2sin 23x π⎛⎫+ ⎪⎝⎭B .22sin 23x π⎛⎫+ ⎪⎝⎭C 634x π⎛⎫+ ⎪⎝⎭D 3634x π⎛⎫+ ⎪⎝⎭8.若从0,1,2,3,4,5这六个数字中选3个数字,组成没有重复数字的三位数,则这样的三位偶数一共有()A .20个B .48个C .52个D .120个9.已知定义在R 上的函数()f x 在[)1,-+∞上单调递增,若()20f =,且函数()1f x -为偶函数,则不等式()0xf x >的解集为()A .()2,+∞B .()()4,10,--⋃+∞C .()4,-+∞D .()()4,02,-⋃+∞10.在5(12)(1)x x --的展开式中,3x 的系数为()A .10B .10-C .30D .30-11.在曲线2y x =上有两个动点,,(1,0)P Q E ,且满足EP EQ ⊥,则EP QP ⋅的最小值为()A .14B .21C .34D .112.若对任意()0,x ∞∈+,不等式()2e 2ln x x x ax x -+≥-恒成立,则实数a 的最大值为()A .1+e2eB .32ln28+C .14D .21第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题;每小题5分,共20分,把答案填在题中横线上.13.若x ,y 满足约束条件2,24,0,x y x y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是________.14.圆1O :2220x y x +-=和圆2O :2240x y y m +++=外切,则实数m 的值为______.15.若2πθπ<<,tan 3θ=-=_________.16.在三棱锥P ABC -中,PA ⊥平面ABC ,60BAC ∠=︒,AB AC ==2PA =,则三棱锥P ABC -外接球的表面积为____________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或推演步骤.17.(本小题满分12分)为切实加强新时代儿童青少年近视防控工作,经国务院同意发布了《综合防控儿童青少年近视实施方案》.为研究青少年每天使用手机的时长与近视率的关系,某机构对某校高一年级的1000名学生进行无记名调查,得到如下数据:有40%的同学每天使用手机超过1h ,这些同学的近视率为40%,每天使用手机不超过1h 的同学的近视率为25%.(1)从该校高一年级的学生中随机抽取1名学生,求其近视的概率;(2)请完成2×2列联表,通过计算判断能否有99.9%的把握认为该校学生每天使用手机的时长与近视率有关联.每天使用超过1h每天使用不超过1h 合计近视不近视合计1000附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥0.150.100.050.0250.0100.00lk 2.072 2.706 3.841 5.024 6.63510.82818.(本小题满分12分)已知等差数列{}n a 的前n 项和为357,3,12n S a a a =+=.(1)求n a 及n S ;(2)令12n nb S =,求证:数列{}2n n b +的前n 项和12n n T +<.19.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,,D E 分别为1,AB CC 的中点.(1)证明:直线DE 平面11AB C ;(2)若1,2AB BC AB BC BB ⊥===,求平面11AB C 与平面DBE 所成锐二面角的余弦值.20.(本小题满分12分)已知椭圆C :()012222>>=+b a by a x 324.(1)求椭圆C 的方程;(2)若过点()1,0P 的直线交椭圆C 于,A B 两点,求OB OA ⋅的取值范围.21.(本小题满分12分)已知函数()e xf x x =,()1g x ax =+,a R ∈.(1)若曲线()y f x =在点()()00f ,处的切线与直线()y g x =垂直,求a 的值;(2)若方程()()0f x g x -=在()22-,上恰有两个不同的实数根,求a 的取值范围;(3)若对任意[]122x ∈-,,总存在唯一的()22x ∈-∞,,使得()()21f x g x =,求a 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为,14x t y t =⎧⎪⎨=-+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设10,4P ⎛⎫- ⎪⎝⎭,直线l 与曲线C 的交点为M ,N ,线段MN 的中点为Q ,求PQ .。

湖南省长沙市2025届高三上学期阶段性检测(一)数学试题含答案

湖南省长沙市2025届高三上学期阶段性检测(一)数学试题含答案

长沙市2024—2025学年度高三阶段性检测(一)数学试卷(答案在最后)时量:120分钟总分:150分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}1A x x =<,集合{B x y ==,则A B = ()A.()1,1- B.()0,1 C.[)0,1 D.()1,+∞【答案】C 【解析】【分析】求解绝对值不等式和函数定义域解得集合,A B ,再求交集即可.【详解】根据题意,可得{}{}11,0A x x B x x =-<<=≥,故{01}[0,1)A B x x ⋂=≤<=.故选:C .2.已知复数z 满足i 12i =-+z ,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据复数的除法运算法则、结合共轭复数的定义、复数在复平面内对应点的特征进行求解即可.【详解】i 12i =-+z 212i (12i)i2i i iz -+-+⋅⇒===+2i z ⇒=-,所以复数z 在复平面内对应的点位于第四象限,故选:D3.已知一个古典概型,其样本空间中共有12个样本点,其中事件A 有6个样本点,事件B 有4个样本点,事件A B +有8个样本点,则()P AB =()A.23B.12C.13D.16【答案】D 【解析】【分析】依题意计算可得()12P A =,()13P B =,()23P A B +=,再由概率的加法公式计算即可得1()6P AB =.【详解】根据概率公式计算可得()61122P A ==,()41123P B ==,()82123P A B +==;由概率的加法公式可知()()()()P A B P A P B P AB +=+-,代入计算可得1()6P AB =故选:D4.已知等差数列{}n a 的前5项和535S =,且满足5113a a =,则等差数列{a n }的公差为()A.-3B.-1C.1D.3【答案】D 【解析】【分析】根据题意得到5151035S a d =+=,511413a a d a =+=,解得答案.【详解】5151035S a d =+=;511413a a d a =+=,解得3d =,11a =.故选:D5.已知()512my x y x ⎛⎫+- ⎪⎝⎭的展开式中24x y 的系数为80,则m 的值为()A.2- B.2C.1- D.1【答案】A 【解析】【分析】根据题意可得55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+-⎪⎝⎭,利用二项式展开式的通项公式1C r n r rr n T ab -+=求出24x y 的项的系数,进而得出结果.【详解】55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+- ⎪⎝⎭,在51(2)x y x-的展开式中,由155455(2)()(1)2r r r r r r r r x C x y C x y -----=-⋅,令424r r -=⎧⎨=⎩,得r 无解,即51(2)x y x -的展开式没有24x y 的项;在5(2)my x y -的展开式中,由555155(2)()(1)2rrr r r r r r myC x y mC x y ---+-=-⋅,令5214r r -=⎧⎨+=⎩,解得r =3,即5(2)my x y -的展开式中24x y 的项的系数为35335(1)240mC m --⋅=-,又5(2)()x my x y +-的展开式中24x y 的系数为80,所以4080m -=,解得2m =-.故选:A.6.如图,正方形ABCD 中,2,DE EC P = 是直线BE 上的动点,且(0,0)AP x AB y AD x y =+>>,则11x y+的最小值为()A. B. C.43+ D.4【答案】C 【解析】【分析】根据给定图形,用,AB AE 表示向量AD,再利用共线向量定理的推论,结合“1”的妙用求解即得.【详解】正方形ABCD 中,2DE EC =,则2233AD AE ED AE CD AE AB =+=+=- ,而AP xAB y AD =+ ,则(22)()33A B x AE A x P AB y AB y E y A --=++=,又点,,B P E 共线,于是2()13x y y -+=,即13y x +=,而0,0x y >>,因此313111)(444()333x y x x y y x y x y ++=+=+++≥+,当且仅当3x y y x =,即3332y -==时取等号,所以当33,22x y ==时,11x y +取得最小值43+.故选:C 7.设3103a =,ln1.03b =,0.03e 1=-c ,则下列关系正确的是()A.a b c >>B.b a c >>C.c b a >>D.c a b>>【答案】C 【解析】【分析】构造函数()()e 1,0xf x x x =--≥.利用导数判断单调性,证明出0.03e 10.03->.构造函数()()()ln 1,0g x x x x =+-≥.利用导数判断单调性,证明出ln1.030.03<,得到c b >;构造函数()()()ln 1,01xh x x x x =+-≥+.利用导数判断单调性,证明出3ln1.03103>,即为b a >.即可得到答案.【详解】记()()e 1,0xf x x x =--≥.因为()e 1xf x '=-,所以当0x >时,()0f x '>,所以()f x 在0,+∞上单调递增函数,所以当0x >时,()()00f x f >=,即1x e x ->,所以0.03e 10.03->.记()()()ln 1,0g x x x x =+-≥.因为()11011x g x x x-'=-=<++,所以在0,+∞上单调递增函数,所以当0x >时,()()00g x g <=,即()ln 1x x +<,所以ln1.030.03<.所以c b >.记()()()ln 1,01xh x x x x=+-≥+.因为()()()2211111x h x x x x '=-=+++,所以当0x >时,()0h x '>,所以()h x 在0,+∞上单调递增函数,所以当0x >时,()()00h x h >=,即()ln 11x x x +>+,所以0.033ln1.0310.03103>=+.所以b a >.综上所述:c b a >>.故选:C8.已知()1tan 1tan tan 622tan 2⎛⎫⎪--⎡⎤-+-=⎪⎢⎥-⎣⎦ ⎪⎝⎭αβαβαβαβ,tan tan 32⎛⎫-= ⎪⎝⎭παβ,则()cos 44+=αβ()A.7981-B.7981C.4981-D.4981【答案】A 【解析】【分析】结合二倍角公式和两角和差公式化简即可求得.【详解】()1tan 1tan tan 622tan 2⎛⎫ ⎪--⎡⎤-+-= ⎪⎢⎥-⎣⎦ ⎪⎝⎭αβαβαβαβ,222612tan 2tan 21tan1tan 22αβαβαβαβ--⎛⎫ ⎪+= ⎪-- ⎪-⎝⎭-.()()2221tan 2tan 2cos 2261n2si ta n αβαβαβαβαβ--⎛⎫-+ ⎪-= ⎪-- ⎪-⎝⎭,()()221tan 2cos 21s 6ta i 2n n αβαβαβαβ-⎛⎫+ ⎪-= ⎪-- ⎪-⎝⎭,()()()2cos 16c sin os αβαβαβ-⨯=--,()1sin 3αβ-=,1sin cos cos sin 3αβαβ-=,又因为tan tan 32⎛⎫-=⎪⎝⎭παβ,所以sin cos 3cos sin αβαβ=,则11cos sin ,sin cos 62αβαβ==,所以()2sin sin cos cos sin 3αβαβαβ+=+=()()241cos 12sin 129922αβαβ=-=-⨯=++.()()2179cos 442cos 221218181αβαβ+=+-=⨯-=-.故选:A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是()A.地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B.八级地震释放的能量约为七级地震释放的能量的6.3倍C.八级地震释放的能量约为六级地震释放的能量的1000倍D.记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为a n ,则数列{a n }是等比数列【答案】ACD 【解析】【分析】根据所给公式,结合指对互化原则,逐一分析各个选项,即可得答案.【详解】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+,解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,所以16.83113.821010100010E E ===,即八级地震释放的能量约为六级地震释放的能量的1000倍,故C 正确;对于D :由题意得lg 4.8 1.5n a n =+(n =1,2,···,9,10),所以 4.81.510n n a +=,所以 4.81.5(1)6.31.511010n n n a ++++==所以6.31.5 1.51 4.81.5101010nn n n a a +++==,即数列{a n }是等比数列,故D 正确;故选:ACD10.已知双曲线2222:1x y C a b-=()0,0a b >>的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,现有四个条件:①120PF PF ⋅=;②1260F F P ∠=︒;③PO 平分12F PF ∠;④点P 关于原点对称的点为Q ,且12PQ F F =,能使双曲线C的离心率为1+)A.①②B.①③C.②③D.②④【答案】AD 【解析】【分析】对各个选项进行分析,利用双曲线的定义找到a,c 的等量关系,从而确定离心率.【详解】③PO 平分12F PF ∠且PO 为中线,可得12PF PF =,点P 在双曲线的右支上,所以不成立;若选①②:120PF PF ⋅=,1260F F P ∠=︒,122F F c =可得2PF c =,1PF =,2c a -=,即离心率为1c e a ===+,成立;若选②④:1260F F P ∠=︒,点P 关于原点对称的点为Q ,且12PQ F F =,可得四边形12F QF P 为矩形,即12PF PF ⊥,122F F c =可得2PF c =,1PF =,2c a -=,即离心率为1c e a ===+,成立;故选:AD11.如图,ABCD 是底面直径为2高为1的圆柱1OO 的轴截面,四边形1OO DA 绕1OO 逆时针旋转()0θθπ≤≤到111OO D A ,则()A.圆柱1OO 的侧面积为4πB.当0θπ<<时,11DD AC ⊥C.当3πθ=时,异面直线1A D 与1OO 所成的角为4πD.1A CD 【答案】BC 【解析】【分析】对于A ,由圆柱的侧面积公式可得;对于B ,由线面垂直的判定定理和性质定理可得;对于C ,由题知,11DO D 为正三角形,根据异面直线所成的角的定义计算得解;对于D ,作1D E DC ⊥,由线面垂直的判定定理和性质定理得1A E DC ⊥.在11Rt A D E 中,1A E ==≤=【详解】对于A ,圆柱1OO 的侧面积为2112ππ⨯⨯=,A 错误;对于B ,因为0θπ<<,所以11DD D C ⊥,又111DD A D ⊥,所以1DD ⊥平面11A D C ,所以11DD AC ⊥,B 正确;对于C ,因为111//A D OO ,所以11DA D ∠就是异面直线1A D 与1OO 所成的角,因为113DO D π∠=,所以11DO D 为正三角形,所以1111DD A D ==,因为111A D DD ⊥,所以114DA D π∠=,C 正确;对于D ,作1D E DC ⊥,垂足为E ,连接1A E ,所以DC ⊥平面11A D E ,所以1A E DC ⊥.在11Rt A D E 中,1A E ==≤=1111222A CD S DC A E =⨯⨯≤⨯= ,所以()1maxA CD S = ,D 错误.故选:BC.三、填空题(本题共3小题,每小题5分,共15分)12.如图,某景区共有,,,,A B C D E 五个景点,相邻景点之间仅设置一个检票口供出入,共有7个检票口,工作人员为了检测检票设备是否正常,需要对每个检票口的检票设备进行检测.若不重复经过同一个检票口,依次对所有检票口进行检测,则共有____________种不同的检测顺序.【答案】32【解析】【分析】将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,分析可得只能从B 或E 处出发才能不重复走完7条路线,再用列举法列出所有可能结果,即可得解.【详解】如图将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,从B 或E 处出发的线路是奇数条,其余是偶数条,可以判断只能从B 或E 处出发才能不重复走完7条路线,由于对称性,只列出从B 处出发的路线情形即可.①走BA 路线:3126547,3126745,3147526,3147625,3156247,3157426,共6种;②走BC 路线:4137526,4137625,4265137,4267315,4562137,4573126,共6种;③走BE 路线:7513426,7543126,7621345,7624315,共4种;综上,共有()266432⨯++=种检测顺序.故答案为:3213.已知函数()()sin f x x ωω=∈R 在π7π,212⎛⎫ ⎪⎝⎭上是增函数,且π3π244f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则π12f ⎛⎫- ⎪⎝⎭的取值的集合为______.【答案】11,2⎧⎫⎨⎬⎩⎭【解析】【分析】由π3π244f f ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭可得2π42n T ω==+,由函数在π7π,212⎛⎫ ⎪⎝⎭上是增函数可得12ω≤,然后对ω的取值逐一验证,然后可得π12f ⎛⎫- ⎪⎝⎭取值.【详解】由π3π244f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可知,3πππ2442T nT +=-=,得π,21T n n =∈+Z ,所以2π42n Tω==+,又函数()()sin f x x ωω=∈R 在π7π,212⎛⎫⎪⎝⎭上是增函数,所以7πππ212212T ≥-=,即6πT ≥,所以12ω≤,所以,ω的可能取值为2,6,10±±±.当0ω>时,由ππ2π2π22k x k ω-+≤≤+解得π2ππ2π,22k k x k ωωωω-+≤≤+∈Z ,经检验,2,6,10ω=时不满足题意;当0ω<时,由ππ2π2π22k x k ω-+≤≤+解得π2ππ2π,22k k x k ωωωω+≤≤-+∈Z ,经检验,2,6ω=--时满足题意.所以,12f π⎛⎫-⎪⎝⎭的可能取值为ππ1ππsin ,sin 11262122f f ⎛⎫⎛⎫-==-== ⎪ ⎪⎝⎭⎝⎭.故答案为:11,2⎧⎫⎨⎬⎩⎭【点睛】本题综合考查了三角函数的单调性、最值、周期之间的关系,关键在于能从已知中发现周期的所满足的条件,然后根据周期确定ω的可能取值,再通过验证即可求解.14.斜率为1的直线与双曲线2222:1x y E a b-=(0,0a b >>)交于两点,A B ,点C 是曲线E 上的一点,满足AC BC ⊥,OAC 和OBC △的重心分别为,P Q ,ABC V 的外心为R ,记直线OP ,OQ ,OR 的斜率为1k ,2k ,3k ,若1238k k k =-,则双曲线E 的离心率为______.【解析】【分析】根据直线与双曲线的性质,得出二级结论斜率之积为定值22b a ,取,AC BC 的中点,M N ,得到2122AC BC b k k k k a ⋅=⋅=,再由AC BC ⊥,22OR b k a=,结合所以1238k k k =-,求得b a =c e a ==.【详解】若直线y kx m =+与双曲线22221x ya b-=有两个交点,G H ,设,G H 的中点为K ,联立方程组22221y kx mx y a b =+⎧⎪⎨-=⎪⎩,整理得222222222()20b a k x a kmx a m a b ----=,可得22222G H a km x x b a k +=-,则22222G H K x x a kmx b a k+==-,又由(,)K K K x y 在直线y kx m =+上,可得22222222K a km b my m b a k b a k=+=--,所以22K OKK y b k x ka ==,所以22GH OK b k k a⋅=,即直线l 与双曲线相交线的中点与原点的连线的斜率与直线l 的斜率之积为定值22b a,如图所示,取,AC BC 的中点,M N ,因为OAC 的重心P 在中线OM 上,OBC △的重心Q 在中线ON 上,所以1OP OM k k k ==,2OQ ON k k k ==,可得22OM AC ON BCb k k k k a⋅=⋅=,即2122AC BCb k k k k a⋅=⋅=,又由AC BC ⊥,可得1AC BCk k ⋅=-,可得22122()b k k a⋅=-因为AC BC ⊥,且ABC V 的外心为点R ,则R 为线段AB 的中点,可得22OR ABb k k a ⋅=,因为1AB k =,所以22OR b k a=,所以2321238()b k ak k =-=-,所以b a =,所以c e a ===.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程或不等式,然后转化为关于e 的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.设函数()()2ln f x x ax x a =-++∈R .(1)若1a =,求函数()f x 的单调区间;(2)设函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求实数a 的取值范围.(其中e 是自然对数的底数)【答案】(1)单调递增区间为()0,1,单调递减区间为()1,+∞(2)e11,e ⎛⎤- ⎥⎝⎦【解析】【分析】(1)根据题意,求导可得()f x ',即可得到结果;(2)根据题意,由条件可得ln x a x x =-,构造函数()ln x g x x x =-,其中1,e e x ⎡⎤∈⎢⎥⎣⎦,转化为最值问题,即可求解.【小问1详解】当1a =时,()()2ln ,f x x x x f x =-++的定义域为()0,∞+,()212121x x f x x x x-++=-++=',令()0f x '>,则2210x x --<,解得01x <<,令()0f x '<,则2210x x -->,解得1x >.∴函数()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞.【小问2详解】令()2ln 0f x x ax x =-++=,则ln xa x x=-.令()ln x g x x x =-,其中1,e e x ⎡⎤∈⎢⎥⎣⎦,则()2221ln ln 11x x x x x g x x x ⋅-+-=-='.令()0g x '>,解得1e x <≤,令()0g x '<,解得11ex ≤<.()g x ∴的单调递减区间为1,1e ⎡⎫⎪⎢⎣⎭,单调递增区间为(]1,e ,()min ()11g x g ∴==.又()111e ,e e e e e g g ⎛⎫=+=- ⎪⎝⎭,函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,a ∴的取值范围是e 11,e ⎛⎤-⎥⎝⎦.16.如图,已知四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,四边形11CC D D 为矩形,平面11CC D D ⊥平面,ABCD E 为线段1CD 的中点,且BE CE =.(1)求证:AD ⊥平面11BB D D ;(2)若4,2AB AD ==,直线1A E 与平面11BB D D 所成角的正弦值为155,求二面角1D AB D --的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)先根据直角三角形的性质和平行线的性质得到1D B BC ⊥,再根据面面垂直和线面垂直的性质定理结合平面11CC D D ⊥平面ABCD 得到1AD D D ⊥,最后根据线面垂直的判定定理证明即可.(2)建立空间直角坐标系,设()10DD t t =>,利用已知条件和线面角的坐标公式求出t ,再利用面面角的坐标公式求解即可.【小问1详解】在1BCD 中,E 为线段1CD 的中点,且BE CE =,所以1D E CE BE ==,所以112BE CD =,1BCD 为直角三角形,且190CBD ∠=︒,所以1D B BC ⊥,因为底面ABCD 为平行四边形,AD BC ∥,所以1AD D B ⊥,又因为四边形11CC D D 为矩形,所以1D D DC ⊥,因为平面11CC D D ⊥平面ABCD ,平面11CC D D 平面1,ABCD DC D D =⊂平面11CC D D ,所以1D D ⊥平面ABCD ,因为AD ⊂平面ABCD ,所以1AD D D ⊥,因为11111,,D D D B D D D D B =⊂ 平面11BB D D ,所以AD ⊥平面11BB D D .【小问2详解】因为AD ⊥平面11,BB D D BD ⊂平面11BB D D ,所以AD BD ⊥,由(1)知11,D D AD D D ⊥⊥平面ABCD ,又BD ⊂平面ABCD ,所以1D D BD ⊥,所以1,,DA DB DD 两两垂直,以D 为坐标原点,DA 所在直线为x 轴,DB 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,在Rt ADB △中,4,2AB AD ==,所以DB ==,设()10DD t t =>,则()()()()10,0,0,2,0,0,2,0,,,0,2t D A A t E B ⎛⎫- ⎪⎝⎭,所以()1,2,2t A E AB ⎛⎫=--=- ⎪⎝⎭,易知平面11BB D D 的一个法向量为D =2,0,0,设直线1A E 与平面11BB D D 所成的角为θ,则111sin cos ,5A E DAA E DA A E DAθ⋅====,解得t =,所以((110,0,,2,0,D AD =-,设平面1ABD 的法向量为 =s s ,则12020AB m x AD m x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令x =)m = ,易知平面ABCD 的一个法向量为()0,0,1n = ,则cos,5m nm nm n⋅===,易知二面角1D AB D--是锐角,故二面角1D AB D--的余弦值为5.17.软笔书法又称中国书法,是我国的国粹之一,琴棋书画中的“书”指的正是书法.作为我国的独有艺术,软笔书法不仅能够陶冶情操,培养孩子对艺术的审美还能开发孩子的智力,拓展孩子的思维与手的灵活性,对孩子的身心健康发展起着重要的作用.近年来越来越多的家长开始注重孩子的书法教育.某书法培训机构统计了该机构学习软笔书法的学生人数(每人只学习一种书体),得到相关数据统计表如下:书体楷书行书草书隶书篆书人数2416102010(1)该培训机构统计了某周学生软笔书法作业完成情况,得到下表,其中60a≤.认真完成不认真完成总计男生5a a女生总计60若根据小概率值0.10α=的独立性检验可以认为该周学生是否认真完成作业与性别有关,求该培训机构学习软笔书法的女生的人数.(2)现从学习楷书与行书的学生中用分层随机抽样的方法抽取10人,再从这10人中随机抽取4人,记4人中学习行书的人数为X,求X的分布列及数学期望.参考公式及数据:()()()()()22,n ad bcn a b c da b c d a c b dχ-==+++++++.α0.100.050.01xα2.7063.841 6.635【答案】(1)20(2)分布列见解析,()85E X=【解析】【分析】(1)由已知数据完成列联表,根据独立性检验的结论列不等式求出a 的值,可得女生人数;(2)由分层抽样确定两组人数,根据X 的取值计算相应的概率,得分布列,计算数学期望.【小问1详解】根据题意,完成列联表如下:认真完成不认真完成总计男生45a5a a女生4605a -205a -80a-总计602080由题意可得()()2244802060555516 2.7066020801580a a a a a a a a χ⎡⎤⎛⎫⎛⎫⨯--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==≥⨯⨯⨯--,得57.38a >.易知a 为5的倍数,且60a ≤,所以60a =,所以该培训机构学习软笔书法的女生有806020-=(人).【小问2详解】因为学习软笔书法的学生中学习楷书与行书的人数之比为24:163:2=,所以用分层随机抽样的方法抽取的10人中,学习楷书的有310632⨯=+(人),学习行书的有210432⨯=+(人),所以X 的所有可能取值为0,1,2,3,4,()46410C 1510C 21014P X ====,()3164410C C 8081C 21021P X ====,()2264410C C 9032C 2107P X ====,()1364410C C 2443C 21035P X ====,()44410C 14C 210P X ===.X 的分布列为:X01234P114821374351210所以()1834180123414217352105E X =⨯+⨯+⨯+⨯+⨯=.18.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()12,,2,3F F A 为椭圆C 上一点,且到1F ,2F 的距离之和为8.(1)求椭圆C 的标准方程;(2)设B 为A 关于原点O 的对称点,斜率为k 的直线与线段AB (不含端点)相交于点Q ,与椭圆C 相交于点,M N ,若2MNAQ BQ⋅为常数,求AQM V 与AQN △面积的比值.【答案】(1)2211612x y +=(2)1【解析】【分析】(1)根据题意,列出关于,,a b c 的方程,代入计算,即可得到结果;(2)根据题意,表示出直线MN 的方程,联立与椭圆的方程,结合韦达定理代入计算,然后代入弦长公式,即可得到结果.【小问1详解】由椭圆的定义得1228AF AF a +==,所以4a =.又()2,3A 为椭圆C 上一点,所以22491a b+=,将4a =代入,得212b =,所以椭圆C 的标准方程为2211612x y +=.【小问2详解】因为B 为A 关于原点O 的对称点,所以()2,3B --,直线AB 的方程为32y x =.设()()2,311Q t t t -<<,则直线MN 的方程为()32y t k x t -=-,联立得()221161232x y y t k x t ⎧+=⎪⎨⎪-=-⎩,可得()()()222243832432480k x kt k x t k ++-+--=,由点Q 在椭圆内,易知Δ0>,不妨令()()1122,,,M x y N x y ,则()12282343kt k x x k -+=+,()221224324843t k x x k --⋅=+,所以()()()()()()()2222222221212122248116123211443k k t k MNkx x k x x x x k ⎡⎤++--⎣⎦⎡⎤=+-=++-=⎣⎦+.又()()()()()2222222332233131AQ BQ t t t t t ⋅=-+-+++=-,所以()()()()2222222248116123213431k k t k MN AQ BQ k t ⎡⎤++--⎣⎦=⋅+-为常数,则需满足()22221612321k t k t+---为常数,(此式为与t 无关的常数,所以分子与分母对应成比例)即()22161232k k +=-,解得12k =-.将12k =-代入()12282343kt k x x k -+=+,可得124x x t +=,得1222x x t +=,所以Q 为MN 的中点,所以1AQM AQNS MQ S NQ== .【点睛】关键点睛:本题主要考查了直线与椭圆相交问题,以及椭圆中三角形面积问题,难度较大,解答本题的关键在于结合弦长公式以及将面积比转化为边长比.19.设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为()2,3,4,n n =⋅⋅⋅阶“曼德拉数列”:①1230n a a a a +++=⋅⋅⋅+;②1231n a a a a +++⋅⋅⋅+=.(1)若某()*2k k ∈N阶“曼德拉数列”是等比数列,求该数列的通项na(12n k ≤≤,用,k n 表示);(2)若某()*21k k +∈N阶“曼德拉数列”是等差数列,求该数列的通项na (121n k ≤≤+,用,k n 表示);(3)记n 阶“曼德拉数列”{}n a 的前k 项和为()1,2,3,,k S k n =⋅⋅⋅,若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,试问:数列{}()1,2,3,,i S i n =⋅⋅⋅能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.【答案】(1)()1112n n a k -=-或()1112n n a k-=--(2)()()*1,211n na n n k k k k ∴=-∈≤++N 或()()*1,211n n a n n k k k k=-+∈≤++N (3)不能,理由见解析【解析】【分析】(1)结合曼德拉数列的定义,分公比是否为1进行讨论即可求解;(2)结合曼德拉数列的定义,首先得120,k k a a d ++==,然后分公差是大于0、等于0、小于0进行讨论即可求解;(3)记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,进一步()11,2,3,,2k S k n ≤=⋅⋅⋅,结合前面的结论以及曼德拉数列的定义得出矛盾即可求解.【小问1详解】设等比数列()1232,,,,1k a a a a k ⋅⋅⋅≥的公比为q .若1q ≠,则由①得()21122101kk a q a a a q-++⋅⋅⋅+==-,得1q =-,由②得112a k =或112a k=-.若1q =,由①得,120a k ⋅=,得10a =,不可能.综上所述,1q =-.()1112n n a k -∴=-或()1112n n a k-=--.【小问2详解】设等差数列()12321,,,,1k a a a a k +⋅⋅⋅≥的公差为d ,123210k a a a a ++++⋅⋅⋅+= ,()()11221210,02k k dk a a kd +∴++=+=,即120,k k a a d ++=∴=,当0d =时,“曼德拉数列”的条件①②矛盾,当0d >时,据“曼德拉数列”的条件①②得,()23211212k k k k a a a a a a +++++⋅⋅⋅+==-+++ ,()1122k k kd d -∴+=,即()11d k k =+,由10k a +=得()1101a k k k +⋅=+,即111a k =-+,()()()()*1111,21111n n a n n n k k k k k k k ∴=-+-⋅=-∈≤++++N .当0d <时,同理可得()1122k k kd d -+=-,即()11d k k =-+.由10k a +=得()1101a k k k -⋅=+,即111a k =+,()()()()*1111,21111n n a n n n k k k k k k k ∴=--⋅=-+∈≤++++N .综上所述,当0d >时,()()*1,211n n a n n k k k k ∴=-∈≤++N ,当0d <时,()()*1,211n n a n n k k k k =-+∈≤++N .【小问3详解】记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,得12A =,12B =-,1122k B S A -=≤≤=,即()11,2,3,,2k S k n ≤=⋅⋅⋅.若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,由前面的证明过程知:10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-.若数列{}()1,2,3,,i S i n =⋅⋅⋅为n 阶“曼德拉数列”,记数列{}()1,2,3,,i S i n =⋅⋅⋅的前k 项和为k T ,则12k T ≤.1212m m T S S S ∴=++⋅⋅⋅+≤,又12m S =,1210m S S S -∴==⋅⋅⋅==,12110,2m m a a a a -∴==⋅⋅⋅===.又1212m m n a a a ++++⋅⋅⋅+=-,1m S +∴,2m S +,⋅⋅⋅,0n S ≥,123123n n S S S S S S S S ∴+++⋅⋅⋅+=+++⋅⋅⋅+,又1230n S S S S +++⋅⋅⋅+=与1231n S S S S +++⋅⋅⋅+=不能同时成立,∴数列{}()1,2,3,,i S i n =⋅⋅⋅不为n 阶“曼德拉数列”.【点睛】关键点点睛:第三问的关键是得到10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-,由此即可顺利得解.。

天津市第二十中学2025届高三上学期第一次阶段性检测数学试题

天津市第二十中学2025届高三上学期第一次阶段性检测数学试题

天津市第二十中学2025届高三上学期第一次阶段性检测数学试题一、单选题1.已知集合{}2540A xx x =-+≥∣,集合{}Z 12B x x =∈-≤∣,则集合()R A B ⋂ð为( ) A .()1,3 B .{}2,3 C .(]1,3 D .{}1,2,32.在ABC V 中,“60A =︒”是“sin A 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件3.如图5个(,)x y 数据,去掉(3,10)D 后,下列说法错误的是( )A .相关系数r 变大B .相关指数2R 变大C .残差平方和变大D .解释变量x 与预报变量y 的相关性变强4.已知函数()f x 的图象如图所示,则函数()f x 的解析式可能为( )A .()e e x xf x x --=B .()221sin 2ln x f x x x+=⋅C .()e e x xf x x-+=D .()221cos 2ln x f x x x+=⋅5.已知2log 0.42a =,0.4log 2b =,031log 0.4c =.,则( ) A .a b c >> B . b a c >>C .c a b >>D .a c b >>6.从一副不含大小王的52张扑克牌中,每次从中随机曲取1张扑克牌,抽出的牌不再放回.在第一次抽到K 牌的条件下,第二次抽到K 牌的概率为( ) A .14B .113C .126 D .1177.定义运算a bad bc c d =-,若sin sin 1cos ,cos cos 72αβπαβααβ==<<<,则β等于 A .12πB .6π C .4π D .3π 8.在锐角△ABC 中,()222S a b c =--,2a =,则△ABC 的周长的取值范围是( ) A .(]4,6B.(2⎤⎦C.(2⎤⎦D.(2⎤⎦9.已知函数()44cos 2sin cos sin f x x x x x =+-,有下列命题:①5π8x =为函数()f x 图象的一条对称轴 ②将()f x 的图象向左平移π4个单位,得到函数()g x 的图象,若()g x 在[]0,t 上的最大值为()0g ,则t 的最大值为3π4③()f x 在[]0,a 上有3个零点,则实数a 的取值范围是9π13π,88⎡⎫⎪⎢⎣⎭④函数()f x 在ππ,42⎡⎤⎢⎥⎣⎦上单调递增其中错误的命题个数为( ) A .1B .2C .3D .4二、填空题10.i 是虚数单位,则复数34i1i+=+. 11.在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是.12.已知随机变量~(6,)B p ξ,且()2E ξ=,则(32)D ξ+=.13.从0,1,2,3,4,5六个数字中任取三个组成无重复数字的三位数,其中偶数的个数为.14.已知0a >,0b >,且111a b +=,则1411a b +--的最小值为.15.设R a ∈,函数2sin 2π,0()474,0x x f x x x a x <⎧=⎨-+->⎩,若()f x 在区间(),a -+∞内恰有4个零点,则a 的取值范围是.三、解答题16.在ABC V 中9,cos 16B =,5b =,23a c =. (1)求a ; (2)求sin A ; (3)求cos(2)B A -.17.已知函数()()()cos 0,0,f x A x A ωϕωϕπ=+>><的部分图象如图所示.(1)求()f x 的解析式及对称中心坐标;(2)先将()f x 的图象纵坐标缩短到原来的12倍,再向右平移12π个单位,最后将图象向上平移1个单位后得到()g x 的图象,求函数()y g x =在3,124x ππ⎡⎤∈⎢⎥⎣⎦上的单调减区间和最值.18.如图,在四棱台1111ABCD A B C D -中,1111,2A A A B AB ===,四边形ABCD 和1111D C B A 都是正方形,1AA ⊥平面ABCD ,点E 为棱BC 的中点(1)求证:1ED ∥平面11AA B B ;(2)求平面1A DE 与平面ABCD 所成角的余弦值; (3)求点B 到平面1C DC 的距离. 19.已知函数()()ln R f x x m x m =-∈ (1)讨论()f x 的单调性;(2)若0m >时,()f x 的图象恒在x 轴上方,求m 的范围;(3)若存在不相等的实数12,x x ,使得()()12f x f x =,证明:120m x x <<+. 20.已知函数()()11ln 12f x x x ⎛⎫=++ ⎪⎝⎭.(1)求曲线y =f x 在2x =处的切线斜率; (2)求证:当0x >时,()1f x >; (3)证明:()51ln !ln 162n n n n ⎛⎫<-++≤ ⎪⎝⎭.。

天津市第二十中学2024-2025学年高三上学期第一次阶段性检测数学试题(含解析)

天津市第二十中学2024-2025学年高三上学期第一次阶段性检测数学试题(含解析)

2024—2025第一学期高三数学学科第一次阶段性检测一、单选题:本题共9小题,每小题5分,共45分.1.已知集合,集合,则集合为( )A. B. C. D.2.在中,若是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.如图5个数据,去掉后,下列说法错误的是()A.相关系数变大B.相关指数变大C.残差平方和变大D.解释变量与预报变量的相关性变强4.已知函数的图象如图所示,则函数的解析式可能为( )A. B.C. D.5.已知,则( )A.B.C. D.6.从一副不含大小王的52张扑克牌中,每次从中随机抽取1张扑克牌,抽出的牌不再放回.在第一次抽到{}2540A xx x =-+≥∣{}12B x x =∈-≤Z ∣()R A B ⋂ð()1,3{}2,3(]1,3{}1,2,3ABC V :60,:sin p A q A ==p q (),x y ()3,10D r 2R x y ()f x ()f x ()e e x x f x x --=()221sin2ln x f x x x +=⋅()e e x x f x x -+=()221cos2ln x f x x x +=⋅2log 0.40.40.312,log 2,log 0.4a b c ===a b c >>b a c >>c a b >>a c b>>牌的条件下,第二次抽到牌的概率为( )A. B. C. D.7.定义运算、若,则等于( )A. B. C. D.8.在锐角中,,则的周长的取值范围是()A. B.C. D.9.已知函数,有下列命题:①为函数图象的一条对称轴②将的图象向左平移个单位,得到函数的图象,若在上的最大值为,则的最大值为③在上有3个零点,则实数的取值范围是④函数在上单调递增其中错误的命题个数为()A.1 B.2 C.3 D.4二、填空题:本题共6小题,共29分.10.是虚数单位,则复数__________.11.在的展开式中,的系数是__________.12.已知随机变量,且,则__________.13.从六个数字中任取三个组成无重复数字的三位数.其中偶数的个数为__________.K K 14113126117a b ad bc c d =-sin sin 1πcos ,cos cos 72αβαβααβ==<<<βπ12π6π4π3ABC V 222(),2S a b c a =--=ABC V (]4,6(4,2⎤⎦(6,2⎤+⎦(2⎤+⎦()44cos 2sin cos sin f x x x x x =+-5π8x =()f x ()f x π4()g x ()g x []0,t ()0g t 3π4()f x []0,a a 9π13π,88⎡⎫⎪⎢⎣⎭()f x ππ,42⎡⎤⎢⎥⎣⎦i 34i 1i +=+522x x ⎛⎫+ ⎪⎝⎭2x ()6,B p ξ~()2E ξ=()32D ξ+=0,1,2,3,4,514.已知,且,则的最小值为__________.15.设,函数,若在区间内恰有4个零点,则的取值范围是__________.三、解答题:本题共5小题,共67分.解答应写出文字说明,证明过程或演算步骤.16.在中,.(1)求;(2)求;(3)求.17.(本小题12分)已知函数的部分图象如图所示.(1)求的解析式及对称中心坐标;(2)先将的图象纵坐标缩短到原来的倍,再向右平移个单位,最后将图象向上平移1个单位后得到的图象,求函数在上的单调减区间和最值.18.(本小题12分)如图,在四棱台中,,四边形和都是正方形,平面,点为棱的中点0,0a b >>111a b +=1411a b +--a ∈R ()2sin2π,0474,0x x f x x x a x <⎧=⎨-+->⎩()f x (),a ∞-+a ABC V 92cos ,5,163a Bbc ===a sin A ()cos 2B A -()()cos (0,0,π)f x A x A ωϕωϕ=+>><()f x ()f x 12π12()g x ()y g x =π3π,124x ⎡⎤∈⎢⎥⎣⎦1111ABCD A B C D -1111,2A A A B AB ===ABCD 1111A B C D 1AA ⊥ABCD E BC(1)求证:平面;(2)求平面与平面所成角的余弦值;(3)求点到平面的距离.19.(本小题12分)已知函数.(1)讨论的单调性;(2)若时,的图象恒在轴上方,求的范围;(3)若存在不相等的实数,使得,证明:.20.(本小题16分)已知函数.(1)求曲线在处的切线斜率;(2)当时,求证:;(3)证明:.1ED ∥11AA B B 1A DE ABCD B 1C DC ()()ln f x x m x m =-∈R ()f x 0m >()f x x m 12,x x ()()12f x f x =120m x x <<+()()11ln 12f x x x ⎛⎫=++ ⎪⎝⎭()y f x =2x =0x >()1f x >()51ln !ln 162n n n n ⎛⎫<-++≤ ⎪⎝⎭2024—2025第一学期高三数学学科第一次阶段性检测一、单选题:本题共9小题,每小题5分,共45分.在每小题给出的选项中,只有一项是符合题目要求的.1.【答案】B【解析】解:集合或,则,集合,故.故选:B.先求出集合,再结合补集、交集的定义,即可求解.本题主要考查集合的混合运算,属于基础题.2.【答案】A【解析】略3.【答案】C【解析】【分析】本题考查了利用散点图判断两个变量的相关关系,相关系数和相关指数,属于简单题.由散点图知,去掉后,与的线性相关加强,由相关系数,相关指数及残差平方和与相关性的关系得出选项.【解答】解:由散点图知,去掉后,与的线性相关加强,且为正相关,所以变大,变大,残差平方和变小.故选C.4.【答案】B 【解析】解:根据题意,由函数的图象,的定义域为,其图象关于原点对称,在区间上,函数图象与轴存在交点,由此分析选项:对于A ,,其定义域为,有为偶函数,不符合题意;对于B ,,其定义域为,有{}2540{4A x x x x x =-+≥=≥∣∣1}x ≤R {14}A xx =<<∣ð{}{}121,0,1,2,3B x x =∈-≤=-Z∣(){}R 2,3A B ⋂=ð,A B ()3,10D y x r 2R ()3,10D y x r 2R ()f x {}0x x ≠∣()0,∞+x ()e e x x f x x --={}0x x ≠∣()()()e e e e ,x x x x f x f x f x x x-----===-()221sin2ln x f x x x+=⋅{}0x x ≠∣为奇函数,其图象关于原点对称,当时,函数图象与轴存在交点,符合题意;对于C ,,当时,,必有恒成立,该函数图象在区间上与轴不存在交点,不符合题意;对D ,于,其定义域为,有为偶函数,不符合题意.故选:B.根据题意,由函数的图象分析的性质,由此分析选项,综合可得答案.本题考查函数的图象分析,涉及函数奇偶性和函数值的分析,属于基础题.5.【答案】C【解析】解:,,则,故.故选:C.根据已知条件,结合指数函数的单调性,即可求解.本题主要考查数值大小的比较,属于基础题.6.【答案】D【解析】解:由题意,第一次抽到牌后剩余51张扑克牌,剩余牌3张,故第二次抽到牌的概率为.故选:D.根据题意,第一次抽到牌后剩余51张扑克牌,剩余牌3张,进而求解即可.本题主要考查了条件概率公式,属于基础题.7.【答案】D【解析】【分析】此题要求学生会根据新定义化简求值,灵活运用角度的变换解决数学问题.掌握两角和与差的正弦函数公式的运用.()()()()222211sin 2ln sin2ln ,x x f x x x f x f x x x++-=-⋅=-⋅=-ππ2x k =+()(),sin20,0k x f x ∈==Z x ()e e x xf x x-+=0x >e e 0,0x x x +->>()0f x >()0,∞+x ()221cos2ln x f x x x+=⋅{}0x x ≠∣()()()()222211cos 2ln cos2ln ,x x f x x x f x f x x x++-=-⋅=⋅=()f x 2log 0.40.40.420.4,log 2log 10a b ===<=0.30.30.30log 1log 0.4log 0.31=<<=1c >c a b >>K K K 315117=K K根据新定义化简原式,然后根据两角差的正弦函数公式变形得到的值,根据,利用同角三角函数间的基本关系求出,再根据求出,利用两边取正切即可得到的值,根据特殊角的三角函数值即可求出.【解答】解:依题设得:..又,.故选D.8.【答案】A【解析】【分析】本题考查了正余弦定理在解三角形中的应用,及三角形面积公式,结合二倍角公式及和差化积公式化简,属于难题.根据结合三角形面积公式,得到和,再由正弦定理得到的周长可表示为,再根据和差化积和二倍角公式进行化简,最后结合角的范围求得答案.【解答】解:根据,得到,化简得,根据()sin αβ-π02βα<<<()cos αβ-cos αsin α()βααβ⎡⎤=--⎣⎦tan ββ()sin cos cos sin sin αβαβαβ⋅-⋅=-=()π130,cos 214βααβ<<<∴-= 1cos ,sin 7αα=∴= ()()()sin sin sin cos cos sin βααβααβααβ⎡⎤=--=⋅--⋅-⎣⎦131147=-=π3β∴=222()S a b c =--3cos 5A =4sin 5A =ABC V ()52sin sin 2l a b c B C =++=++222()S a b c =--()12sin 21cos 2b c A b c A ⋅⋅⨯⨯=⨯⨯⨯-()sin 21cos A A =-,化简得,解得(舍).又因为为锐角三角形,故.再由正弦定理,,则的周长可表示为,再根据和差化积公式得到:,再根据二倍角公式得到,下面讨论,根据题意得到,则,得到,故,故,故.9.【答案】B【解析】解:由,可得,对于①,当时,对于②,,当,则,()21cos A =-25cos 8cos 30A A -+=3cos,cos 15A A ==ABC V 4sin 5A =254sin sin sin 24b c a B C A ====ABC V ()52sin sin 2l a b c B C =++=++25sincos 22B C B C l +-=+⨯π25sin cos 22A B C --=+⨯π2252cos 22B C A C l ---=+=+π2cos 2A C --π02A <<π0π2A C <--<πππ,2222A A A A C A C --<<--<-<π2cos cos 122A A C --<…π2cos 12A C --<…(6,2l ⎤∈+⎦()44cos 2sin cos sin f x x x x x =+-()()()2222πcos sin cos sin 2sin cos cos2sin224f x x x x x x x x x x ⎛⎫=-++=+=+ ⎪⎝⎭5π8x =5π5ππ2884f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭()ππππ224244g x f x x x ⎛⎫⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭[]0,x t ∈πππ2,2444x t ⎡⎤+∈+⎢⎥⎣⎦由于在上的最大值为,所以,故,故的最大值为,故②正确;对于③,令,则,可得,故的正零点有,要使在上有3个零点,则,故③错误,对于④,当,则,故在上单调递减,故④错误.故选:B.根据三角恒等变化化简,根据对称轴处取得最值判断①,根据平移判断②,根据零点求值判断③,根据正弦函数的单调区间判断④.本题考查三角函数的性质,属中档题.二、填空题:本题共6小题,共29分.10.【答案】【解析】解:.故答案为:.根据已知条件,结合复数的四则运算,即可求解.本题主要考查复数的四则运算,属于基础题.11.【答案】10【解析】【分析】写出二项展开式的通项公式,整理后令的指数为2,即可求出.【详解】因为的展开式的通项公式为,令,解得.所以的系数为.故答案为:10.【点睛】本题主要考查二项展开式的通项公式的应用,属于基础题.()g x []0,t ()0g π7π244t +≤3π4t ≤t 3π4()π204f x x ⎛⎫=+= ⎪⎝⎭π2π,4x k k +=∈Z ππ,82k x k =-+∈Z ()f x 3π7π11π15π,,,,8888r = ()f x []0,a 11π15π88a ≤<ππ,42x ⎡⎤∈⎢⎥⎣⎦π3π5ππ3π2,,44422x ⎡⎤⎡⎤+∈∈⎢⎥⎢⎥⎣⎦⎣⎦()f x ππ,42⎡⎤⎢⎥⎣⎦()π24f x x ⎛⎫=+ ⎪⎝⎭71i 22+()()()()34i 1i 34i 71i 1i 1i 1i 22+-+==++-+71i 22+x 522x x ⎛⎫+ ⎪⎝⎭()55315522C C 20,1,2,3,4,5rr r r r r r T x x r x --+⎛⎫==⋅⋅= ⎪⎝⎭532r -=1r =2x 15C 210⨯=12.【答案】12【解析】【分析】本题考查二项分布的期望和方差,考查推理能力和计算能力,属于基础题.先求出和,再利用即可求解.【解答】解:因为随机变量,所以,又因为,所以.故答案为12.13.【答案】52【解析】【分析】本题考查排列的应用,考查分类、分步计数原理的应用,解题需要注意偶数的末位数字以及0不能在首位等性质.分2种情况讨论:①、若0在个位,由排列公式即可得此时三位偶数的数目,②、若0不在个位,且由于0不能在首位,由分步计数原理可得此情况下三位偶数的数目,综合2种情况,由分类计数原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①、若0在个位,此时只须在中任取2个数字,作为十位和百位数字即可,有个没有重复数字的三位偶数;②、若0不在个位,此时必须在2或4中任取1个,作为个位数字,有2种取法,0不能作为百位数字,则百位数字有4种取法,十位数字也有4种取法,此时共有个没有重复数字的三位偶数;综合可得,共有个没有重复数字的三位偶数.故答案为52.13p =()()413D n p p ξ=⋅⋅-=()()329D D ξξ+=()6,B p ξ~()62E np p ξ===13p =()()12416333D n p p ξ=⋅⋅-=⨯⨯=()()32912D D ξξ+==1,2,3,4,525A 20=24432⨯⨯=203252+=14.【答案】4【解析】【分析】本题考查利用基本不等式求最值,属于中档题.由正数满足,可得,所以结合基本不等式即可求解.【解答】解:正数满足,,解得同理则,当且仅当时取等号(此时.的最小值为4.故答案为:4.15.【答案】【解析】解:①当在区间有4个零点且在区间没有零点时,满足,无解;②当在区间有3个零点且在区间有1个零点时,满足,或,a b 111a b +=01a b a =>-()1414141111111a a ab a a a +=+=+-------,a b 111a b+=01ab a ∴=>-1,a >1,b >141411111a ab a a +=+-----()14141a a =+-=- (3)2a =3)b =1411a b ∴+--371,,224⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦()f x (),0a -[)0,∞+()Δ164740522a a ⎧=--<⎪⎨-≤-<-⎪⎩()f x (),0a -[)0,∞+()()Δ16474000322a f a ⎧⎪=-->⎪<⎨⎪⎪-≤-<-⎩者解得③当在区间有2个零点且在区间有2个零点时,满足,解得,综上所述,的取值范围是.分类讨论,分在区间有4个零点且在区间没有零点,在区间有3个零点且在区间有1个零点和在区间有2个零点且在区间有2个零点三种情况求解即可.本题考查了分段函数,函数的零点与方程根的关系,属于难题.三、解答题:本题共5小题,共67分.解答应写出文字说明,证明过程或演算步骤.16.【答案】解:(1)在中,,设,则,,解得,;(2)由(1)得,由正弦定理得,即解得.(3)是锐角,且,()Δ164740322a a ⎧--=⎪⎨-≤-<-⎪⎩72;4a <≤()f x (),0a -[)0,∞+()()Δ16474000312a f a ⎧⎪=-->⎪≥⎨⎪⎪-≤-<-⎩312a <≤a 371,,224⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦()f x (),0a -[)0,∞+()f x (),0a -[)0,∞+()f x (),0a -[)0,∞+ABC V 92cos ,5,163a Bbc ===2a k =3,0c k k =>2294259cos 23216k k B k k +-∴==⨯⨯2k =24a k ∴==4,6,sin a c B ====sin sin a bA B=4sin A =sin A =π,sin sin ,4a b A A <=<=∴ π4A <,.17.【答案】解:(1)根据函数的部分图象,可得,.再由图象知:,又,故有.令,解得,故函数的对称中心为.(2)先将的图象纵坐标缩短到原来的倍,可得的图象,再向右平移个单位,得到的图象,最后将图象向上平移1个单位后得到的图象.令,求得,sin22sin cos 2A A A ∴===1cos28A ==()cos 2cos cos2sin sin2B A B A B A∴-=+91168=⨯5764=()()cos (0,0,π)f x A x A ωϕωϕ=+>><πϕ<32π5ππ2,4123A ω=⋅=+2ω∴=5π22π,12k k ϕ⨯+=∈Z 5ππ,6ϕϕ<∴=-()5π2cos 26f x x ⎛⎫=-⎪⎝⎭5ππ2π62x k -=+2ππ,32k x k =+∈Z 2ππ,0,32k k ⎛⎫+∈⎪⎝⎭Z ()f x 125πcos 26y x ⎛⎫=- ⎪⎝⎭π12()cos 2πcos2y x x =-=-()cos21g x x =-+2ππ22π,k x k k -≤≤∈Z πππ,2k x k k -≤≤∈Z可得的减区间为,结合,可得的单调减区间为.,故当时,取得最大值,为;当时,取得最小值,为.【解析】本题主要考查由函数的部分图象求解析式,函数的图象变换规律,三角函数的图象的对称性,余弦函数的定义域和值域,属于中档题.(1)由函数的图象的顶点坐标求出,由周期求出,由图象过点求出的值,可得的解析式,再利用三角函数的图象的对称性,得出结论;(2)由题意利用函数的图象变换规律求得的解析式,再利用余弦函数的单调性、余弦函数的定义域和值域,得出结论.18.【答案】(1)证明:连接,在四棱台中,且,又四边形是正方形,故,点为棱的中点,则,故,即四边形为平行四边形,则平面平面,故平面;(2)由于平面,四边形是正方形,以为坐标原点,所在直线为轴,建立空间直角坐标系,()g x ππ,π,2k k k ⎡⎤-∈⎢⎥⎣⎦Z π3π,124x ⎡⎤∈⎢⎥⎣⎦()g x π3π,24⎡⎤⎢⎥⎣⎦π3π2,62x ⎡⎤∈⎢⎥⎣⎦2πx =()g x ()112--+=π26x =()gx 1+()sin y A x ωϕ=+()sin y A x ωϕ=+A ω5π,212⎛⎫⎪⎝⎭ϕ()f x ()sin y A x ωϕ=+()g x 1A B 1111ABCD A B C D -11A D ∥AD 1112A D AD =ABCD BC ∥,AD BC AD =E BC BE ∥1,2AD BE AD =11A D ∥11,BE A D BE =11A D EB 1D E∥11,A B D E ⊄111,AA B B A B ⊂11AA B B 1ED ∥11AA B B 1AA ⊥ABCD ABCD A 1,,AB AD AA ,,x y z由于,则,则,设平面的一个法向量为,则,即,令,则,平面的一个法向量为,故由图知平面与平面所成角为锐角,故平面与平面(3)由(2)可知,则,设平面的一个法向量为,则,即,令,则,设点到平面的距离为,则.【解析】1)连接,先证明,再根据线面平行的判定定理即可证明结论;(2)建立空间直角坐标系,求出相关点的坐标,求出平面与平面的法向量,根据空间角的向量求法,即可求得答案;1111,2A A A B AB ===()()()10,0,1,0,2,0,2,1,0A D E ()()10,2,1,2,1,0DA ED =-=-1A DE (),,m x y z = 100m DA m ED ⎧⋅=⎪⎨⋅=⎪⎩2020yz x y -+=⎧⎨-+=⎩1x =()1,2,4m =ABCD ()0,0,1n =cos ,m n m n m n ⋅<>===1A DE ABCD 1A DE ABCD ()()()()11,1,1,0,2,0,2,2,0,2,0,0C D C B ()()()10,2,0,1,1,1,2,0,0BC DC DC ==-=1C DC (),,u s t g = 100u DC u DC ⎧⋅=⎪⎨⋅=⎪⎩ 020s t g s -+=⎧⎨=⎩1t =()0,1,1u =B 1C DC d BC u d u ⋅=== 1A B 1D E∥1A B 1A DE ABCD(3)求出平面的法向量,根据空间距离的向量求法,即可求得答案.19.【答案】解:(1)函数的定义域为,,①当时,,所以在上是增函数;②当时,由得,所以在上是增函数,由得,所以在上是减函数;故时,在上单调递增;当时,在上单调递增,在上单调递减;(2)由的图象恒在轴上方,可得,因为且,不等式两边同时除以,可得,设可得令,解得,令,解得所以在上单调递增,在上单调递减,所以当时,取得最大值为,所以,即,所以的范围是;(3)证明:,1C DC ()f x ()0,∞+()1m x m f x x x-=-='0m ≤()0f x '>()f x ()0,∞+0m >()0f x '>x m >()f x (),m ∞+()0f x '<0x m <<()f x ()0,m 0m ≤()f x ()0,∞+0m >()f x (),m ∞+()0,m ()f x x ()ln 0f x x m x =->0x >0m >mx 1ln xm x>()ln ,x h x x =()21ln ,xh x x-='()0h x '>0e x <<()0h x '<e,x >()h x ()0,e ()e,∞+e x =()h x ()1e eh =max 1()h x m>11em >m ()0,e ()ln ,0f x x m x x =->则,由(1)可知,当时,在上是增函数,故不存在不相等的实数,使得,所以,由,得,即,不妨设,则,要证,只需证,即证,只需证令只需证,即证令,则,所以在上是增函数,所以,即成立,故成立.【解析】本题考查了利用导数求函数的单调区间(含参)、利用导数研究恒成立与存在性问题、利用导数求函数的最值(含参)、利用导数解(证明)不等式,属于较难题.()1m x m f x x x-=-='0m ≤()f x ()0,∞+12,x x ()()12f x f x =0m >()()12f x f x =1122ln ln x m x x m x -=-()2121ln ln m x x x x -=-120x x <<21210ln ln x x m x x -=>-12m x x <+211221ln ln x x x x x x -<+-212112ln ln x x x x x x -<-+2122111ln 1x x x x x x -<+211x t x =>1ln 1t t t -<+1ln 0,1t t t -->+()()1ln 11t g t t t t -=->+()2221210(1)(1)t g t t t t t +=-=>++'()g t ()1,∞+()()10g t g >=1ln 01t t t -->+120m x x <<+(1)求出函数的导数,讨论的取值,利用导数判断函数的单调性与单调区间;(2)问题转化为,设,利用导数求出,即可求出结果;(3)易得,由得,要证,只需证,只需证,令,只需证,即证,令,利用导数研究单调性即可得证.20.【答案】解:(1)对函数求导,可得,则曲线在处的切线斜率为;(2)证明:当时,,即,即,而在上单调递增,因此原不等式得证;(3)证明:设数列的前项和,则;当时,,由(2),,故,不等式右边得证;要证,只需证:对任意的,()f x m ()f x 1ln x m x >()ln x h x x=max ()h x 0m >()()12f x f x =21210ln ln x x m x x -=>-12m x x <+211221ln ln x x x x x x -<+-2122111ln 1x x x x x x -<+211x t x =>1ln 1t t t -<+1ln 01t t t -->+()()1ln 11t g t t t t -=->+()f x ()()()221ln 121x f x x x x x+=-++'()y f x =2x =()1ln3234f =-'0x >()1f x >()2ln 112x x x ++>()()2ln 102xg x x x =+->+()()()220,1(2)x g x g x x x =>++'()0,∞+()()00,g x g >={}n a n ()1ln !ln 2n S n n n n ⎛⎫=-++ ⎪⎝⎭111a S ==2n ≥11111111ln 1ln 11122111n n n n a S S n f n n n n -⎛⎫ ⎪-⎛⎫⎛⎫⎛⎫=-=+-=-++=- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪-⎝⎭()02n a n <≥11n S S ≤=56n S ≤()22112,116n n k k k n a f k ==⎛⎫⎛⎫≥-=-≤ ⎪⎪-⎝⎭⎝⎭∑∑令,则,当时,,函数在上单调递减,则,即,则,因此当时,,当时,累加得,又,故,即得证.【解析】(1)对函数求导,求出的值即可得解;(2)令,先利用导数求出的单调性,由此容易得证;(3)设数列的前项和,可得当时,,由此可知,证得不等式右边;再证明对任意的,令,利用导数可知,由此可得.再求得,由此可得证不等式左边,进而得证.本题考查导数的综合运用,考查逻辑推理能力和运算求解能力,属于难题.()()()()2ln 121x x h x x x +=+-+()222(1)x h x x '=-+0x >()0h x '<()h x ()0,∞+()0h x <()()()2ln 121x x x x ++<+()()()()222211221414x x x x x f x x x x ++-<⋅-=<++2k ≥22111111114(1)4(1)122321f k k k k k ⎛⎫⎛⎫-<<=- ⎪ ⎪------⎝⎭⎝⎭4n ≥()441111111111111,1257792321252110n nk k k a f k n n n ==⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-<-+-++-=-< ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑ ()()233353511ln210.69410.041,ln 1 1.10.69310.017522222a f a -=-=-<⨯-=-=-<--=()()2324110.0410.01750.1585106nnkk k k a aa a ==-=--+-=++=<∑∑()f x ()2f '()()1g x f x =-()g x {}n a n ()1ln !ln 2n S n n n n ⎛⎫=-++ ⎪⎝⎭2n ≥10n n n a S S -=-<11n S S ≤=()22112,116nnk k k n a f k ==⎛⎫⎛⎫≥-=-≤⎪ ⎪-⎝⎭⎝⎭∑∑()(2)()ln 12(1)x x h x x x +=+-+()()()2ln 121x x x x ++<+()4110n k k a =-<∑23,a a --。

天津市第一百中学2023-2024学年高三上学期阶段性检测(1)英语试题

天津市第一百中学2023-2024学年高三上学期阶段性检测(1)英语试题

天津市第一百中学2023-2024学年高三上学期阶段性检测(1)英语试题学校:___________姓名:___________班级:___________考号:___________一、单项选择1.Mark needs to learn Chinese ________ his company is opening a branch in Beijing.A.unless B.until C.although D.sinceA.were driving B.have driven C.would drive D.drove3.Mark ______ have hurried. After driving at top speed, he arrived half an hour early.A.needn’t B.wouldn’t C.mustn’t D.couldn’t 4.There is a rule in the library that one is required to put the book ______ it is after finishing reading it.A.what B.how C.where D.when5.I’m finally going back to my motherland; I ______ in the foreign country for four years by next month.A.have been staying B.will have stayedC.have stayed D.will be staying6.I think you’d better avoid talking about politics, religion and other ______ topics with himif you are not close friends.A.sensitive B.skeptical C.aggressive D.attractiveA.many of whose B.whose many C.many whose D.many of whomA.As B.What C.Where D.It9.Our English teacher told us to find out ____ the differences between American English and British English lie.A.where B.how C.what D.which10.The teacher stressed again that the students should not _____ any important detailswhile retelling the story.A.bring out B.leave out C.let out D.make out 11.Dr. James Naismith is believed ________ the game of basketball, a sport loved by peopleall around the world.A.to invent B.to have invented C.inventing D.having invented 12.—Why was he unhappy yesterday?—A letter from home attack of homesickness.A.set off B.pay off C.take off D.send offsociety.A.terms B.pace C.progress D.touch 14.The school ________ with reading lessons that taught students to guess the meaning of new words.A.did the trick B.paved the wayC.braved the elements D.broke new groundGold Rush.A.throw the baby out with the bathwater B.seek their fortuneC.put them under pressure D.comment on二、完形填空During school, college and service I never participated in any group discussion or stagespeakers faced the same things when they 27 .Later on with the help of the Principal I 28 a topic of talk for the next occasion. I practiced my presentation throughout the week. I was somewhat 29 but not confident. Afterwards, I 30 the Principal again and told him about the 31 I felt I had made. He was kind enough to 32 me again, but this time to give a presentation for the teachers.For around one month, I prepared and practiced for my presentation on Motivation. This time I felt easy. I gave the presentation and it was 33 by the Principal as well as the teachers 34 they knew where I started from. They encouraged me and praised my efforts.I learn that everything is 35 if we have the courage to take the first step. The saying goes: A journey of one thousand miles begins with the first step.16.A.fear B.performance C.style D.art 17.A.talk B.magazine C.program D.lesson 18.A.fortunately B.surprisingly C.secretly D.unluckily 19.A.listen B.move C.write D.speak 20.A.nervous B.joyful C.satisfied D.disappointed 21.A.foolish B.useful C.clever D.negative 22.A.anger B.regret C.thanks D.hope 23.A.courage B.information C.proof D.advice 24.A.And B.But C.So D.Or 25.A.explained B.forgot C.imagined D.controlled 26.A.serious B.special C.strange D.common 27.A.failed B.started C.mastered D.finished 28.A.exhibited B.refused C.prepared D.understood 29.A.worried B.sad C.curious D.comfortable 30.A.met with B.turned down C.looked after D.learnt from 31.A.trouble B.mistake C.fun D.improvement 32.A.remind B.invite C.phone D.reach 33.A.descried B.studied C.joked D.appreciated 34.A.because B.although C.if D.therefore 35.A.interesting B.obvious C.possible D.right三、阅读理解Are you struggling to be yourself at work? Tired of being behind schedule? Here are some important work tips that you can follow to improve your productivity.Focusing on One TaskSome people have the habit of multitasking, which is great, but it might distract you from the bigger picture. Multitasking might help you with different tasks. You might also feel like the jack of all trades (万事通) but your productivity won’t increase in the long run.Focus on one task at a time and this will allow you to complete that task with high standards. When the task is done, you can move on to the next one.Setting Small but Effective GoalsYou will be given large and challenging tasks at work and what matters is how you deal with them. Stress might be the normal response here but you can also play it smart. You can break any large task into small but manageable tasks, which will help you stay productive and will also make the best of time.Think of it like building blocks and you will have to focus on one small task at a time but the end result will be fascinating.Setting Self-Imposed (自己强加的) DeadlinesSetting self-imposed deadlines can actually help you be more productive at work Stress is a bad thing, but self-imposed stress can actually help us focus and be better. You can do really well with open-ended tasks or projects once you give yourself a deadline. Stick to that deadline and you will be surprised by the miracles that you can perform at work.Trying Following the “Two-Minute” RuleSteve Olenski is one of the finest entrepreneurs to date and he has given wonderful advice in the shape of the “Two-Minute” Rule. The “Two-Minute” Rule is basically about making the best out of small windows at work. Olenski tells us that if there is a task at work, and you can do it in 2 minutes, then you do it immediately. When you complete that small task, you don’t actually have to waste more time getting back to it, which also increases your productivity.36.By focusing on one task, you may________.A.feel like the jack of all trades B.finish that task with high standardsC.distract yourself from the bigger picture D.reduce your work efficiency37.What is the author’s suggestion for handling difficult tasks?A.Respond to them tensely.B.Make a plan in advance.C.Break them into manageable ones.D.Focus on the results all the time. 38.You can do well with open-ended tasks or projects if you________.A.learn to take a break B.perform miracles at workC.impose a deadline on yourself D.compare them to building blocks 39.What is TRUE about the “Two-Minute” Rule?A.It involves doing a small task without delay.B.It applies to all kinds of tasks.C.It is criticized by Steve Olenski.D.It requires getting back to tasks. 40.What is the author’s purpose in writing this passage?A.To share his work experience with the reader.B.To point out the importance of time management.C.To introduce the ways of achieving goals.D.To offer tips on enhancingproductivity.As she was waiting for her flight at a Chengdu airport, Cai Xiao noticed several tiny dead yellow birds lying on the ground outside an enormous window at the two-story terminal building. Deeply saddened by her discovery, Cai took photos of the dead animals and emailed them to a nationwide scientific survey of bird-window collisions(撞击)that aims to gather data to provide evidence of the existence of this issue in China.Li Binbin, an assistant professor of Environmental Sciences at Duke Kunshan University in Jiangsu province, led the survey, working with several Chinese bird-watching societies starting from March this year. She said that, so far, they have found bird collisions recorded in most parts of the country, and of the 26 species involved, two-thirds were migratory birds(候鸟).In order to pursue the transparency(透明度)of space, mankind has put up countless glass buildings, creating a disaster for birds, which have trouble seeing glass. They see reflections in glass as open space and fly into it at full speed. Sometimes birds appear to recover from their injuries and fly away, but they may later suffer internal injuries that leads to death.In the United States, up to 1 billion birds die each year from hitting windows. Although there is a lack of data, scientists estimate that the number is similar in China, given that thecountry's east coast is on a major migratory route for birds.Li launched the survey after witnessing a dozen bird collisions on campus. In 2018, the scholar and her students delivered a report to the university, recommending that it replace windows where most of the collisions happened. The school authorities worried that such an effort would damage the aesthetics(美观)of the buildings. After several discussions, they finally decided to use stickers to decorate windows and reduce glass reflections, Li recalled. This simple effort resulted in collisions at the site being reduced to almost zero.In the design plan for the future campus project, Li saw that several of her suggestions were adopted: lowering the use of large windows;adding window designs with strips or other patterns to reduce reflections.For those concerned with the issue, the main question is how to raise awareness of the problem. Li said the first step should be to gather enough data. So far, more than 130 individuals and 33 birding societies have reported bird collisions to her survey. 41.According to Para. 1, what happened at the airport?A.Some yellow birds were lying on the ground.B.Cai sent the dead birds to a nationwide scientific survey of bird-window collisions.C.Cai found that some birds had been killed by window collisions.D.Cai missed her flight because of the bird collisions.42.What can be concluded from Para. 3?A.The purpose of putting up more glass buildings is to blind birds.B.All the birds were killed instantly.C.The birds would like to fly into glass to see their reflections.D.Glass buildings could easily cause bird collisions.43.What can we learn from Para. 5?A.Li and her students' report saved a lot of birds.B.The school authorities refused to damage the aesthetics of the buildings.C.Finally, Li and her students used stickers to decorate windows and reduce glassreflections.D.The school authorities replaced windows where most of the collisions happened. 44.What is the main problem in reducing bird collisions in China at present?A.How to draw people's attention to this issue?B.There are too many glass buildings.C.How to reduce glass reflections?D.How to reduce bird collisions without damaging the aesthetics of the buildings? 45.What could be the best title for the passage?A.The Trouble with Glass Buildings B.Ways to Protect BirdsC.A Survey of Bird-window Collisions D.Fly to the ReflectionOne of our biggest fears nowadays is that our kids might someday get lost in a “sea of technology” rather than experiencing the natural world. Fear-producing TV and computer games are leading to a serious disconnect between kids and the great outdoors, which will change the wild places of the world, its creatures and human health for the worse, unless adults get working on child’s play.Each of us has a place in nature we go sometimes, even if it was torn down. We cannot be the last generation to have that place. At this rate, kids who miss the sense of wonder outdoors will not grow up to be protectors of natural landscapes. “If the decline in parks use continues across North America, who will defend parks against encroachment (蚕食)?” asks Richard Louv, author of Last Child in the Woods.Without having a nature experience, kids, can turn out just fine, but they are missing out a huge enrichment of their lives. That applies to everything from their physical health and mental health, to stress levels, creativity and cognitive (认知的) skills. Experts predict modern kids will have poorer health than their parents — and they say a lack of outside play is surely part of it; research suggests that kids do better academically in schools with a nature component and that play in nature fosters (培养) leadership by the smartest, not by the toughest. Even a tiny outdoor experience can create wonder in a child. The three-year-old turning over his first rock realizes he is not alone in the world. A clump of trees on the roadside can be the whole universe in his eyes. We really need to value that more.Kids are not responsible. They are over-protected and frightened. It is dangerous out there from time to time, but repetitive stress from computers is replacing breaking an arm as a childhood rite (仪式) of passage.Everyone, from developers, to schools and outdoor citizens, should help regain for our kids some of the freedom and joy of exploring, taking friendship in fields and woods that cement love, respect and need for landscape. As parents, we should devote some of our energies to taking our kids into nature. This could yet be our greatest cause.46.The main idea of Paragraph 2 is that ________.A.kids miss the sense of wonder outdoorsB.parks are in danger of being gradually encroachedC.Richard Louv is the author of Last Child in the WoodsD.children are expected to develop into protectors of nature47.According to the passage, children without experiencing nature will ________.A.be less healthy both physically and mentallyB.be over-protected by their parentsC.keep a high sense of wonderD.change wild places and creatures for the better48.According to the author, children’s breaking an arm is ________.A.the fault on the part of their parentsB.the natural experience in their growing upC.the result of their own carelessness in playD.the effect of their repetitive stress from computers49.What does the underlined word “cement” in the last paragraph mean?A.Weaken.B.Strengthen.C.Lower.D.Decease. 50.In writing this passage, the author mainly intends to ________.A.blame children for getting lost in computer gamesB.encourage children to protect parks from encroachmentC.show his concern about children’s lack of experience in natureD.inspire children to keep the sense of wonder about things aroundLack is a matter of preparation meeting opportunity," said the American talk show host Oprah Winfrey. I've never watched her show, but when a self-made billionaire gives life advice it' s probably worth listening to.Her point is that blind luck is very rare. You may have to be lucky to find a good job these days but that does not mean you should sit at home waiting for the opportunity to come to you. If you're a Chinese, you may already be familiar with the tale of a farmer waiting by a tree stump(树桩)for a rabbit to run out and break its neck.Richard Wiseman, the UK psychologist, conducted an experiment as part of his studies. First he divided volunteers into two groups: those who said they were lucky in life and thosewho said they were not. He gave everyone a newspaper and asked them to look through it to count how many photographs it had inside. On average, the unlucky people took about two minutes to count the photographs while the lucky people took just seconds. Why? On the second page of the newspaper, a command, "Stop counting There are 43 photographs in this newspaper," was written in big letters. The unlucky people mostly did not spot the message.It's easy to compare this situation to a young person looking for jobs in a local paper. They might search so hard for one type of position that they miss an even better opportunity. People who are "lucky", in fact, keep an open mind and don't go through the same routine every day.I first came to China in 2002 when it was considered a rather strange thing to do, Like many foreigners, my plan was to teach English for one year. Seven years later, and still here, I've had many great opportunities such as writing for newspapers and magazines. I did not dream these would have been possible. I've also never been sick, had an accident, got into a fight or had problems with the police. Coincidence? After reading about Professor Wiseman's studies I think not.As Wiseman advises, I usually trust my own judgment. Your friends and parents may give you advice based on rational(理性)thinking, but it's important to consider how you feel about each choice you make. Your feeling acts as a warning for a potential problem.Finally, try to turn bad luck into good. Even if you do fall down and break a leg, the time spent at home can be used wisely to study English.51.What do you know about Oprah Winfrey?A.She is a good organizer of a talk show in America.B.She became famous through her family background.C.She was lucky and seldom fell flat on her face.D.She became successful entirely by her own effort.52.The writer quoted the Chinese tale of a farmer in order to show________.A.luck is in your own handB.bad luck can turn into goodC.you can't wait for an opportunityD.man can conquer nature53.From the experiment Wiseman drew the conclusion that________.A.lucky people are quick-mindedB.unlucky people are slow to readC.lucky people often have an open mindD.unlucky people are not routineers54.The underlined word "spot" is the closest in meaning to "________”.A.recognize B.mark C.make D.receive 55.Which of the following proverbs most agrees with the writer's point?A.Make the best of a bad situation.B.Rome was not built in a day.C.All is not gold that glitters.D.A good heart conquers ill fortune.四、阅读表达阅读下面短文,按照要求用英语回答问题。

江苏省宿迁市沭阳如东实验学校2023-2024学年九年级上学期第一次阶段检测数学试题

江苏省宿迁市沭阳如东实验学校2023-2024学年九年级上学期第一次阶段检测数学试题

江苏省宿迁市沭阳如东实验学校2023-2024学年九年级上学期第一次阶段检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法正确的是( )A .相等的弦所对的弧相等B .相等的圆心角所对的弧相等C .等弧所对的弦相等D .相等的弦所对的圆心角相等 2.下列说法中,正确的有( )①相等的圆周角所对的弧相等;②同圆或等圆中,同弦或等弦所对的圆周角相等;③等弧所对圆周角相等;④圆心角等于圆周角的2倍.A .1个B .2个C .3个D .4个 3.如图,在矩形ABCD 中,4AB =,3AD =,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是( )A .34r <<B .35r <<C .35r ≤≤D .4r > 4.如图,在扇形OAB 中,110AOB ∠=o ,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在¶AB 上的点D 处,折痕交OA 于点C ,则¶AD 的度数为( )A .40oB .50oC .60oD .70o 5.小颖同学在手工制作中,把一个边长为6cm 的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )A .B .C .D .6.如图,已知E 是ABC V 的外心,P Q 、分别是AB 、AC 的中点,连接EP 、EQ 交BC于点F D 、,若5BF =,3DF =,4CD =,则ABC V 的面积为( )A .18B .24C .30D .36二、填空题7.线段10cm AB =,在以AB 为直径的圆上,到点A 的距离为5cm 的点有个. 8.O e 的圆心是原点()0,0O ,半径为13,点()5,A a 在O e 上,那么=a . 9.直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是.10.如图,半径为4的扇形OAB 中,∠O =60°,C 为半径OA 上一点,过C 作CD ⊥OB 于点D ,以CD 为边向右作等边△CDE ,当点E 落在»AB 上时,CD =.11.如图,⊙M 的半径为4,圆心M 的坐标为(6,8),点P 是⊙M 上的任意一点,P A ⊥PB ,且P A 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为.12.如图,过A 、C 、D 三点的圆的圆心为点E ,过B 、F 、E 三点的圆的圆心为D ,如果66A ∠=︒,那么θ∠=.13.有一半圆片(其中圆心角52)AED ∠=︒在平面直角坐标系中按如图所示放置,若点A 可以沿y 轴正半轴上下滑动,同时点B 相应地在x 轴正半轴上滑动,当OAB n ∠=︒时,半圆片上的点D 与原点O 距离最大,则n 的值为.14.如图,AB 是O e 的弦,C 是»AB 的中点,OC 交AB 于点D .若8c m ,2c m A B C D ==,则O e 的半径为cm .15.如图,O e 的半径是8,AB 是O e 的直径,M 为AB 上一动点,»»»AC CDBD ==,则CM DM +的最小值为.16.如图,在平面直角坐标系中,一个圆与两坐标轴分别交于A 、B 、C 、D 四点.已知A (6,0),B (﹣2,0),C (0,3),则点D 的坐标为 .17.如图,在ABC V 中,AB AC ==,4BC =,O e 是ABC V 的外接圆,则O e 的半径为.18.半径为5的O e 是锐角三角形ABC 的外接圆,AB AC =,连接OB 、OC ,延长CO交弦AB 于点D .若OBD V是直角三角形,则弦BC 的长为.三、解答题19.如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.20.如图,AB 是O e 的弦,C 是»AB 的中点,OC 交AB 于点D ,若8c m AB =,2cm CD =,求O e 的半径.21.证明:垂直于弦AB 的直径CD 平分弦以及弦所对的两条弧.22.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B =70°,求∠CAD 的度数;(2)若AB =4,AC =3,求DE 的长.23.如图,在锐角三角形ABC 中,以AC 边为直径的O e 交BC 于点()D BD CD >,作BH AC ⊥,依次交O e 于点E ,交AC 于点G ,交O e 于点H ,连接CE ,DE .(1)求证:EBC DEC ∠=∠;(2)若=45ABC ∠︒,5AC =,7BC =,求ABC V 的面积.24.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作CE AD ∥交ABC V 的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形;(2)连接CO ,求证:CO 平分BCE .参考答案:1.C2.A3.B4.B5.A6.B7.28.12±9.30°或150°1011.1212.16︒/16度 13.26︒/26度 14.515.1616.(0,4)- 17.103/13318.或19.(1)(2)见解析. 20.O e 的半径为5cm 21.见解析22.(1)35°;(2)2.23.(1)见解析(2)14ABC S =V24.(1)见解析(2)见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每题4分,共40分)
1.若人造卫星绕地球做匀速圆周运动,则下列说法正确的是()
A.卫星的轨道半径越大,它的运行速度越大
B.卫星的轨道半径越大,它的运行速度越小
C.卫星的质量一定时,轨道半径越大,它需要的
向心力越大
D.卫星的质量一定时,轨道半径越大,它需要的
向心力越小
2.在高空沿水平方向匀速飞行的飞机,每隔1s投放
一物体,则(不计空气阻力)()
A.这些物体落地前排列在一条直线上
B.这些物体都落在地面上的同一点
C.这些物体落地时的速度大小和方向都相同
D.相邻物体在空中距离保持不变
3.科学家们预测,太阳系的第十颗行星就在地球的
轨道上.从地球上看,它永远在太阳的背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟”.由以上信息我们可以推知()
A.这颗行星的公转周期与地球相等
B.这颗行星的自转周期与地球相等
C.这颗行星的质量等于地球的质量
D.这颗行星的密度等于地球的密度
4.关于绕地球做圆周运动的宇宙飞船,以下结论正
确的是()
A.两飞船只要它们的速率相等,则它们的轨道半
径和运行周期必相等
B.在同一轨道上沿同方向运动的前后两飞船,要
想对接,只要后面的飞船向后喷射气体而加速
即可
C.宇航员从舱内走出,离开飞船,则飞船所受万
有引力减小而使飞船轨道半径变大
D.如果知道人造地球卫星的轨道半径和它的周
期,再利用万有引力常量,就可以算出地球的
质量
5.有互成角度的分运动a、b,它们的合运动为c,
则下列说法正确的是()
A.若a、b的轨迹为直线,则c的轨迹必为直线
B.若c的轨迹为直线,则a、b必为匀速运动
C.若a为匀速直线运动,b为匀速直线运动,则c
必为匀速直线运动
D.若a、b均为初速度为零的匀变速直线运动,
则c必为匀变速直线运动
6.在高处以初速度v0水平抛出一石子,当它的速度
由水平变化为与水平成θ角的过程中,石子的水平方向位移是()
7.在抗洪救险中,战士驾驶摩托艇救人.假设江岸
是平直的,洪水沿江向下游流去,水流速度为v1,摩托艇在静水中的速度为v2,战士救人的地点A 离岸边最近处O的距离为d.如果战士在最短的时间内将人送上岸,则摩托艇登陆的地点离O点的距离为()
8.地球赤道上的物体随地球自转的向心加速度为a1,
第一宇宙速度为v1,地球半径为R,同步卫星离地心距离为r,运行速率为v2,向心加速度为a2,则()
9.一列以速度v匀速行驶的列车内有一水平桌面,
桌面上的A处有一小球.
若车厢中的旅客突然发
现小球沿如图(俯视图)
l中的虚线从A点运动到
B点,则由此可以断定列
车的运行情况是()图1
A.减速行驶,向北转弯
B.减速行驶,向南转弯
C.加速行驶,向南转弯
D.加速行驶,向北转弯
10.如图2所示,为
一空间探测器的
示意图,P1、P2、
P3、P4是四喷气式
发动机,P1、P3的
连线与空间一固定
坐标系的x轴平行,图2
P2、P4的连线与y轴平行,每台发动机开动时,
都能向探测器提供推力,但不会使探侧器转动.开始时,探测器以恒定的速率v0向正x方向平动.要使探测器改为向正x偏负y轴60°的方向以原来的速率v0平动,则可()
A.先开动P1适当时间,再开动P2适当时间
B.先开动P3适当时间,再开动P2适当时间
C.开动P4适当时间
D.先开动P3适当时间,再开动P4适当时间
二、填空题(每题5分,共20分)
11.(1)在做“研究平抛物体的运动”的实验时,
下列镜法正确的是()
A.安装有斜槽的木板,一定要注意木板是否竖直
B.安装有斜槽的木板,只要注意小球不和木板发
生摩擦
C.每次实验都要把小球从同一位置释放
D.实验的目的是描出小球的运动轨迹,求出平抛
运动的初速度
(2)如图3所示,做平抛运动的
质点通过A、B、C三点,取
A点为坐标原点,B、C两点
坐标如图3所示,则做平抛
运动的质点初速度是m/s.
(g取10 m/s2)
图3
1
2
12.卫星绕地球做匀速圆周运动时处于完全失重状态,物体对支持面几乎没有压力,所以在这种环境中已经无法用天平称量物体的 质量.假设某同学在这种环境中 设计了如图4所示的装置(图中 O 为光滑小孔)来间接测量物体 的质量:给待测物体一个初速度, 使它在桌面上做匀速圆周运动. 设航天器中具有基本测量工具. 图4
(1)实验时需要测量的物理量是 .
(2)待测物体质量的表达式为m = .
13.如图5所示,圆轨道AB
是在竖直平面内的4
1
圆周 在B 点轨道的切线是水平
的,一质点自A 点从静止 开始下滑,不计摩擦和空 图5
气阻力,则在质点刚要到达B 点时的加速度大小
为 ,滑过B 点时的加速度大小为 .
(已知B 点的速度为gR 2,R 为圆轨道的半径) 14.童非,江西人,中国著名体操运动员,首次在单
杠项目上实现了“单臂大回环”;用一只手抓住单
杠,伸展身体以单杠为轴做圆周运动.假设童非的
质量为65 kg,那么,在完成“单臂大回环”的过程
中,童非的单臂承受的最大拉力为. (g
取10 m/ s 2,转动过程中最大角速度是6 rad/s)
三、计算题(15、16题各8分,17、18题各12分,
共40分)
15.我国台湾的一位特技演员第一个骑摩托车飞越
长城.已知他跨越的水平距离约60 m.如果起跳的
水平台比着地水平台高约为7.2 m ,且有100 m 的
水平直跑道,则他在跑道上的加速度是多大?(设
特技演员在跑道上做匀加速直线运动)
16.一辆质量为M 的超重车,行驶上半径为R 的圆弧形拱桥顶点,已知此处桥面能承受的最大压力只是车重的3/4倍,要使车能安全沿桥面行驶,求在此处车的速度应在什么范围内?
17.如图6所示,在半径为R 的 水平圆台的中心轴线OO ′上 的一点A 将一小球水平抛出, 已知以OA =h ,抛出时初速度 恰与圆台的一条半径OP 平行, 要使小球能击中P 点,求:
(1)小球的初速度v 0为多大?
(2)转台匀速转动的角速度ω等于多少?
18.如图所示,一小球自平台上水平抛出,恰好落
在临近平台的一倾角为α=53°的光滑斜面顶端,
并刚好沿光滑斜
面下滑,已知斜面顶
端与平台的高度差h
=0.8 m ,重力加速度
g 取10 m/s 2,sin 53°
=0.8,cos 53°=0.6,求: (1)小球水平抛出的初速度v 0是多少?
(2)斜面顶端与平台边缘的水平距离s 是多少?。

相关文档
最新文档