高等代数第一章检测题答案

合集下载

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

【最新试题库含答案】高等代数习题及答案(1)

【最新试题库含答案】高等代数习题及答案(1)

高等代数习题及答案(1)篇一:高等代数习题解答(第一章)高等代数习题解答第一章多项式补充题1.当a,b,c取何值时,多项式f(x)?x?5与g(x)?a(x?2)2?b(x?1) ?c(x2?x?2)相等?6136提示:比较系数得a??,b??,c?. 555补充题2.设f(x),g(x),h(x)??[x],f2(x)?xg2(x)?x3h2(x),证明:f(x)?g(x)?h(x)?0.证明假设f(x)?g(x)?h(x)?0不成立.若f(x)?0,则?(f2(x))为偶数,又g2(x),h2(x)等于0或次数为偶数,由于g2(x),h2(x)??[x],首项系数(如果有的话)为正数,从而xg2(x)?x3h2(x)等于0或次数为奇数,矛盾.若g(x)?0或h(x)?0则?(xg2(x)?x3h2(x))为奇数,而f2(x)?0或?(f2(x))为偶数,矛盾.综上所证,f(x)?g(x)?h(x)?0.1.用g (x) 除 f (x),求商q (x)与余式r (x):1)f (x) = x3- 3x2 -x-1,g (x) =3x2 -2x+1;2)f (x) = x4 -2x+5,g (x) = x2 -x+2.1)解法一待定系数法.由于f (x)是首项系数为1的3次多项式,而g (x)是首项系数为3的2次多项式,1所以商q(x)必是首项系数为的1次多项式,而余式的次数小于 2.于是可设 31 q(x) =x+a , r(x) =bx+c 3根据 f (x) = q(x) g(x) + r(x),即1 x3-3x2 -x-1 = (x+a)( 3x2 -2x+1)+bx+c 3右边展开,合并同类项,再比较两边同次幂的系数,得21 ?3?3a?, ?1??2a??b, ?1?a?c 337262解得 a?? , b?? , c?? ,故得 99917262q(x)?x?, r(x)??x?.3999解法二带余除法.3-21 1 -3-1 -11 ???21 3374 ?-1 337147 ? 399262 ? 9917 ? 39?得17262q(x)?x?, r(x)??x?. 39992) q(x)?x2?x?1,r(x)??5x?7. r(x)??2.m,p,q适合什么条件时,有1)x2?mx?1x3?px?q;2)x2?mx?1x4?px2?q.?1除x3?px1)解 x2?mx得余式为: ?q262x?. 99 r(x)?(p?m2?1)x?(q?m),?p?m2?1?0;令r(x)?0,即 ? ?q?m?0.故x2?mx?1x3?px?q的充要条件是?m?q; ? 2p?m?1?0.??1除x4?px2?q得余式为: 2)解 x2?mxr(x)??m(p?m2?2)x?(q?p?m2?1),2???m(p?m?2)?0;令r(x)?0,即 ? 2??q?p?m?1?0. 解得x2?mx?1x4?px2?q的充要条件是?m?0; ? 或 p?q?1??q?1; ?2p?2?m.?3.求g(x)除f(x)的商q(x)与余式r(x):。

高等代数第一章第一节习题答案

高等代数第一章第一节习题答案

习题1.11. 判断以下数集是否作成数环。

1)S={}Z ∈; 2) S={}0a a Q ≠∈;3)S={},a b Z +∈;4)S={},a a b Q +∈.解: 1)错误。

不能包含除0以外的整数。

2)错误。

对差不封闭。

3)正确。

4)正确。

{}{},5,13a bi a b Q a bi a b Q Q +∈+∈2. 填空:1) 包含5i 的最小数域是或 2) 包含的最小数域是⎭⎬⎫⎩⎨⎧∈Q a a 31或{}{}{}0.,0,,,,0,1,2,3,,-l S a S a S ka S a S k l a bi a b Q F c di c di ≠≠∈≠∈∈=+∈⋅∈≠≠3.证明:如果一个数环S ,那么含有无限多个数。

证明:S 0可设是数环于是 其中 故含有无限多个数。

4.证明:S=是一个数环,是不是数域?证明: S 为数环,则S 对于数的加、减、乘封闭,且1=1+0i S 设+0,那么0 222222220000,()()()()(),d c c di d c di c Q a bia bi c di ac bd bc ad i c di c di c di c d ac bdbc ad i c d c d ac bd bc ad Q c d ==+≠≠=∈++-++-==++-++-=++++-∈+否则 在的情形下,,与矛盾 在的情形下,与矛盾因此 又由于 22,Q c d a biS S c di ∈++∴∈+ 故是数域。

121212,F F F F F F 5.设均为数域,证明也是数域,一定是数域吗?举例说明。

{}121222112,,,F F F F R F a bi a b Q F F F F ==+∈⊄⊄ 112证明:是数域,不一定是数域 反例:设F 因 F F 所以 不是数域。

高等代数(北大版)第1章习题参考答案

高等代数(北大版)第1章习题参考答案

第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等代数习题北大第四版答案一到四章

高等代数习题北大第四版答案一到四章

从 而 ( f ( x), g( x))h( x) 是 f (x)h(x) 与 g( x)h( x) 的 一 个 最 大 公 因 式 , 又 因 为
( f (x), g( x)) h( x) 的首项系数为1,所以 ( f (x)h(x), g(x)h(x)) = ( f ( x), g( x))h( x) 。
u1(x) f (x) + v1(x)g (x) = 1
(1)
u2 (x) f (x) + v2 (x)h(x) = 1
将(1)(2)两式相乘,得
(2)
[u1(x)u2(x) f (x) + v1(x)u2(x)g (x) + u1(x)v2(x)h(x)] f ( x) , +[v1(x)v2 (x)]g( x)h( x) = 1 所以 ( f ( x), g( x) h( x)) =1 。
即[u(x) − v(x)] f ( x) + v( x)[ f ( x) + g( x)] = 1 ,
所以 ( f (x), f ( x) + g( x)) =1。
同理 ( g( x), f ( x) + g( x)) =1 。
再由 12 题结论,即证 ( f ( x) g( x), f ( x) + g( x)) =1。
2) f (x) = x3 − x2 − x, g( x) = x −1 + 2i 。
q(x) = 2x4 − 6x3 +13x2 − 39x +109
解 1)

r (x) = −327
2) q(x) = x2 − 2ix − (5 + 2i ) 。 r (x) = −9 + 8i

高等代数习题解答(第一章)(完整资料).doc

高等代数习题解答(第一章)(完整资料).doc

【最新整理,下载后即可编辑】高等代数习题解答第一章 多项式补充题1.当,,a b c取何值时,多项式()5f x x =-与2()(2)(1)g x a x b x =-++ 2(2)c x x +-+相等?提示:比较系数得6136,,555a b c =-=-=. 补充题2.设(),(),()[]f x g x h x x ∈,2232()()()f x xg x x h x =+,证明:()()()0f x g x h x ===.证明 假设()()()0f x g x h x ===不成立.若()0f x ≠,则2(())f x ∂为偶数,又22(),()g x h x 等于0或次数为偶数,由于22(),()[]g x h x x ∈,首项系数(如果有的话)为正数,从而232()()xg x x h x +等于0或次数为奇数,矛盾.若()0g x ≠或()0h x ≠则232(()())xg x x h x ∂+为奇数,而2()0f x =或2(())f x ∂为偶数,矛盾.综上所证,()()()0f x g x h x ===.1.用g (x ) 除 f (x ),求商q (x )与余式r (x ): 1)f (x ) = x 3- 3x 2 -x -1,g (x ) =3x 2 -2x +1; 2)f (x ) = x 4 -2x +5,g (x ) = x 2 -x +2. 1)解法一 待定系数法.由于f (x )是首项系数为1的3次多项式,而g (x )是首项系数为3的2次多项式,所以商q (x )必是首项系数为13的1次多项式,而余式的次数小于 2.于是可设q (x ) =13x +a , r (x ) =bx +c 根据 f (x ) = q (x ) g (x ) + r (x ),即x 3-3x 2 -x -1 = (13x +a )( 3x 2 -2x +1)+bx +c 右边展开,合并同类项,再比较两边同次幂的系数,得 2333a -=-,1123a b -=-++,1a c -=+解得79a =-,269b =-,29c =-,故得17(),39q x x =- 262().99r x x =--解法二 带余除法.3 -2 1 1 -3 -1 -1 1379-1 23- 1373-43- -173-14979- 269- 29-得17(),39q x x =- 262().99r x x =--2)2()1,()57.q x x x r x x =+-=-+ 262().99r x x =--2.,,m p q 适合什么条件时,有1)231;x mx x px q +-++ 2)2421.x mx x px q ++++ 1)解21x mx +-除3x px q++得余式为:2()(1)()r x p m x q m =+++-,令()0r x =,即210;0.p m q m ⎧++=⎨-=⎩故231x mx x px q +-++的充要条件是2;10.m q p m =⎧⎨++=⎩2)解21x mx ++除42x px q++得余式为:22()(2)(1)r x m p m x q p m =-+-+--+,令()0r x =,即22(2)0;10.m p m q p m ⎧-+-=⎪⎨--+=⎪⎩解得2421x mx x px q ++++的充要条件是0;1m p q =⎧⎨=+⎩ 或 21;2.q p m =⎧⎨=-⎩ 3.求()g x 除()f x 的商()q x 与余式()r x : 1)53()258,()3;f x x x x g x x =--=+2)32(),()12.f x x x x g x x i =--=-+1)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0: -3 2 0 -5 0 -8 0 + -6 18 -39 117 -3272 -6 13 -39 109 -327 所以432()261339109,()327.q x x x x x r x =-+-+=-2)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0:()f x1-2i 1 -1 -1 0 + 1-2i -4-2i -9+8i 1 -2i -5-2i -9+8i 所以2()2(52),()98.q x x ix i r x i =--+=-+4.把()f x 表成0x x -的方幂和,即表成 201020()()c c x x c x x +-+-+的形式:1)50(),1;f x x x == 2)420()23,2;f x x x x =-+=-3)4320()2(1)37,.f x x ix i x x i x i =--+-++=-注 设()f x 表成201020()()c c x x c x x +-+-+的形式,则0c 就是()f x 被x x -除所得的余数,1c 就是()f x 被x x -除所得的商式212030()()c c x x c x x +-+-+再被0x x -除所得的余数,逐次进行综合除法即可得到01,,,.n c c c1)解用综合除法进行计算1 1 0 0 0 0 0+ 1 1 1 1 11 1 1 1 1 1 1+ 1 2 3 41 2 3 4 51 + 1 3 61 3 6 101 + 1 41 4 101 + 11 5所以5234515(1)10(1)10(1)5(1)(1).x x x x x x=+-+-+-+-+-2)3)略5.求()f x与()g x的最大公因式:1)43232()341,()1;f x x x x xg x x x x=+---=+--2)4332()41,()31;f x x xg x x x=-+=-+3)42432()101,()6 1.f x x xg x x x=-+=-+++1)解用辗转相除法()g x()f x2()q x12-141 1 -1 -1 1 1 -3 -4 -11 1 3212 1 1 -1 -112-32- -1 1()r x-2 -3 -13()q x834312- 34- 14- -2 -22()r x34-34--1 -1-1 -13()r x所以((),()) 1.f x g x x =+2)((),()) 1.f x g x = 3)2((),()) 1.f x g x x =--6.求(),()u x v x 使()()()()((),()):u x f x v x g x f x g x += 1)432432()242,()22f x x x x x g x x x x x =+---=+---; 2)43232()421659,()254f x x x x x g x x x x =--++=--+; 3)4322()441,()1f x x x x x g x x x =--++=--. 1)解 用辗转相除法()g x ()f x2()q x1 1 1 1 -1 -2 -2 1 2 -1 -4 -21 1 0 -2 0 1 1 -1 -2 -2 1 1 -2 -21()r x1 0 -2 03()q x1 01 0 -2 0 1 0 -22()r x1 0 -23()r x由以上计算得11()()()(),f x q x g x r x =+ 212()()()(),g x q x r x r x =+ 132()()(),r x q x r x =因此22((),())()2f x g x r x x ==-,且2((),())()f x g x r x =21()()()g x q x r x =-21()()[()()()]g x q x f x q x g x =-- 212()()[1()()]()q x f x q x q x g x =-++所以212()()1,()1()()2u x q x x v x q x q x x =-=--=+=+.2)((),())1f x g x x =-,21122(),()13333u x x v x x x =-+=--. 3)((),())1f x g x =,32()1,()32u x x v x x x x =--=+--.7.设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 略.8.证明:如果()(),()()d x f x d x g x 且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由于()(),()()d x f x d x g x ,所以()d x 为()f x 与()g x 的一个公因式.任取()f x 与()g x 的一个公因式()h x ,由已知()d x 为()f x 与()g x 的一个组合,所以()()h x d x .因此,()d x 是()f x 与()g x 的一个最大公因式.9.证明:(()(),()())((),())()f x h x g x h x f x g x h x =,(()h x 的首项系数为 1). 证明 因为存在多项式()u x 和()v x 使 ((),())()()()()f x g x u x f x v x g x =+,所以((),())()()()()()()()f x g x h x u x f x h x v x g x h x =+,这表明((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个组合,又因为 ((),())(),((),())()f x g x f x f x g x g x , 从而((),())()()(),((),())()()()f x g x h x f x h x f x g x h x g x h x ,故由第8题结论,((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式.注意到((),())()f x g x h x 的首项系数为1,于是(()(),()())((),())()f x h x g x h x f x g x h x =.10.如果(),()f x g x 不全为零,证明:()()(,)1((),())((),())f xg x f x g x f x g x =.证明 存在多项式()u x 和()v x 使((),())()()()()f x g x u x f x v x g x =+,因为(),()f x g x 不全为零,所以((),())0f x g x ≠,故由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以()()(,)1((),())((),())f xg x f x g x f x g x =.11.证明:如果(),()f x g x 不全为零,且()()()()((),())u x f x v x g x f x g x +=,那么((),())1u x v x =.证明 因为(),()f x g x 不全为零,故 ((),())0f x g x ≠,从而由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以((),())1u x v x =.12.证明:如果((),())1f x g x = ,((),())1f x h x =,那么((),()())1f x g x h x =. 证法一 用反证法.假设()((),()())1d x f x g x h x =≠,则(())0d x ∂>,从而()d x 有不可约因式()p x ,于是()(),()()()p x f x p x g x h x ,但因为((),())1f x g x =,所以()p x 不整除()g x ,所以()()p x h x ,这与((),())1f x h x =矛盾.因此((),()())1f x g x h x =.证法二 由题设知,存在多项式1122(),(),(),()u x v x u x v x ,使得11()()()()1u x f x v x g x +=,22()()()()1u x f x v x h x +=,两式相乘得12121212[()()()()()()()()()]()[()()]()()1u x u x f x v x u x g x u x v x h x f x v x v x g x h x +++=,所以((),()())1f x g x h x =.13.设11(),,(),(),,()m n f x f x g x g x 都是多项式,而且((),())1(1,2,,;1,2,,).i j f x g x i m j n ===求证:1212(()()(),()()()) 1.m n f x f x f x g x g x g x =证法一 反复应用第12题的结果 证法二 反证法14.证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x +=. 证明 由于((),())1f x g x =,所以存在多项式()u x 和()v x 使 ()()()()1u x f x v x g x +=,由此可得()()()()()()()()1,u x f x v x f x v x f x v x g x -++= ()()()()()()()()1,u x f x u x g x u x g x v x g x +-+=即[][]()()()()()()1,u x v x f x v x f x g x -++=[][]()()()()()()1,v x u x g x u x f x g x -++= 于是((),()())1f x f x g x +=,((),()())1g x f x g x +=,应用第12题的结论可得(()(),()())1f x g x f x g x +=.注 也可以用反证法.15.求下列多项式的公共根:32432()221;()22 1.f x x x x g x x x x x =+++=++++提示 用辗转相除法求出2((),()) 1.f x g x x x =++于是得两多项式的公共根为1.2-± 16.判别下列多项式有无重因式: 1)5432()57248f x x x x x x =-+-+-; 2)42()443f x x x x =+--1)解 由于432'()5202144f x x x x x =-+-+,用辗转相除法可求得2((),'())(2)f x f x x =-,故()f x 有重因式,且2x -是它的一个 3 重因式.2)解 由于3'()484f x x x =+-,用辗转相除法可求得((),'())1f x f x =,故()f x 无重因式.17.求t 值使32()31f x x x tx =-+-有重根. 解2'()36f x x x t =-+.先用'()f x 除()f x 得余式 1263()33t t r x x --=+.当3t =时,1()0r x =.此时'()()f x f x ,所以21((),'())'()(1)3f x f x f x x ==-,所以1是()f x 的3重根.当3t ≠时,1()0r x ≠.再用1()r x 除'()f x 得余式215()4r x t =+.故当154t =-时,2()0r x =.此时,121((),'())()92f x f x r x x =-=+,所以12-是()f x 的2重根.当3t ≠且154t ≠-时,2()0r x ≠,则((),'())1f x f x =,此时()f x 无重根.综上,当3t =时,()f x 有3重根1;当154t =-时,()f x 有2重根12-.18.求多项式3x px q ++有重根的条件. 解 略.19.如果242(1)1x Ax Bx -++ ,求,A B .解法一 设42()1f x Ax Bx =++,则3'()42f x Ax Bx =+.因为242(1)1x Ax Bx -++,所以1是()f x 的重根,从而1也是'()f x 的根.于是(1)0f =且'(1)0f =,即10;420.A B A B ++=⎧⎨+=⎩解得1,2A B ==-.解法二 用2(1)x -除421Ax Bx ++得余式为(42)(31)A B x A B ++--+,因为242(1)1x Ax Bx -++,所以(42)(31)0A B x A B ++--+=,故420;310.A B A B +=⎧⎨--+=⎩ 解得1,2A B ==-.20.证明:212!!nx x x n ++++没有重根.证法一 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 因为()'()!nx f x f x n -=,所以((),'())((),)1!nx f x f x f x n ==.于是212!!nx x x n ++++没有重根. 证法二 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 假设()f x 有重根α,则()0f α=且'()0f α=,从而0!nn α=,得0α=,但0α=不是()f x 的根,矛盾.所以212!!nx x x n ++++没有重根. 21.略. 22.证明:x 是()f x 的k 重根的充分必要条件是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.证明 (必要性)设0x 是()f x 的k 重根,从而0x 是'()f x 的1k -重根,是''()f x 的2k -重根,…,是(1)()k f x -的单根,不是()()k f x 的根,于是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.(充分性)设(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠,则0x 是(1)()k f x -的单根,是(2)()k f x -的2重根,…,是()f x 的k 重根.23.举例说明断语“如果α是'()f x 的m 重根,那么α是()f x 的m +1重根”是不对的.解 取1()()1m f x x α+=-+,则()'()1()m f x m x α=+-.α是'()f x 的m 重根,但α不是()f x 的m +1重根.注:也可以取具体的,如0,1m α==.24.证明:如果(1)()n x f x -,那么(1)()n n x f x -. 证明 略.25.证明:如果23312(1)()()x x f x xf x +++,那么12(1)(),(1)()x f x x f x --.证明2121()()x x x x ωω++=--,其中12ωω==.由于23312(1)()()x x f x xf x +++,故存在多项式()h x 使得33212()()(1)()f x xf x x x h x +=++,因此112122(1)(1)0;(1)(1)0.f f f f ωω+=⎧⎨+=⎩ 解得12(1)(1)0f f ==,从而12(1)(),(1)()x f x x f x --.26.求多项式1n x -在复数范围内和实数范围内的因式分解. 解 多项式1n x -的n 个复根为 22cossin ,0,1,2,,1kk k i k n n nππω=+=-,所以1n x -在复数范围内的分解式为1211(1)()()()n n x x x x x ωωω--=----.在实数范围内,当n 为奇数时:222112211221(1)[()1][()1][()1]n n n n n x x x x x x x x ωωωωωω---+-=--++-++-++,当n 为偶数时:222112222221(1)(1)[()1][()1][()1]n n n n n x x x x x x x x x ωωωωωω---+-=-+-++-++-++.27.求下列多项式的有理根: 1)3261514x x x -+-; 2)424751x x x ---;3)5432614113x x x x x +----.1)解 多项式可能的有理根是1,2,7,14±±±±. (1)40f =-≠,(1)360f -=-≠.由于44444,,,,1(2)171(7)1141(14)-------------都不是整数,所以多项式可能的有理根只有2.用综合除法判别:2 1 -6 15 -14 + 2 -8 14 2 1 -4 7 0 + 2 -4 1 -2 3≠0 所以2是多项式的有理根(单根).注:一般要求指出有理根的重数.计算量较小的话,也可以直接计算,如本题可直接算得(2)0f =,说明2是()f x 的有理根,再由'(2)0f ≠知.2是单根.用综合除法一般比较简单.2)答12-(2重根).3)答 1-(4重根),3(单根). 28.下列多项式在有理数域上是否可约? 1)21x -;2)4328122x x x -++; 3)631x x ++;4)1p x px ++,p 为奇素数; 5)441x kx ++,k 为整数. 1)解21x -可能的有理根是1±,直接检验知,都不是它的根,故21x -不可约.2)解 用艾森斯坦判别法,取2p =. 3)解 令1x y =+,则原多项式变为6365432(1)(1)1615211893y y y y y y y y ++++=++++++,取3p =,则由艾森斯坦判别法知多项式65432615211893y y y y y y ++++++不可约,从而多项式631x x ++也不可约.4)提示:令1x y =-,取素数p . 5)提示:令1x y =+,取2p =.。

《高等代数》 第一章矩阵 习题答案

《高等代数》 第一章矩阵 习题答案

第一章 矩阵习题一1.设有A 、B 、C 三类商品,它们去年和今年的价格如下表所示:单位:元试用矩阵表示上述表格. 解 所求的的矩阵为1002009050120150⎛⎫ ⎪ ⎪ ⎪⎝⎭2.写出下列线性方程组的系数矩阵与增广矩阵. (1) ⎩⎨⎧=-=-02132y x y x ;(2) ⎪⎪⎩⎪⎪⎨⎧=+=++=-52323203y x z y x z x.解 (1)系数矩阵为2312-⎛⎫ ⎪⎝⎭增广矩阵为231120-⎛⎫ ⎪⎝⎭(2)系数矩阵为103231320-⎛⎫ ⎪ ⎪ ⎪⎝⎭增广矩阵为103023123205-⎛⎫ ⎪ ⎪ ⎪⎝⎭3.写出矩阵()32)()1(⨯-+-=j i A j i 的完全形式. 解 234345A -⎛⎫=⎪--⎝⎭4.写出既是上三角形矩阵,又是下三角形矩阵的3阶矩阵的一般形式.解 所求的矩阵为000000a b c ⎛⎫ ⎪ ⎪ ⎪⎝⎭其中a,b,c 为任意数.习题二1.设矩阵,312010403,112112,012110321⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=C B A(1)计算C A 23-与3A;(2)验证()CB AB B C A +=+与 ()TAB TT=A B .解(1) 1233043230112010210213A C ⎛⎫⎛⎫ ⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭369608033020630426⎛⎫⎛⎫ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=369033256-⎛⎫⎪- ⎪ ⎪-⎝⎭323123123123011011011210210210A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭771123201011256210⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭9221445612141⎛⎫⎪=--- ⎪ ⎪⎝⎭(2) 12330421()(011010)1221021311A C B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭427210211240311⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭171513117⎛⎫⎪= ⎪ ⎪⎝⎭123213042101112010122101121311AB CB ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪+=-+ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭7810701125463⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭171513117⎛⎫ ⎪= ⎪ ⎪⎝⎭故 ()CB AB B C A +=+1232178705()01112018142101154TTT AB ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪=-== ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭211231022117051201121112181411210310T TT T B A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭故 ()TAB TT=A B2.求下列矩阵方程中的矩阵X :⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---+-⎪⎪⎭⎫⎝⎛--00000011311232021132X . 解 移项得31121132202311X ---⎛⎫⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭方程两边同乘以13得3112111(2)2023113X ---⎛⎫⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭411622211433113()4043111131133133⎛⎫- ⎪----⎛⎫⎛⎫⎛⎫⎪=+== ⎪ ⎪ ⎪--- ⎪⎝⎭⎝⎭⎝⎭-⎪⎝⎭3.已知两个线性变换⎪⎪⎩⎪⎪⎨⎧++=++-=+=31332123115423222yy y x y y y x y y x ,⎪⎪⎩⎪⎪⎨⎧+-=+=+-=323312211323z z y z z y zz y , 求从321,,z z z 到321,,x x x 的线性变换.解 用矩阵乘法分别表示这两个已知的线性变换为112233201232415x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,112233*********y z y z y z -⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭从而111222333201310201310232201232201415013415013x z z x z z x z z ⎛⎫⎛⎫--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123613124910116z z z -⎛⎫⎛⎫⎪⎪=- ⎪⎪ ⎪⎪--⎝⎭⎝⎭即 1123212331236312491016x z z z x z z z x z z z =-++=-+=--+4.计算下列矩阵乘积:(1) ;110217321134⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛- (2) ()⎪⎪⎪⎭⎫⎝⎛123321; (3) ()11312-⎪⎪⎪⎭⎫⎝⎛ ; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-0431103143110412; (5) ()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x .解 (1)71431353201236211⎛⎫⎛⎫⎛⎫⎪= ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪-⎝⎭ (2) ()31232101⎛⎫ ⎪= ⎪ ⎪⎝⎭(3) ()22111111333-⎛⎫⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(4) 132140016711341320540⎛⎫ ⎪--⎛⎫⎛⎫⎪= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭(5)()()111213111121311232122232123212223231323333132333a a a x a a a x x x x a a a x x x x a a a x a a a x a a a x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()1111212313121222323131********x a x a x a x a x a x a x a x a x a x x x ⎛⎫ ⎪=++++++ ⎪ ⎪⎝⎭222111222333122112133113233223()()()a x a x a x a a x x a a x x a a x x =++++++++5.设⎪⎪⎭⎫ ⎝⎛=101λA , 证明⎪⎪⎭⎫ ⎝⎛=101λk A k ,其中k 为正整数. 证明 对k 用数学归纳法显然1k =时,结论成立.设当k n =时结论成立,即有101n n A λ⎛⎫= ⎪⎝⎭我们考虑1k n =+时的情形.由归纳假设,我们有1111(1)010101n nn n AA A λλλ++⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即1k n =+时的结论也是成立的.由归纳原理,⎪⎪⎭⎫ ⎝⎛=101λk A k对所有的正整数成立. 6.设⎪⎪⎭⎫⎝⎛-=θθθθcos sin sin cos A , 证明⎪⎪⎭⎫⎝⎛-=θθθθk k k k A k cos sin sin cos ,其中k 为正整数 .证明 对k 用数学归纳法.显然1k =时,结论成立. 设当k n =时结论成立,即有cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭我们考虑1k n =+时的情形.由归纳假设,我们有1cos sin cos sin sin cos sin cos n n n n A A A n n θθθθθθθθ+--⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭cos cos sin sin cos sin sin cos cos(1)sin(1)sin cos cos sin sin sin cos cos sin(1)cos(1)n n n n n n n n n n n n θθθθθθθθθθθθθθθθθθθθ---+-+⎛⎫⎛⎫==⎪⎪+-+++⎝⎭⎝⎭即1k n =+时的结论也是成立的.由归纳原理,⎪⎪⎭⎫⎝⎛-=θθθθk k k k A k cos sin sin cos对所有的正整数成立.7.如果BA AB =矩阵B 就称为与A 可交换.设(1)⎪⎪⎭⎫⎝⎛=1011A ; (2)⎪⎪⎪⎭⎫ ⎝⎛=213210001A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000100010A . 求所有与A 可交换的矩阵.解 (1)设与A 可交换的矩阵为a b B c d ⎛⎫=⎪⎝⎭则 1101a b a b b d AB c d cd ++⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 1101a b a a b BA c d c c d +⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭由BA AB =,故a b b d a a b c d c c d +++⎛⎫⎛⎫= ⎪ ⎪+⎝⎭⎝⎭根据矩阵相等的定义,得a c ab d a bc cd c d+=⎧⎪+=+⎪⎨=⎪⎪=+⎩ 解之得0,c a b ==所以,与A 可交换的矩阵0a b B a ⎛⎫= ⎪⎝⎭其中,a b 为任意数.(2)设与A 可交换的矩阵为xy z B uv w g s t ⎛⎫ ⎪= ⎪ ⎪⎝⎭则 100012222312323232x y z x y z AB uv w u g v s w t g st x u g y v s z w t ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+++ ⎪⎪ ⎪ ⎪⎪ ⎪++++++⎝⎭⎝⎭⎝⎭100322012322312322xy z x z y z y z BA uv w u w v w v w g st g t s t s t +++⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==+++ ⎪⎪ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭由BA AB =,故322222322323232322x y z x z y z y z u g v s w t u w v w v w x u g y v s z w t g t s t s t +++⎛⎫⎛⎫⎪ ⎪+++=+++ ⎪ ⎪ ⎪ ⎪+++++++++⎝⎭⎝⎭根据矩阵相等的定义,得322x x z y y z z y z =+⎧⎪=+⎨⎪=+⎩,232222u g u w v s v w w t v w +=+⎧⎪+=+⎨⎪+=+⎩,323323222x u g g ty v s s t z w t s t ++=+⎧⎪++=+⎨⎪++=+⎩解之得3110,,,,33222y z g w s w t v w u x v =====+=-+ 所以,与A可交换的矩阵为0033311222x B x vv w w w v w ⎛⎫⎪⎪=-+ ⎪ ⎪ ⎪+⎝⎭其中,,x v w 为任意的数.(3)设与A 可交换的矩阵为xy z B uv w g s t ⎛⎫ ⎪= ⎪ ⎪⎝⎭则 010*******0001000100000xy z uv w AB uv w gs t g s t x y z x y BA u v w u v g s t g s ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由BA AB =,故000000u v w xy g s t u v g s ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭根据矩阵相等的定义,得0,,u g s v t x w y ======所以,与A可交换的矩阵为000x yz B xy x ⎛⎫⎪= ⎪ ⎪⎝⎭其中,,x y z 为任意的数.8.如果CA AC BA AB ==,,证明:A C B C B A )()(+=+;A BC BC A )()(=. 证明 因CA AC BA AB ==,,故()()A B C AB AC BA CA B C A +=+=+=+ ()()()()()()A BC AB C BA C B AC B CA BC A =====9.如果)(21E B A +=,证明:A A =2当且仅当E B =2. 证明 因为)(21E B A +=,故22211[()](2)24A B E B B E =+=++如果2A A =.即有211(2)()42B B E B E ++=+ 从而E B =2反之,如果E B =2,容易推出A A =2.10.证明:如果A 是实对称矩阵且0=2A ,那么0=A .证明 设111212122212n n n n nn a a a aa a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭那么由T A A =,得21111121112112212221222222112122100000n ii n n nn n iT i n n nn nnnn n ni i a a a a a a a aa a a a a aA AA a a a a a a a ===⎛⎫ ⎪ ⎪⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎪ ⎪⎝⎭∑∑∑根据矩阵相等的定义得222121110,0,,0n nni i ni i i i a a a ======∑∑∑但是A 为实对称矩阵,即所有的元素均为实数,所以120(1,2,,)i i in a a a i n ===== 从而0=A11.设A 、B 为n 阶矩阵,且A 为对称矩阵,证明AB B T也是对称矩阵. 证明 因为A 对称矩阵,故T A A =从而()()T T T T T T T B AB B A B B AB ==所以,AB B T也是对称矩阵.12.设A 、B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =. 证明 因A 、B 都是n 阶对称矩阵,故T A A =,T B B =如果AB 是对称矩阵,那么()T T T AB AB B A BA ===反之,如果BA AB =,那么()()T T T T AB BA A B AB ===从而AB 是对称矩阵.13.设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=567152431A , 试将A 表示为一个对称矩阵与一个反对称矩阵之和.解 511122157()5222117522T A A ⎛⎫ ⎪⎪ ⎪+=- ⎪⎪ ⎪-⎪⎝⎭为对称矩阵. 13022115()022235022TA A ⎛⎫- ⎪⎪ ⎪-=-⎪ ⎪ ⎪- ⎪⎝⎭为反对称矩阵.并且满足 51113102222571550222211735502222A ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=-+- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭14.用待定系数法判定下列矩阵是否可逆,并且在矩阵可逆时求它的逆矩阵: (1)⎪⎪⎭⎫⎝⎛3243 ; (2) ⎪⎪⎭⎫ ⎝⎛10452 . 解 (1)设有矩阵a b c d ⎛⎫ ⎪⎝⎭使得34102301a b c d ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭那么由矩阵的乘法与矩阵相等的定义可以得到下列线性方程组341340230231a cb d ac bd +=⎧⎪+=⎪⎨+=⎪⎪+=⎩ 这个线性方程组有唯一解3,4,2,3a b c d ==-=-=从而3423a b c d -⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭容易验证3434341023232301a b c d -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以矩阵⎪⎪⎭⎫⎝⎛3243是可逆矩阵,且134342323--⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭(2)设有矩阵a b c d ⎛⎫⎪⎝⎭使得251041001a b c d ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭那么由矩阵的乘法与矩阵相等的定义可以得到下列线性方程组25125041004101a cb d ac bd +=⎧⎪+=⎪⎨+=⎪⎪+=⎩ 这个线性方程组无解,所以矩阵⎪⎪⎭⎫⎝⎛10452是不可逆矩阵. 15.证明:如果0=kA (k 为正整数),那么121()k I A I A A A ---=++++.证明 因0=kA ,故212121()()k k k k k I A I A A A I A A A A A A A I A I ----++++=++++-----=-=同理可得21()()k I A A A I A I -++++-=根据矩阵可逆的定义,矩阵I A -是可逆矩阵,且121()k I A I A A A ---=++++16. A,B 两个工厂生产M ,N ,P ,其年产量(单位:件)分别为200,300,400;150,200,250. 这三种产品的出厂单价(单位:万元)分别为:3,2,1. 求A,B 两个工厂的年度总产值.解: 分别A 、B 两个工厂生产M 、N 、P 三种产品的年产量为列构成矩阵⎪⎪⎪⎭⎫ ⎝⎛250200150400300200 , 以这三种产品的出厂单价为行的矩阵为 ()123.那么以A,B 两个工厂的年度总产值为行的矩阵为()()11001600250200150400300200123=⎪⎪⎪⎭⎫ ⎝⎛所以A,B 两个工厂的年度总产值分别为1600万元与1100万元.17.设矩阵⎪⎪⎭⎫ ⎝⎛=2011A ,求nA ,(n 为正整数). 解:⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21022022120112011A ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛==321021023202221202212011AA A 一般地应有 ⎪⎪⎪⎭⎫⎝⎛=∑-=n 1n 0k k n 2021A 我们对n 用数学归纳法来证明该式. 显然n=1时结论成立. 假设n=l 时结论成立,即有⎪⎪⎪⎭⎫⎝⎛=∑-=n 1l 0k k l 2021A 现在我们考虑n=l+1时的情形.由归纳假设,我们有⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==∑=+l l0k k l 1l 20212011AA A ⎪⎪⎪⎭⎫ ⎝⎛=+-+=∑1l 1)1l (0k k 2021 , ⎪⎪⎪⎭⎫⎝⎛=∑-=n 1n 0k k n 2021A 对所有正整数都成立.18.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=100110011A ,求n A .解: ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=100C 10C 21100210121100110011100110011A 12222⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==100C 10C 31100310331100210121100110011AA A 132323一般地应有 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100n 1021)-n(n n 1100C 10C n 1A 1n 2nn 我们对n 用数学归纳法来证明该式.显然n=2时结论成立. 假设n=k 时结论成立,即有⎪⎪⎪⎭⎫ ⎝⎛=100C 10C k 1A 1k 2k k .现在我们考虑n=k+1时的情形.由归纳假设,我们有⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==+100C 10C k 1100110011AA A 1k 2k k 1k⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛++=+++100C 10C 1k 1100C 10C C 1k 111k 21k 11k 1k 2k 即n=l+1时结论也成立,由归纳原理,⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100n 1021)-n(n n 1100C 10C n 1A 1n 2n n对所有大于1正整数都成立.19.设()m m m a a a f +++=- 110λλλ,A 是一个n n ⨯矩阵,定义 ()I a A a A a A f m m m +++=- 110.(1) ()12--=λλλf ,⎪⎪⎪⎭⎫ ⎝⎛-=011213112A ,(2) ()352+-=λλλf ,⎪⎪⎭⎫⎝⎛--=3312A . 试求()A f .解:(1) ()⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=--=10001000101121311201121311222I A A A f⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=2123083151000100010112131121015211428 (2) ()⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=100133312533122A f⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--=30031515510121557⎪⎪⎭⎫ ⎝⎛=0000. 习题三1. 计算下列矩阵的乘积:(1) ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛010110005110230002; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解:(1) ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛OO =⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛100310001001011000511023000221A A其中()()10521=⨯=A ,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=1031011111232A . (2) 把乘积中的两个矩阵分别分块成⎪⎪⎭⎫⎝⎛O =⎪⎪⎪⎪⎪⎭⎫⎝⎛=2213000120010100121A I A A , ⎪⎪⎭⎫⎝⎛O =⎪⎪⎪⎪⎪⎭⎫⎝⎛---=212300032001210131B B I B . 那么 ⎪⎪⎭⎫⎝⎛O +=⎪⎪⎭⎫ ⎝⎛O ⎪⎪⎭⎫ ⎝⎛O=223111212221B A B B A A B B I A I A AB .而 ⎪⎪⎭⎫⎝⎛--+⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=+30321217303212131021211B B A⎪⎪⎭⎫ ⎝⎛-=4225, ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=90342032301222B A .从而 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=9000340042102521AB .2. 求下列矩阵的逆矩阵:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛1200250000430011; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a21,其中021≠n a a a . 解:(1) ⎪⎪⎭⎫⎝⎛O O =⎪⎪⎪⎪⎪⎭⎫⎝⎛=211200250000430011A A A .1A 为可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=-131411A ; 2A 为可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=-522112A . 从而A 为可逆矩阵,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----52002100001300141A . 3. 设A 为n 阶矩阵,且满足:O =++I A A 2.求1-A .解:移项并整理得()I I A A =--及()I A I A =--,所以,A 为可逆矩阵,且 I A A--=-1.4. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=61318175********A ,求1-A . 解:⎪⎪⎭⎫⎝⎛O =⎪⎪⎪⎪⎪⎭⎫⎝⎛----=B C A A 16131817500230012, ⎪⎪⎭⎫ ⎝⎛=23121A 是可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=-231211A ; ⎪⎪⎭⎫ ⎝⎛--=6181B 是可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=212143B . 由例15 ⎪⎪⎭⎫⎝⎛-O =-----1111111B CA B A A . 经计算,得⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=---23123175212143111CA B ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=2275231222911, 从而 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-2121224375002300121A .5. 已知A 为m 阶可逆矩阵,C 为n 阶可逆矩阵.试证⎪⎪⎭⎫⎝⎛O O =C A X 是可逆矩阵,并求1-X.解:设有分块矩阵⎪⎪⎭⎫⎝⎛=22211211X XX X D ,其中D 的分法使以下的分块乘法有意义, 并使得 ⎪⎪⎭⎫⎝⎛OO =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛O O =n mI I CX CX AX AX X X X X C A XD 121122112221112. 比较等式两边,得⎪⎪⎩⎪⎪⎨⎧=O =O ==nm I CX CX AX I AX 12112221由第一,二式得 O ==-22121,X A X , 由第三,四式得 1111,-=O =C X X . 容易验证也有 ⎪⎪⎭⎫ ⎝⎛OO =n mI I DX . 所以 ⎪⎪⎭⎫ ⎝⎛O O =---111A C X.6. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X ,其中()n i a i ,,2,10 =≠,求1-X .解:⎪⎪⎭⎫⎝⎛O O =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-C A aa a a X n n 0000000000000000121, 由上题的结果,得 ⎪⎪⎭⎫⎝⎛O O =---111A C X但 ()11--=n a C ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----1112111000000n a a a A. 所以, ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--------00000000000000000000001112121111n n n a a a a a X.。

高等代数-第1章习题及解答

高等代数-第1章习题及解答

习题1.11. 判断以下数集是否作成数环。

1)S={}Z ∈; 2) S={}0a a Q ≠∈; 3)S={},a b Z +∈;4)S={},a a b Q +∈.解: 1)错误。

不能包含除0以外的整数。

2)错误。

对差不封闭。

3)正确。

4)正确。

{}{},5,13a bi ab Q a bi a b Q Q +∈+∈2. 填空:1) 包含5i 的最小数域是或 2) 包含的最小数域是⎭⎬⎫⎩⎨⎧∈Q a a 31或{}{}{}0.,0,,,,0,1,2,3,,-l S a S a S ka S a S k l a bi a b Q F c di c di ≠≠∈≠∈∈=+∈⋅∈≠≠ 3.证明:如果一个数环S ,那么含有无限多个数。

证明:S 0可设是数环于是 其中 故含有无限多个数。

4.证明:S=是一个数环,是不是数域?证明: S 为数环,则S 对于数的加、减、乘封闭,且1=1+0i S 设+0,那么0222222220000,()()()()(),d c c di d c di c Q a bi a bi c di ac bd bc ad ic di c di c di cd ac bd bc adi c d c dac bd bc adQ c d ==+≠≠=∈++-++-==++-++-=++++-∈+否则 在的情形下,,与矛盾 在的情形下,与矛盾因此 又由于 22,Q c d a biS S c di∈++∴∈+ 故是数域。

121212,F F F F F F 5.设均为数域,证明也是数域,一定是数域吗?举例说明。

{}121222112,,,F F F F R F a bi a b Q F F F F ==+∈⊄⊄ 112证明:是数域,不一定是数域 反例:设F 因 F F 所以 不是数域()21,5(5,2)(2,3)(1)112;12(-1)(-2)12123455234125341n n k k k k +=+++++++−−−→−−−→− 习题1.21.计算下列排列的反序数: 1)75231468; 2)n(n-1)21;3)(2k)1(2k-1)2(k+1)k.解: ) ; 2) 3)2.利用对换把排列12345变成35241。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数第一章检测题答案
一、判断题
1.√ 2.√ 3.√ 4.× 5.√
二、填空题 1.21-;2.者说 )]1(2
2)][1(22)][1(22)][1(22[i x i x i x i x --+--+++ 3. 3或4
15-
4. 存在多项式1)()()()().(),(=+x g x v x f x u x v x u 使
5.2,11,23,13. 三、选择题 1.C 2.B 3.B 4.D 5.A
四、完成题
1.由带余除法得:商1)(2-+=x x x q 余)7(+-=x x r
2.用带余除法得:商23)(3-+=x x x q 余)2()2()(2+++=l x k x r 由整除的定义令:).(|)(,2,2.0202x f x g l k l k 时因此当及-=-==+=+
3.①由0)2()1()(|22==---f f x f x x 得
即⎩⎨⎧-=+=+1141b a b a 解得 ⎩⎨⎧=-=5
4b a ②由0)1()1()()1(='=-f f x f x 得
即得⎩⎨⎧-+-+831b a b a 解得⎪⎩
⎪⎨⎧=-=2527b a 4.解:设方程的三个根是,,21αi ±-则由根与系数的关系知,
22121-=+--+-αi i
由些得0=α
5.用综合法判别知:2是多项式)(x f 的根,且为3重根。

五、证明题
1.因为)(),(x g x f 不全为零,所以0)(),(≠x g x f
又),(),()()()()(x g x f x g x v x f x u =+且)(|))(),((),(|))(),((x g x g x f x f x g x f
所以1))
(),(()()()(),()()(=+x g x f x g x u x g x f x f x u 由多项式互素的充要条件知1))(),((=x v x u
2.证明:如果)())(),((x d x f x p =那么)(x d 要么为1,要么为)0)((≠c x cp 当1)(=x d 时,1))(),((=x f x p ,即)()(x f x p 与互素
当)(|)(,)()(x f x p x cp x d 时=.
3.证明:利用Eisenstein 判别法
取,3=p 因为3为能整除首项系数1,能整除其余所有系数.
932=不能整除3,所以3+n x 在Q 上是不可约的..。

相关文档
最新文档